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Abstract

We study Majorana modes bound to vortex cores in a chiral p-wave superconductor at
temperatures non-negligible compared to the superconducting gap. Thermal occupation
of Caroli de Gennes-Matricon (CdGM) states, below the full gap, causes the free energy
difference between the two fermionic parity sectors to decay algebraically with increas-
ing temperature. The power law acquires an additional factor of T−1 for each bound
state thermally excited. The zero-temperature result is exponentially recovered well be-
low the minigap (lowest-lying CdGM level). Our results suggest that temperatures larger
than the minigap may not be disastrous for topological quantum computation. We dis-
cuss the prospect of precision measurements of pinning forces on vortices as a readout
scheme for Majorana qubits.
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1 Introduction

In topological superconductors Majorana modes appear as neutral zero energy excitations as-
sociated with defects in the superfluid-like domain walls and vortex cores [1–5]. Majorana
modes are candidate non-Abelian anyons [6–8], with direct applications to topological quan-
tum computation [9], and so these collective modes have stimulated intense fundamental and
applied research [10,11].

Candidates for realizing Majorana modes have included nanowire systems [12–18],
proximity-induced superconductivity on topological insulators or quantum anomalous Hall in-
sulators [3, 19–24] and unconventional iron based superconductors [25–27] like
(Li1−xFex)OHFeSe [28, 29]. Interferometry protocols have been proposed to verify the exis-
tence of Majorana modes [4,5,30,31], often subject to restrictions imposed by the (generally
low) bulk quality of topological insulators [32,33].

In a p-wave superconductor, two vortex bound states of finite separation R hybridize and
split in energy [34]. The splitting effectively produces a finite-energy two-level system of the
Majorana qubit, with the levels distinguished by the fermion parity: two Majoranas can ‘fuse’
into a state with either zero or one fermions (two states of different parity), like two spin-1/2
particles can combine into either a spin-0 or spin-1 state. In some cases, a barrier to exploiting
the vortex bound states in topological superconductors is the mixing with the tower of excited
states in the vortex cores, known as the Caroli de Gennes-Matricon (CdGM) states [35–37].
The CdGM states are characterized by a level spacing, the ‘minigap’, of size δε ≈∆2

0/EF , with
∆0 the full superconducting gap and EF the Fermi energy. Exciting these CdGM states does not
lead to loss of quantum information, but it can hide the information so that it is very difficult
to manipulate or to measure [38,39] .

Consider a qubit made from two vortices each having one Majorana zero mode. To measure
the state of this qubit, one might, in principle, measure the force between the vortices while
moving them close together. At zero temperature there would be a difference in forces for the
two different qubit states. At finite temperatures, excitation of the CdGM states reduces the
force difference between the two different qubit states, although the quantum information is
not lost until temperatures high enough that a bulk quasiparticle is excited that can carry away
the fermionic parity [38]. It is thus generally assumed that temperature should be minimized
as far as possible in realistic Majorana setups.

In this paper we examine the impact of thermal occupation of the CdGM states on the Ma-
jorana energy splitting in a two-vortex system. In a simple analytical model we find that the
free energy difference between fermionic parity sectors lies exponentially close to the zero-
temperature result for temperatures below the minigap, and decreases only as T−2 with in-
creasing temperature T just above this temperature (and well below the superconducting gap).
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More generally, the contrast in free energy between parity sectors as two Majoranas are fused
decreases with an additional factor of T−1 for each thermally-occupied bound state. The poly-
nomial dependence suggests that temperature need not be an immediately limiting factor for
topological quantum computation. This result relies, however, on having a ‘sizable’ minigap.
If the vortex core is swamped with a continuum of in-gap states, we find the parity contrast
to be exponentially suppressed in temperature. We discuss experimental aspects, including
limiting time scales from quasiparticle poisoning and thermal vortex motion, towards the end
of the paper.

2 Background: Majorana bound states in the p+ ip model

We consider an effective spinless px + ipy superconductor in two dimensions, described in the
Bogoliubov-de Gennes (BdG) formalism in terms of a coupled eigensystem in the particle-hole
basis [40],

H
�

un(r )
vn(r )

�

= εn/2

�

un(r )
vn(r )

�

, (1)

where un (vn) is the particle (hole) component of the eigenstate, and

H =
�

− 1
2m∇

2 − EF
1

2kF

�

∆(r ),∂x + i∂y

	

− 1
2kF
{∆∗(r ),∂x − i∂y}

1
2m∇

2 + EF

�

. (2)

Here ∆(r ) is the pairing function at position r = (x , y), kF and EF are the Fermi wavevector
and Fermi energy, m is the effective electron mass, and εn/2 is the energy of level n of the BdG
spectrum. The BdG Hamiltonian in Eq. (2) features a particle-hole-symmetry which ensures
that the resulting spectrum is symmetric around zero, such that εn > 0 denote the energy
differences between the particle and the hole states. Formally, the model belongs to class D in
the classification of non-interacting topological superconductors and insulators [41,42].

The quasiparticle annihilation (creation) operator γ̂(†)n associated with level εn of the BdG
Hamiltonian is a superposition of the spinless electron annihilation (creation) operators ψ̂(†)(r ),

γ̂n =

∫

d2r
�

u∗n(r )ψ̂(r ) + v∗n(r )ψ̂
†(r )

�

. (3)

The operators associated with localized Majorana (zero) modes obey the defining criterion
γ̂n = γ̂†

n and the anticommutation relations {γ̂n, γ̂m}= 2δnm.
Vortices in the superconductor are regions around which the complex phase of the order

parameter ∆ winds through 2π, with the gap magnitude going to zero in the vortex center.
At position r , defining r = |r | and ϕ = arg (r ), this is described by the order parameter
∆(r ) = ∆0ei`ϕ f (r). Here ∆0 is the full (asymptotic) gap, ` the vorticity which is fixed to
`= 1 in the following, and f (r) is the radial profile, where f (r)∼ r |`| close to the vortex core.
Assuming a profile f (r) = tanh (r/ξ), where ξ = vF/∆0 is the coherence length and vF is the
Fermi velocity, the Majorana zero mode solution of Eq. (1) for a vortex in an infinite system
with 2mEF >∆

2
0/v

2
F is explicitly given by [2,40]

�

u0(r )
v0(r )

�

=N
J1

�

r
p

2mEF − 1/ξ2
�

cosh(r/ξ)

�

ieiϕ

−ie−iϕ

�

, (4)

manifestly satisfying the Majorana condition u0 = v∗0 . Here, N is a normalization constant,
and J1 is a Bessel function of the first kind. With N vortices centred at positions R j , the order
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parameter may be approximated by

∆(r ) =∆0

N
∏

j=1

f (|r −R j|)ei arg (r−R j), (5)

when assuming no spatial or phase fluctuations of the vortices, limiting the validity to the
(zero temperature) mean field result for the gap profile [34].

Within the ground state manifold defined by a collection of Majorana zero modes, the
pairwise exchanges of excitations constitute a higher-dimensional representation of the (non-
Abelian) braid group generators, which is encoded by the unitary operators
Ûn,n+1 = exp

�

−π4 γ̂nγ̂n+1

�

[10,43]. The braiding operators do not span all unitary gates needed
for universal quantum computation, but the remaining set of gates can be implemented in a
non-topological way with arbitrarily small errors [11,44].

With two vortices of finite separation R = |R1 − R2| in a topological superconductor, each
containing a Majorana mode, the energy splitting between the Majorana modes is given by
[34]:

ε0 ≈
4∆0

π3/2

cos
�

kF R+ π
4

�

p

kF R
e−R/ξ. (6)

This expression holds in the regime R� ξ� k−1
F . The hybridization energy above, ε0 = ε+−ε−,

is the energy difference between the two fermionic parity sectors, which, when the vortices
are well-separated, are associated with the two-vortex wavefunctions Ψ± = (Ψ1 ± iΨ2)/

p
2,

where Ψn =
�

un(r ), vn(r )
�ᵀ

(with ᵀ denoting the transpose) is the wavefunction associated
with vortex n.

3 Effect of heating on CdGM states

The lowest-energy levels, the CdGM levels, in the vortex core occur symmetrically about the
Fermi energy, and their level spacing is given by the minigap, δε. The presence of such in-gap
states, which derive from the finite density of states at the Fermi level in the normal state of
the core, can lead to reduced distinguishability of the Majorana parity sectors [34, 35]. In
this section we consider the quantitative effect of occupying these states at finite temperature.
More details on the CdGM levels can be found in Appendix A.

3.1 The partition function

In the superconducting condensate, where the number of particles is not conserved, we employ
the grand canonical ensemble in evaluations of thermal expectation values. Since the (total)
fermionic parity, i.e. the number of fermions modulo 2, is conserved, the proper partition
function is projected onto the even (+) and odd (−) parity sectors [45–48]:

Z± =
1
2

∏

n

eβεn/2
�∏

m

(1+ e−βεm)±
∏

l

(1− e−βεl )
�

=
1
2
Z0

�

1±
∏

m

tanh (βεm/2)
�

, (7)

whereZ0 =
∏

n 2 cosh (βεn/2) is the partition function without parity restrictions, β = (kB T )−1,
and all the products run over the positive energy levels in the BdG spectrum. We ignore states
with energies far above kB T as they are suppressed by Boltzmann factors at low temperatures.
The free energy in the ± parity sectors can be found in the usual way:

F± = −β−1 logZ±. (8)
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3.2 Low-temperature model

We consider two vortices at finite separation such that the Majorana modes in the vortex cores
split according to Eq. (6). The excited CdGM states of the cores will also split in the same
fashion (see Sec. 3.4). As a general and effective description at low temperatures, where only
the lowest levels in the tower of CdGM states are thermally activated, we assume that the
system has six levels: ±εn/2, with n ∈ {0, 1,2}, ε1 ≡ δε − w1 and ε2 ≡ δε + w2, where δε is
the minigap. Based on the splitting of the zero modes (Eq. (6)), confirmed numerically, the
deviation of the excited states from the minigap, w1 and w2 as defined above, are expected to
decay with the vortex-vortex separation as wi ∼ exp(−R/ξ) for i = 1,2.

The two parity sectors P = ±1 are treated separately, with the associated particle config-
urations being denoted by n±. In the BdG-spectrum these configurations are depicted in Fig.
1. Notice that the number of particle excitations (disks above zero energy in the figure) is
therefore even or odd in the respective parity channels. We consider the hierarchy of energy

εn P = +1

1+ 2+ 3+ 4+

ε2/2
ε1/2

ε0/2

−ε2/2
−ε1/2

−ε0/2

(a)

εn P = −1

1− 2− 3− 4−

ε2/2
ε1/2

ε0/2

−ε2/2
−ε1/2

−ε0/2

(b)

Figure 1: Occupancy configurations, labeled by n± in columns, of the six-level system
in the (a) even (P = +1) and (b) odd (P = −1) parity sector. The single-particle
energy levels in the particle-hole symmetric BdG spectrum are denoted by ±εn/2.
This depicts a low energy model for a system with finite distance between the two
vortices as investigated numerically in Sec. 3.4.

scales ε0 ' |w1| ' |w2| < δε, which we expect to apply when the vortices are further apart
than about 3ξ (see Sec. 3.4). The partition function is given by

Z± = 2e±βε0/2
�

e∓βε0 cosh
�

β
w1 +w2

2

�

+ cosh
�

β[δε +
w2 −w1

2
]
�

�

. (9)

The observable consequence of switching fermionic parity sector is that the free energy in-
volved in bringing two vortices together changes. We term this difference in free energy be-
tween the two parity sectors the parity disparity,

∆F ≡ F− − F+, (10)

which in the current case evaluates to:

∆F = ε0 +
1
β

log
e−βε0 cosh

�

β
w1+w2

2

�

+ cosh
�

β[δε +
w2−w1

2 ]
�

e+βε0 cosh
�

β
w1+w2

2

�

+ cosh
�

β[δε +
w2−w1

2 ]
� . (11)

As expected, the parity disparity decreases monotonically with increasing temperature. It
reflects the feasibility of directly probing the state of a Majorana qubit. In the limit of low
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temperature, kB T ® δε, the leading correction to the zero-temperature result is suppressed as
∼ exp(−βδε):

∆F ≈ ε0 −
4
β

cosh
�

β
w1 +w2

2

�

sinh(βε0)e
−β(δε+[w2−w1]/2). (12)

At temperatures above the minigap we find F± = −
1
β log 4+O(βδε) to leading order in the

high-temperature expansion, simply reflecting thermal occupation of the four available config-
urations in each parity sector shown in Fig. 1. The linear corrections in βδε are independent
of parity, such that the parity disparity acquires a leading order correction at second order in
β ,

∆F =
1
4
ε0β

2
�

δ2
ε +δε(w2 −w1)−w1w2

�

+O(βδε)4. (13)

This inverse square law decay in the parity disparity with increasing temperature is weak
enough that it will likely not preclude direct measurement at temperatures above the minigap.
However, this toy model can only describe the regime kB T ® 2δε: at higher temperatures
further CdGM states will be thermally excited.

Differences between the two parity channels are expected to be washed out at high tem-
peratures. At low temperatures, the fact that the configurations 2+ and 3+ have excitation
energies on the order of ε0 greater than 2− and 3− (Fig. 1), respectively, distinguishes the two
sectors.

3.3 Arbitrary numbers of core states

Now consider an arbitrary number of CdGM states thermally active in the two vortex cores. If
the vortices are well-separated it is reasonable to assume that ε0 < ε1 ≈ ε2 < ε3 ≈ ε4 < . . . ,
where ε0 is the Majorana energy, and εi>0 are the excited CdGM levels. The approximate
equalities become exact as R/ξ→∞. If the temperature is much greater than at least one of
the levels, εn� kB T �∆0 for n¾ 0, the parity disparity can be approximated by

∆F =
1
β

log
1+

∏

m tanh (βεm/2)

1−
∏

n tanh (βεn/2)
≈ ε0(β/2)

n
n
∏

m=1

εm

∞
∏

l=n+1

tanh (βεl/2), (14)

since tanh (βεm/2) ≈ βεm/2 � 1 ∀m ¶ n. Thus, the temperature decay above level εn
is algebraic: ∆F ∼ T−n. The above decay suggests that temperatures on the order of the
minigap can be tolerated but that exciting additional bound states causes the parity disparity
to decrease rapidly.

The derivation holds in the limit of a well-defined and sizable minigap. If instead the vortex
core contains a continuum of in-gap levels, the parity disparity of Eq. (14) is recast [16] and
approximated 1 in the high-temperature limit as

∆F =
1
β

log coth

�

1
2

∫ ∞

δε

dE ρ0 log coth(βE/2)

+
1
4

log coth(βδε/2) +
1
2

logcoth(βε0/2)

�

≈ ε0

Æ

2ρ0kB T e−
π2
4 ρ0kB T e1+O(1/(ρ0kB T )2).

(15)

Here ρ0 ≡ 1/δε is the density of states in the vortex core. The first term in the middle row of
Eq. (15) appears when replacing the sum of equally spaced levels with an integral using the

1Using that F(x) =
∫∞

x
dy log coth y = π2

24 +
1
2

�

log tanh x log (1+ tanh x) + Li2(1− tanh x) + Li2(− tanh x)
�

,

where Li2 is the dilogarithm function. For small x this function behaves as F(x) = π2

8 + x(log x − 1) +O(x3).
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trapezoidal rule. The exponential suppression in kB T implies that vortex cores with densely
packed in-gap states, as on topological insulator surfaces [20] or in superconducting Pb mono-
layers [49], would likely remain unworkable in the context of readout schemes and topological
quantum computation.

3.4 Numerical results

Consider two vortices with separation R in a spinless p + ip superconductor. We first assume
that T = 0 and that the two vortices have the same (positive) phase winding, as in Eq. (5). It
should be noted that this is formally different from the vortex-antivortex and the antivortex-
antivortex configuration in a p+ ip superconductor.

We approach the problem numerically by solving the BdG equations with a finite element
method for a large range of inter-vortex distances on a slab no smaller than
[−10ξ, 10ξ]× [−9ξ, 9ξ] with Dirichlet boundary conditions. In Appendix B the calculation is
repeated with one vortex replaced by a hole, with a flux quantum penetrating the hole. We fix
the (dimensionless) parameters of the p + ip model to EF = 3, ∆0 = 1, and mk2

F = 54. The
lowest-lying vortex states at zero temperature are shown in Fig. 2. Real-space colour maps
of |Ψn(r )| = (|un(r )|2 + |vn(r )|2)1/2 are shown in the figure insets. By following Ref. [35]
the first predicted CdGM levels when using the approximation discussed in Appendix A are
ε1/2 ≈ 0.142∆0, ε2/2 ≈ 0.284∆0, ε3/2 ≈ 0.426∆0, which are indicated with gray dotted
lines in Fig. 2 and agree reasonably well with the numerical results, despite not strictly being
in the BCS regime (∆0� EF ) where the approximation is valid.

Figure 2: The first energy levels εm/2 normalized by the full gap ∆0 of a two-vortex
system. The CdGM levels as predicted with Eq. (19) are shown in gray dotted lines.
Colour maps of the core-localized wavefunctions |Ψ(r )|= (|un(r )|2+ |vn(r )|2)1/2 for
the three lowest-lying (positive energy) states are also shown. The wavefunctions
are displayed for a vortex-vortex separation of R/ξ= 3.0 on a slab of size 8ξ× 6ξ.

The CdGM wavefunctions are exponentially localized (with decay length ξ) around the
two vortex cores, with spatial oscillations set by 2πk−1

F . Close to the vortex cores the expected
small argument behaviour of the appropriate Bessel functions (e.g. Eq. (4)) is recovered [36].
In the well-separated limit the two vortex cores each host a single Majorana zero mode, and the
CdGM levels become doubly degenerate as reflected in Fig. 2. Using the Majorana basis [40]
for intermediate separations reveals that the wavefunctions have started to disunite into two
localized states at separations as small as about R/ξ ≈ 3. At larger separations the states Ψ±,
corresponding to opposite fermionic parity, are reasonable approximations to the true ground
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state.
The near alignment of the crossing of the energy levels seen in Fig. 2 is linked to the

radial profiles of the vortex states which are given by Bessel functions of the first kind [36],
with an argument that increases slightly as a function of the excitation number. The Bessel-
type wavefunctions enforce the energy splittings, which derive from the overlaps between the
respective states [40], to acquire similar oscillations.

We note that on a finite slab with Dirichlet boundary conditions, the net angular momen-
tum induced by the two vortices enforces boundary states peaked around the edges of the
sample, with an energy spacing set by the boundary length, vF/L. When the vortices are lo-
cated far from the edge compared to ξ, these states are not affected by the presence of the
vortices or their separation (see Appendix C). Considering instead periodic boundary condi-
tions in both directions (solving the system on a torus) [1] and replacing one vortex by an
antivortex [50], removes the boundary states completely.

Figure 3: The free energy F± (Eq. (8)) normalized by the full gap ∆0 in the two
parity sectors P = ±1 as a function of the inter-vortex separation R/ξ for a range of
temperatures, with labels referring to the values of kB T/∆0. Here 〈F±〉 is the free
energy averaged over R/ξ.
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Figure 4: The parity disparity ∆F = F− − F+ normalized by the ground state energy
level ε0 as a function of temperature normalized by the excited energy level ε1. In the
main figure (log-log axes) we show the parity disparity for a vortex-vortex separation
of R/ξ= 3.0. The CdGM levels are indicated with gray dotted lines, and the algebraic
temperature law T−n, predicted in Eq. (14), is shown in black. The inset shows the
parity disparity for three values of the inter-vortex separation, with values of R/ξ
given by the labels.

In Figs. 3 and 4 we display the influence of temperature in the presence of in-gap states
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for the two-vortex system, when Eq. (8) is applied to the numerically found energy levels
of Fig. 2. As the temperature surpasses the minigap, the oscillations begin to smear. Fig. 4
displays the numerically exact temperature dependence of the parity disparity at R/ξ = 3.0
in the main figure. The black straight lines represent the simple power law derived below Eq.
(14), when replacing tanh(βεn/2) by βεn/2 for kB T > εn and 1 for kB T < εn. Measuring
the fusion channel of the corresponding qubit as defined by the two Majoranas, and hence
the effect of braiding, thus becomes correspondingly difficult at temperatures well above the
minigap.

Appendix B contains the same finite-temperature calculation with one vortex replaced by
a hole. Qualitatively, the results are very similar to the vortex-vortex case. However, when one
vortex is replaced by a hole, and reflection symmetry about (R1+R2)/2 in the order parameter
is lost, the previous double degeneracy of the levels in the R/ξ→∞ limit is lifted. The level
spacing of the hole states is reduced with the hole circumference (cf. Ref. [51]), generally
making the issue of a small minigap worse when the hole radius is larger than ξ. We note
also that the frequency of the CdGM level oscillations with the vortex-hole separation roughly
doubles when comparing to the vortex-vortex case.

4 Measurement considerations

In practice, the topological splitting of the Majoranas constitutes a small contribution com-
pared to the vortex-vortex repulsion (see Appendix C for a listing of the expressions). The
topological contribution will in principle remain clear under the Fourier transform of the free
energy. The (Friedel-like) oscillations of frequency kF from the topological splitting manifest
as a bump, with distinguishable features in the two parity channels, revealed for instance in
Re{F̃− − F̃+}, with

F̃±(k)≡
1
p

2π

∫ ∞

0

dR e−ikRF±(R) , (16)

being the spatial Fourier transform of F±. We show this in Fig. 5.

Figure 5: The real part of the Fourier transform F̃± (expressions listed in Appendix
C) of the parity disparity F− − F+ at zero temperature as a function of momentum
k. Here, we set the coherence length to the value for Niobium [52], ξ= 38nm, and
the Fermi momentum to kF = 0.1, 0.2 nm−1 in cyan and magenta, respectively. The
labels refer to the prefactor of the topological contribution in Eq. (6), i.e. 4∆0π

−3/2.

By subtracting the free energy before and after a parity flip one is left with a finite result
only if the vortices contain non-Abelian anyons. Although the kF bump in the energy difference
would constitute strong evidence of successful braiding, the subtraction of the two curves will
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require a sensitivity set by ε0 in the measured free energy. The measurement series of F−− F+
can in principle be derived from the corresponding pinning force when one vortex is brought
close to another, as measured before (F±) and after (F∓) braiding with a third vortex.

In the following we consider the putative topological superconductor (Li1−xFex)OHFeSe to
evaluate the scope of applicability for force measurements to readout of Majorana qubits [28].
The material has a small Fermi energy EF ' 50− 60 meV and a superconducting gap on the
order of 2∆0 ' 20 meV. Tunneling measurements on superconducting vortices identify a zero-
bias peak, attributed to a Majorana zero mode, clearly separated from excited CdGM levels,
with the unusually large minigap δε ' 1 meV≈ 11 K.

Numerically, we find the parity disparity at temperatures below the minigap to be roughly
ε0 ≈ 0.04∆0 at R/ξ = 3. To measure the corresponding pinning force difference between the
parity sectors would require a force sensitivity of δF ® ε0/ξ≈ 0.05 pN, with ξ' 1.4 nm [28].
This precision is at least an order of magnitude below previously reported force measurement
thresholds [53–55], although optimizing these measurements was not the primary goal of
those studies.

4.1 Timescales and vortex motion

One of the leading threats to topological quantum computation comes from free electrons mix-
ing with the Majorana mode, causing an uncontrolled qubit parity flip [11,38]. The timescale
associated with this process is termed the ‘poisoning time’ [56]. The error rate in a strictly
two-dimensional geometry Γ is set by the energy scale [57]

Γ ' kB Te−∆0/(kB T ). (17)

Using ∆0 = 10 meV for (Li1−xFex)OHFeSe, and T = 5 K, the expected poisoning time is
tp ' ħh/Γ ≈ 20 ms. Traversing a loop of radius 10ξ, say, would require a vortex speed of
v ¦ 5µm s−1, which is in principle within reach of existing optical techniques [55]. Another
source of qubit decoherence at finite temperature, potentially relevant for this setup, is phonon
interactions [58].

Thermal fluctuations change the vortex-vortex distance dynamically, causing smearing
over an oscillating function (Eq. (6)). This can greatly reduce the contrast between the par-
ity sectors [34] unless the vortex pinning potential changes significantly on the order of the
oscillation lengthscale 2πk−1

F ' 21 nm. This approach would therefore require the vortices to
be artificially pinned in tight potentials [59] on this scale, if the temperature is on the order
of the minigap.

Requiring adiabatic motion, to avoid the excitation of quasiparticles, introduces a lower
time limit on the braiding operations. However, this timescale is small for the compound
under consideration, ta ' ħh/δε ≈ 0.7 ps. The braiding operations are therefore restricted to
timescales ta� t � tp. This could be achievable in the near future if improvements continue
to be made to individual vortex manipulation [53–55,59] for topological superconductors with
sizable minigaps [27,28].

5 Conclusions

In this paper we have demonstrated the effect, on the Majorana energy splitting of two bound
states, of thermally exciting the CdGM states in vortex cores. The parity disparity (the dif-
ference in free energies between the two Majorana parity channels when the Majoranas are
brought close together), which reflects the state of a Majorana qubit, lies exponentially close
to the zero-temperature result for temperatures well below the minigap ∼∆2

0/EF . Below the
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full gap, thermal excitation of higher CdGM states causes the amplitude to decay algebraically
in temperature, with an additional factor of T−1 for each CdGM state thermally occupied on
average. If the in-gap states are densely packed the suppression in temperature becomes ex-
ponential.

The relatively weak decay of the parity disparity with increasing temperature means that
temperature does not necessarily need to be minimized in experimental scenarios. In fact,
the Majorana modes can in principle coexist with excited states without loss of quantum in-
formation in any readout scheme based on the total fermion parity [38]. Local heating can
potentially be used as another degree of freedom. This could prove useful, for example, if the
magnitude of the external magnetic field is limited by other factors (working at a higher tem-
perature can decrease the critical field Hc1). Another possible application is to intentionally
excite the CdGM modes in order to decouple the vortex motion from the state of the Majorana
qubit, thus helping to increase decoherence times of the qubit.

As a promising candidate topological superconductor we draw specific attention to the in-
trinsic type-II superconductor (Li1−xFex)OHFeSe, recently suggested as a possible platform for
topological quantum computation [28]. With the results presented in the above sections, this
material should have an experimentally accessible temperature range in which one can aim at
probing the parity disparity. In the near-term, we hope the knowledge that finite temperature
effects need not be disastrous for the measurement and control of Majoranas may open other
avenues of enquiry.
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A The CdGM states

The low-energy spectrum of the vortex is given by [36]

εn−(`+1)/2 = −
�

n−
`+ 1

2

�

δε, (18)

with n ∈ Z the angular momentum of the state, δε the minigap, and ` ∈ Z the vorticity. The
excited core-localized CdGM states thus disperse linearly in momentum in p-wave supercon-
ductors. For odd vorticity the vortex hosts a zero energy mode of zero angular momentum
relative to the condensate. The minigap for a p-wave superconductor can be estimated by ap-
proximating the vortex as a hard step in the gap function. By continuity of the wavefunction
at the step radius one can deduce [35,36]

δε ≈
2m∆2

0

k2
F

∫∞
0 dρ f (ρ)/ρ exp

�

−2
∫ ρ

0 dρ′ f (ρ′)
�

∫∞
0 dρ exp

�

−2
∫ ρ

0 dρ′ f (ρ′)
�

, (19)

where ρ = r/ξ is a dimensionless length. Using f (ρ) = tanh(ρ) for the vortex profile of unit
vorticity [60], and assuming k2

F ≈ 2mEF (which holds in the BCS regime∆0� EF ), the above
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formula yields the level spacing

δε ≈
7ζ(3)
π2

∆2
0

EF
, (20)

with ζ the Riemann zeta function. The above formulas yield the gray dotted levels indicated
in Fig. 2.

B The vortex-hole system

In this appendix we list numerical results, similar to those shown in Figs. 2 and 3, for a vortex-
hole system. We use the order parameter magnitude |∆(r )|=∆0 f1(|r−R1|) f2(|r−R2|), where
∆0 is the full gap, and R1 (R2) is the position of the vortex (hole). For the gap profiles we take
f1(r) = tanh(r/ξ) and f2(r) =

1
2

�

1+ tanh
�

α[r2/ξ2 −η2]
��

(which is chosen for numerical
convenience and approximates a Heaviside step function when α is large), with η = 0.6 and
α = 10. The vorticity is +1 for both the vortex and the hole, and we solve the BdG equations
on a finite slab with Dirichlet boundary conditions as described in Sec. 3.4. The parameters
of the p+ ip model are taken to be the same as in the aforementioned section.

Figure 6: Same as Fig. 2 with one vortex replaced by a hole. In the wavefunction
colour maps, shown here for R/ξ = 5.0, the (lowest positive energy) state Ψ0 is
equally weighted between the vortex and the hole, Ψ1 is mainly localized in the hole
(to the right) and Ψ2 is mainly localized in the vortex (to the left).

Figure 7: Same as Fig. 3 with one vortex replaced by a hole.
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In Fig. 6 the vortex-hole energy levels are shown, along with colour maps of the three
lowest-lying wavefunctions. We note that unlike the vortex-vortex case where the CdGM levels
are doubly degenerate in the R/ξ→∞ limit, the levels corresponding to the vortex and the
hole are distinguishable. Accordingly, the wavefunctions of the excited states localize around
either the hole (right in the figure) or the vortex (left in the figure). In Fig. 7 we show
the impact of finite temperature on the parity disparity in the case of a vortex-hole system.
Qualitatively, the temperature smearing here is similar to that of the vortex-vortex system in
Fig. 3.

C Energy contributions

In this appendix we first list the full expression for the spatial Fourier transform (Eq. (16)) of
the topological energy contribution (Eq. (6)), which in Sec. 4 was suggested as a key signa-
ture for experimentally detecting the result of braiding. Second, we address the question of
how the bulk levels depend on the inter-vortex separation.

C.1 Fourier transforms of the two-vortex energy contributions

The contributions to the vortex-vortex energy are

εtop(R) = ε0,top
cos(kF R+π/4)

p

kF R
e−R/ξ, (21)

εcl(R) = ε0,clK0(R/λ), (22)

where ε0,top = 4∆0π
−3/2 from Eq. (6), K0 is a hyperbolic Bessel function, ε0,cl = Φ2

0/(4πλ)
2

where Φ0 = h/(2e) is the flux quantum, and λ is the London penetration depth [60]. Defining
the Fourier transform as in Eq. (16) yields for the topological contribution

ε̃top(k) =
ε0,top

2

√

√ ξ

kF



 (iξk+ 1) cosh
�

3
2

arctanh
� kFξ

ξk− i

�

�

+ ikFξ sinh
�

3
2

arctanh
� kFξ

i − ξk

�

�

+

+ (i − ξk)

√

√

√

1−
�

kFξ

ξk− i

�2

sinh
�

1
2

arctanh
� kFξ

ξk− i

�

�





×
�

(iξk+ 1)3/2
�

1−
�

kFξ

ξk− i

�2
�3/4

�−1

, (23)

of which the real part is shown in Fig. 5. From the oscillating part of εtop(R) there is a
characteristic peak in ε̃top(k) at k = kF that is enhanced with increasing ξ.

C.2 The background energy

The Hamiltonian associated with the mean field description of Eq. (2) can be written in diag-
onal form:

H =

∫

d2r
�

ψ̂†(r ), ψ̂(r )
�

H
�

ψ̂(r )
ψ̂†(r )

�

=
∑

n

εnγ̂
†
nγ̂n −

1
2

∑

n

εn, (24)
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where ψ̂(†)(r ) is the annihilation (creation) operator of a spinless electron at position r , and
the quasiparticle annihilation (creation) operator associated with level εn is γ̂(†)n .

The oscillations in the energy of the Majorana modes, as given in Eq. (6), could in principle
be threatened by a conspiracy of the bulk energy levels, even at zero temperature (deriving
from the last term in Eq. (24)). The sum of bulk energies could a priori have an oscillatory
dependence on the inter-vortex separation R, like the individual Majorana and the CdGM
levels, and thereby drown out the topological contribution. On a finite slab with Dirichlet
boundary conditions, Fig. 8 shows the result of the energy sum for the 150 lowest energy
states, including all the low-lying edge states. The oscillations of the Majorana levels at zero

Figure 8: The Majorana energy oscillations as a function of the inter-vortex separa-
tion on top of the ground state energy shift (the vortex-vortex repulsion) from Eq.
(24) when including the lowest 150 states on a finite slab with Dirichlet boundary
conditions.

temperature ±ε0 are clearly visible on top of a ∼ log(R/ξ) background that emerges. This
background energy we assign to the ‘classical’ vortex-vortex repulsion that arises from the
mutual Lorentz force of the flux lines [60]. We checked that in the case of a vortex-antivortex
system on a torus, where there are no edge states, the same background energy emerges with
the opposite sign, i.e. an attractive contribution.
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