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degrees of freedom naturally live on a novel structure, a “conformal quasicrystal,” that provides a discrete
model of conformal geometry. We introduce and construct a class of one-dimensional conformal
quasicrystals and discuss a higher-dimensional example (related to the Penrose tiling). Our construction
permits discretizations of conformal field theories that preserve an infinite discrete subgroup of the global
conformal group at the cost of lattice periodicity.
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I. INTRODUCTION

A central topic in theoretical physics over the past two
decades has been holography: the idea that a quantum
theory in a bulk space may be precisely dual to another
living on the boundary of that space. The most concrete and
widely studied realization of this idea has been the AdS/
CFT correspondence [1–3], in which a gravitational theory
living in a (dþ 1)-dimensional negatively curved bulk
spacetime is dual to a nongravitational theory living on its
d-dimensional boundary. Over the past decade, investiga-
tions of this duality have yielded mounting evidence that
spacetime and its geometry can in some sense be regarded
as emergent phenomena, reflecting the entanglement pat-
tern of some other underlying quantum degrees of freedom
(d.o.f.) [4].
Recently, physicists have been interested in the possibility

that discrete models of holography would permit them to
understand this idea in greater detail, by bringing in the tools
of condensed matter physics and quantum information
theory—much as lattice gauge theory led to conceptual
and practical progress in understanding gauge theories in the
continuum [5]. Recent years have seen a surge of interest in
discrete models of holography based on tensor networks
(TNs). Such holographic TNs relate the quantum d.o.f.
living on a discretized (dþ 1)-dimensional hyperbolic

space to corresponding d.o.f. on the discretized d-dimen-
sional boundary of that space. They bridge condensedmatter
physics, quantum gravity, and quantum information.
In condensed matter physics, holographic TNs provide

a computationally efficient description of the highly
entangled ground states of quantum many-body systems
(particularly scale-invariant systems or systems near their
critical points). The entanglement pattern is described by
tensors living on an emergent discrete hyperbolic geometry
in one dimension higher [6–11]. On the quantum gravity
side, the TNs are a kind of UV regulator of the physics in
the bulk, and a proposed way to represent the fact that
spacetime and its geometry may be regarded as emergent
phenomena, reflecting the entanglement pattern of some
other underlying quantum d.o.f. [12–24]. Meanwhile,
quantum information theory provides a unifying language
for these studies in terms of entanglement, quantum
circuits, and quantum error correction [25].
These investigations have gradually clarified our under-

standing of the discrete geometry in the bulk. There has
been a common expectation, based on an analogy with
AdS/CFT [1–3], that TNs living on discretizations of a
hyperbolic space define a lattice state of a critical system on
the boundary and vice versa. Initially, this led Swingle to
interpret Vidal’s Multiscale Entanglement Renormalization
Ansatz (MERA) as a discretized version of a time slice of
the AdS geometry [7,12]. However, MERA has a preferred
causal direction, while any discretization of a spacelike
manifold should not. To fix this issue, it was proposed that
MERA was related first to a different object known as the
kinematic space of AdS [18,26] and, more recently, to a
lightlike geometry [27].
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Meanwhile, new TN models (e.g., the holographic
quantum error-correcting codes of Ref. [16], the hyper-
invariant networks of Ref. [21], or the matchgate networks
of Ref. [24]) were introduced to more adequately capture
AdS. The key feature of these new TNs is that they live on
regular tilings of hyperbolic space [28]. The symmetries of
such a tessellation form an infinite discrete subgroup of the
continuous symmetry group of the AdS time slice, much as
the symmetries of an ordinary 3D lattice or crystal form an
infinite discrete subgroup of the continuous symmetry
group of 3D Euclidean space. Physically, such TNs
represent a discretization of the continuous bulk space,
much as a crystal represents a discretization of a continuum
material. In this paper, we restrict our attention to TNs of
this type.
Despite progress in describing the discrete bulk geom-

etry, the question of which discrete geometric spaces are
suitable for the boundary has received little attention. In a
discrete model of the AdS/CFT correspondence, we expect
to be able to construct the discrete boundary geometry
entirely from the data of the bulk tessellation, in analogy
with the continuum case, where it is well known that the
data of any asymptotically AdS spacetime define a con-
formal manifold on its boundary [2]. While this expectation
seems natural, we are unaware of a corresponding discrete
construction in the literature. In condensed matter physics,
the discrete boundary geometry is typically assumed to be a
periodic lattice; but, as we observe here, there is no natural
way in which an ordinary regular tessellation of hyperbolic
space defines a periodic lattice on its boundary, and no
natural way for the discrete symmetries of the bulk to act on
such a boundary lattice [29,31]. Thus, we expect that, in
implementing a discrete version of AdS/CFT, it will be
natural to replace the periodic boundary lattice with a
different discrete object. Such a replacement is reasonable,
from a Wilsonian viewpoint, as the choice of underlying
lattice becomes irrelevant at a critical point [32].
In this paper, we argue that the d.o.f. on the boundary of

a regular tessellation of hyperbolic space naturally live on a
remarkable structure—a “conformal quasicrystal” (CQC)
—built entirely from the data of the bulk tessellation. This
provides a new clue about the type of boundary theory that
should appear in a discrete version of holography. Far from
being a simple periodic lattice, each CQC locally resembles
a self-similar quasicrystal [33–37] (like the Penrose tiling
[38], shown in Fig. 1) and possesses discrete symmetries
worthy of a discretization of a conformal manifold. In this
paper, we focus on the d ¼ 1 case but with a view towards
higher dimensions (which we discuss briefly near the end).
We propose to use our framework to construct discretiza-
tions of CFTs that preserve an infinite discrete subgroup of
the global conformal group at the cost of exact discrete
translation invariance (which is replaced by quasitransla-
tional invariance). We end with suggestions for future
research and a discussion of how our results will hopefully

provide an important clue in the ongoing effort to formulate
a discrete version of holography, and also lead to an
improved analytical and numerical understanding of the
structure of condensed matter systems at their critical
points, and other conformally invariant systems.

II. QUASICRYSTALS IN d = 1

We begin by briefly introducing self-similar quasicrys-
tals (SSQCs) in d ¼ 1 (see Refs. [33–37] for further
details). For general d, a SSQC may be thought of as a
special quasiperiodically ordered set of discrete points in
Euclidean space (like the vertices in an infinite 2D Penrose
tiling, shown in Fig. 1). The same SSQC can be constructed
in two very different ways: either (i) by a cut-and-project
method based on taking an irrationally sloped slice through
a periodic lattice in a higher-dimensional Euclidean space
and projecting nearby points onto the slice, or (ii) by
recursive iteration of an appropriate substitution (or “infla-
tion”) rule. Restricting to d ¼ 1 in the following sections,
we exploit the second (inflation) perspective to develop a
novel construction whereby 1D SSQCs emerge on the
boundary of a lattice in 2D hyperbolic space.
Let Π be a (possibly infinite) string of two letters, α and

β, and let sαðα; βÞ and sβðα; βÞ be two finite strings of α’s
and β’s. We can act on Π with the inflation rule

τ∶ ðα; βÞ ↦ (sαðα; βÞ; sβðα; βÞ); ð1Þ

which replaces each α or β in Π by the string sαðα; βÞ or
sβðα; βÞ, respectively, to obtain a new stringΠ0. The inverse
map is the corresponding deflation rule:

FIG. 1. The Penrose tiling [35]. The two different tiles (red and
blue) cover the entire Euclidean plane in an aperiodic manner
without gaps. Centers of approximate fivefold symmetry can be
seen. The tiling can be created through a cut-and-project method
from a five-dimensional hypercubic lattice or a four-dimensional
A4 lattice, or by applying “inflation rules” to a finite-size starting
configuration [33–35].
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τ−1∶ (sαðα; βÞ; sβðα; βÞ) ↦ ðα; βÞ: ð2Þ

Note that, while the inflation rule has a well-defined action
on any string Π of α’s and β’s, the corresponding deflation
map only has a well-defined action on a string Π that may
be uniquely partitioned into substrings of the form sαðα; βÞ
and sβðα; βÞ.
Any inflation rule τ induces a matrixMτ that encodes the

growth of Nα and Nβ (the number of α’s and β’s,
respectively, in the string). For example, under τ∶ðα; βÞ ↦
ðαβα; αβαβαÞ, which corresponds to inflation rule 3b in
Table 1 of Ref. [36], we have

�N0
α

N0
β

�
¼ Mτ

�
Nα

Nβ

�
; Mτ ¼

�
2 3

1 2

�
: ð3Þ

If λ is the largest eigenvalue of Mτ (λ ¼ 3þ ffiffiffi
2

p
), we can

represent Π geometrically as a sequence of 1D line seg-
ments or “tiles” of length Lα and Lβ, where ðLα; LβÞ is the
corresponding left eigenvector of Mτ. If Nα

k and Nβ
k denote

the number of α’s and β’s after k successive applications of
τ to some finite initial string, then in the limit k → ∞,
ðNα

k; N
β
kÞ is the corresponding right eigenvector of Mτ and

it grows like ðNα
kþ1; N

β
kþ1Þ ¼ λðNα

k; N
β
kÞ.

Two strings Π and Π0 are locally isomorphic (or locally
indistinguishable) if every finite substring contained in one
is also contained in the other, so it would be impossible to
distinguish them by inspecting any finite segment.
We say that Π is a τ quasicrystal if it is equipped with an

inflation rule τ acting on the two interval types α and β [39]
such that (i) the matrix Mτ has determinant �1, with
its largest eigenvalue λ given by an irrational Pisot-
Vijayaraghavan (PV) number, and (ii) the k-fold deflation
map τ−k is well defined on Π for all positive integers k.
Condition (i) ensures that Π is quasiperiodic and crystalline
(in the sense that the Fourier representation of its density
profile exhibits delta function diffraction peaks like a
crystal), and has τ−1 as the unique deflation rule that
inverts τ [33,40]. Condition (ii) implies that a particular τ
quasicrystal is locally isomorphic to every other τ quasi-
crystal and, in particular, is locally isomorphic to its own
descendants under inflation. In this sense, every τ quasi-
crystal is self-similar under inflation by τ. If a τ quasicrystal
Π is mapped to itself by (k successive applications of) τ,
we say it is (k-fold) self-same, an even stronger scale-
invariance property than self-similarity.

III. UNIT-CELL ASSIGNMENT ON THE
HYPERBOLIC DISK

A regular fp; qg tessellation is constructed from regular
p-sided polygons (with p geodesic edges), where q such
polygons meet at each vertex. Such a tessellation exists for
any p; q > 2: When ð1=pÞ þ ð1=qÞ is greater than, equal

to, or less than 1=2, respectively, it is a tessellation of the
sphere, Euclidean plane, or hyperbolic plane [28,41].
Consider a regular fp; qg tessellation of the hyperbolic

plane, ð1=pÞ þ ð1=qÞ < 1
2
. In this paper, we focus on the

case where p and q are both finite. Let S (the “seed”) be a
finite, simply connected patch of tiles, and let it also be
convex, which, here, means that, if θc is the interior angle of
S at a vertex c, then θc < 2πð1 − 1=qÞ for each boundary
vertex (when q > 3) or θa þ θb < 4πð1 − 1=qÞ for all
nearest-neighbor pairs ha; bi of boundary vertices (when
q ¼ 3). On the boundary of S, we can assign different unit-
cell types between which the d.o.f. live. The assignment
procedure, illustrated in Fig. 2(a), is the following.
Consider the union UðSÞ of all tiles that share a vertex
with the boundary of S (excluding the tiles in S itself). In
the interior of UðSÞ, we can draw a curve that crosses every
tile of UðSÞ exactly once. This curve partitions every tile
into two pieces: one contained in the interior of the curve
and one in the exterior. If the interior part of the tile has n
vertices, then we call it a type-n unit cell. Once every cell
on the boundary of S has been labeled in this manner, we
can write down a corresponding stringQðSÞ of cell types as
in Fig. 2(c). These strings are inside square brackets to
emphasize that they are cyclically ordered. When S is
convex, only two cell types appear on its boundary (type 1
and type 2 when q > 3, and type 2 and type 3 when q ¼ 3),
but since the seed S in Fig. 2(a) is not convex, a type-4 cell
also appears.
In a concrete holographic TN model, a tensor is placed

on each vertex of S, and contractions are performed
between nearest-neighbor tensors along the tessellation
edges. Extra tensors can be added to the edges, as in the

FIG. 2. Illustration of unit-cell and letter assignment on the
boundary of a simply connected tile set S, in the f7; 3g tiling.
(a) Unit-cell assignment. (b) Letter assignment. (c) Cyclically
ordered strings of unit cells and letters. (d) Correspondence
between unit cells and letters in the f7; 3g case.
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hyperinvariant networks of Evenbly [21], or bulk ancilla
d.o.f. to the vertex tensors, as in the holographic quantum
error correcting codes of Ref. [16]. The boundary d.o.f. are
defined on legs placed on the edges of the tessellation
emanating from S, which are cut by the partitioning curve
in Fig. 2(a). Thus, the distance in the network between two
adjacent d.o.f. on the boundary of S depends on the type
of unit cell between them. In this sense, the cell types
defined here behave analogously to the interval types Lα

and Lβ between d.o.f. placed on the vertices of a d ¼ 1

quasicrystal.
There is an alternative way to label the boundary of S

using only two symbols, which treats the q ¼ 3 and q > 3
cases more uniformly and continues to apply even when S
is nonconvex. Decompose every tile into the fundamental
domains of the tiling symmetry group, which are right
triangles of angles π=2, π=q, and π=p. This decomposition
is shown in Fig. 2(b). Now, consider the set of such right
triangles in the interior of S that share a vertex with the
boundary of S. Within this set, we identify and label two
types of isosceles triangles—A and B. Each A shares one
vertex and no edges with the boundary of S, and each B
shares two vertices and one edge [see Fig. 2(b)]. This
procedure, called letter assignment, produces a cyclically
ordered string ΛðSÞ, distinct from QðSÞ, containing only
A’s and B’s [see Fig. 2(c)].
There is a way to extract QðSÞ from ΛðSÞ and vice versa

by mapping each type-n unit cell to a string of A’s and B’s.
This correspondence is

1 ↔ A−1

2 ↔ Aq−3=2BAq−3=2

3 ↔ Aq−3=2BAq−2BAq−3=2

..

.

n ↔ Aq−3=2ðBAq−2Þn−2BAq−3=2;

where n ≤ p. Here, if fðA;BÞ is any finite substring, then
(fðA;BÞ)x denotes its x-fold repetition whenever x ∈ Z≥0,
with (fðA; BÞ)0 the empty substring. Fractional and neg-
ative exponents behave in the usual way, e.g., AxA−y ¼
Ax−y for all x; y ∈ Q.

IV. INFLATION RULES
ON THE HYPERBOLIC DISK

We can append the ring of tilesUðSÞ to the set S to obtain
a new larger set S0 ¼ Sþ UðSÞ, as in Fig. 3. Accordingly,
we add a layer of tensors to our TN to obtain a holographic
TN model on S0 whose d.o.f. are defined between the unit
cells on the boundary of S0. The vertices that were formerly
on the boundary (i.e., the ones that were not completely
surrounded by the tiles of S) are now in the interior (i.e., are
completely surrounded by the tiles of S0). We dub this
procedure “vertex completion.”

Vertex completion induces a mapping τΛðp; qÞ∶ΛðSÞ →
ΛðS0Þ. Remarkably, τΛðp; qÞ is an inflation rule on A and B
and is the same for every S. If we define the stringless

sL ≔ A1=2Bðp−2Þ=2; sR ≔ Bðp−2Þ=2A1=2; ð4Þ

then τΛðp; qÞ can be written

A ↦ ðsLsRÞ−1 ¼ A−1=2B2−pA−1=2; ð5aÞ

B ↦

�
sLðsRsLÞq−3=2B−1ðsRsLÞq−3=2sR ðq oddÞ
ðsRsLÞq−2=2B−1ðsRsLÞq−2=2 ðq evenÞ: ð5bÞ

FIG. 3. Demonstration of how vertex completion induces
inflation rules on boundary letters and unit cells, for the f7; 3g
tiling. The induced letter inflation rule ðA; BÞ ↦ ðA−1B−5; B4AÞ
is the same for every tile set S, convex or not. When S is convex,
only type-2 and type-3 unit cells appear, and there is an induced
unit-cell inflation rule ð2; 3Þ ↦ ð223; 23Þ. Note that vertex
completion preserves convexity and that every tile set S becomes
convex after finitely many vertex completions.
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This version of the substitution rule is the canonical one, in
the sense that it respects the symmetry of the parent tile
(A or B) under reflection about its midline, but another
equivalent version (which is asymmetric) is simpler and
more convenient:

A ↦ A−1B2−p; B ↦ Bp−3AðBp−2AÞq−3: ð6Þ

Note that two substitution rules fα; βg ↦ fsα; sβg and
fα; βg ↦ fs̄α; s̄βg are equivalent if s̄α ¼ usαu−1 and s̄β ¼
usβu−1 for some finite string u ¼ uðα; βÞ. In particular, the
two substitution rules (5) and (6) both correspond to the
substitution matrix

MτΛðp;qÞ ¼
� −1 q − 2

2 − p ðp − 2Þðq − 2Þ − 1

�
: ð7Þ

The corresponding induced map τQðp; qÞ∶QðSÞ →
QðS0Þ is also an inflation rule on two unit-cell types
whenever S is convex. The rule τQðp; qÞ can be extracted
by combining τΛðp; qÞ with the cell-to-letter mapping.
When q > 3,

1 ↦ 1q−4=2ð2 1q−3Þp−32 1q−4=2; ð8aÞ

2 ↦ 1q−4=2ð2 1q−3Þp−42 1q−4=2; ð8bÞ

and when q ¼ 3,

2 ↦ 3
1
22p−53

1
2; ð9aÞ

3 ↦ 3
1
22p−63

1
2: ð9bÞ

The matrices MτQðp;qÞ and MτΛðp;qÞ are related by a change
of basis. They have unit determinant and eigenvalues

λ�ðp; qÞ ¼ γp;q � ðγ2p;q − 1Þ1=2; ð10Þ

with

γp;q ≔
ðp − 2Þðq − 2Þ

2
− 1: ð11Þ

These results are consistent with the previous findings of
Ref. [42]. Note that the largest eigenvalue λþðp; qÞ is
irrational and PV whenever ð1=pÞ þ ð1=qÞ < 1

2
. When S is

nonconvex, τQðp; qÞ acts on the many cell types ofQðSÞ in
a complicated way. However, every tile set S maps to a
convex set under finitely many vertex completions, and
vertex completion preserves convexity once established.

V. CONFORMAL QUASICRYSTALS ON THE
BOUNDARY OF THE DISK

Consider any finite, simply connected tile set S of the
fp; qg tessellation. By repeatedly carrying out layers of
vertex completions, we generate a sequence of tile sets
fSngn∈Z≥0

, with initial element S0 ¼ S, and fQðSnÞgn∈Z≥0
.

Concurrently, we can consider a family of holographic TN
models defined on each Sn whose d.o.f. live on the
boundary of Sn. In the limit n → ∞, the tile set covers
the entire hyperbolic disk, and we can ask about the unit-
cell assignment Q∞ðSÞ ≔ limn→∞QðSnÞ living at the disk
boundary. We can interpret Q∞ðSÞ as a type of emergent
quasicrystal harboring the d.o.f. To see this case, recall that
for all n above some n� > 0, QðSnÞ contains only two cell
types, and thus τQðp; qÞ acts on these two cell types as an
inflation rule. Taking QðSn�Þ as an initial string and
iterating τQðp; qÞ infinitely many times generates the
infinite, cyclically ordered string Q∞ðSÞ, which is self-
same under τQðp; qÞ. Thus, Q∞ðSÞ is locally isomorphic to
a τQðp; qÞ quasicrystal, which is the promised quasicrys-
talline interpretation. We call any Q∞ðSÞ obtained in this
manner a fp; qg conformal quasicrystal (CQC).

VI. DISCRETE CONFORMAL GEOMETRY

Our construction naturally endows CQCs with a discrete
analog of conformal geometry. In the continuum, con-
formal geometry refers to those properties of a (pseudo-)
Riemannian manifold that are invariant under position-
dependent rescalings (or Weyl transformations) of the
metric tensor gμνðxÞ ↦ Ω2ðxÞgμνðxÞ. Thus, length scales
are not well defined in conformal geometry. Conformal
properties are preserved under conformal maps, diffeo-
morphisms fixing the metric up to a Weyl transformation.
These include all the diffeomorphisms in d ¼ 1 and just the
angle-preserving diffeomorphisms in d ≥ 2. In physics,
conformal geometries underlie conformal field theories
(CFTs), which are quantum field theories that are sym-
metric under such conformal maps [43,44]. Here, we show
that one can relate any two CQCs with the same fp; qg via
a discrete analog of a Weyl transformation. Hence, CQCs
inherit discrete conformal geometry, defined to be the
properties fixed under discrete Weyl transformations.
Let MðSÞ ≠ S denote a finite, simply connected tile set

obtained from S in any manner. Here, Q∞ðSÞ and
Q∞(MðSÞ) are locally isomorphic, but they differ in their
global structures. To relate Q∞ðSÞ and Q∞(MðSÞ), a map
Ω such that Ω(Q∞ðSÞ) ¼ Q∞(MðSÞ) is needed. We say
that any such Ω is a “discrete Weyl transformation.” Here,
Ω acts upon the global structure of the CQC by a position-
dependent set of inflations and deflations. The TN model is
correspondingly transformed by adjoining or removing
tensors from the edges in a position-dependent way.
The intuition behind our definition comes from

an analogy with Weyl transformations in continuum
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AdS/CFT. There, a Weyl transformation corresponds to a
change of choice of how to approach the boundary [3].
More precisely, the line element for (dþ 1)-dimensional
hyperbolic space can be written in global coordinates as

ds2 ¼ dρ2 þ sin2ðρÞdΩ2
d

cos2ðρÞ ; ð12Þ

where ρ ∈ ½0; π=2Þ is the radial coordinate and dΩ2
d is the

line element on the unit d sphere Sd. Now, consider a family
of d-dimensional hypersurfaces of spherical topology,
parametrized by ρðx; ϵÞ ¼ ðπ=2Þ − ϵfðxÞ, where x are
the coordinates on Sd and fðxÞ is an arbitrary positive
function on Sd. To approach the boundary, we take ϵ → 0þ
in an x-independent way. As ϵ → 0þ, a constant-ϵ hyper-
surface has an induced line element:

ds2ϵðxÞ ∼
2

ϵ2
dΩ2

dðxÞ
f2ðxÞ : ð13Þ

Thus, we see that changing the hypersurface profile
fðxÞ ↦ Ω−1ðxÞfðxÞ induces the Weyl transformation

ds2ϵðxÞ ↦ Ω2ðxÞds2ϵðxÞ: ð14Þ

In our construction, the choice of initial tile set S is
analogous to the choice of hypersurface profile fðxÞ, while
iterating vertex completions infinitely many times corre-
sponds to taking ϵ → 0þ. Thus, it is natural to interpret S ↦
MðSÞ as inducing a Weyl-like transformation Q∞ðSÞ ↦
Ω(Q∞ðSÞ) ¼ Q∞(MðSÞ).

VII. SYMMETRIES OF CONFORMAL
QUASICRYSTALS IN d = 1

Now, let us emphasize two different types of symmetry
possessed by any CQCQ∞ðSÞ of type fp; qg. First, it has a
kind of exact scale symmetry: invariance under τQðp; qÞ.
Second, it is invariant, up to a discrete Weyl transformation,
under an infinite discrete group called the triangle group,
Δð2; p; qÞ. This group is the symmetry group of the fp; qg
tiling; it is generated by reflections across the fundamental
right-triangle domains of the tiling [45]. Each such reflec-
tion induces a conformal map of the boundary into itself.
Under an element of Δð2; p; qÞ, S maps to a different
simply connected S0, which produces Q∞ðS0Þ. Since S0 ¼
MðSÞ for some M, it follows that Q∞ðSÞ and Q∞ðS0Þ are
related by a discrete Weyl transformation, as required.
Thus, we regard Δð2; p; qÞ as a discretization (i) of the
isometry group of the hyperbolic disk that acts on the bulk
tessellation and (ii) of the conformal group of the circular
boundary that acts on the CQCs.

VIII. DISCUSSION

Before discussing our results, let us briefly summarize
our findings.
The past decade has seen exciting developments in our

understanding of quantum gravity: In particular, arguments
based on holography and gauge-gravity duality have led to
a tantalizing but still-fragmentary picture in which space-
time emerges from the pattern of entanglement in an
underlying quantum system. In particular, there has been
much recent interest in attempts to make this picture more
concrete, in the context of AdS/CFT, by developing a
discrete formulation of holography, based on replacing the
continuous hyperbolic “bulk” space by a discrete regular
tessellation of hyperbolic space (or some other tessellation
that respects a large discrete subgroup of the original
space’s symmetries). These developments are part of a
family of ideas that are sometimes summarized by the
slogan “it from qubit”.
Previous works have focused on discretizing the bulk

geometry, but they have not thought through the corre-
sponding implications for the boundary geometry. In this
paper, we have shown that when one discretizes the bulk
geometry in a natural way (e.g., on a regular tessellation),
one also induces a remarkable discretization of the lower-
dimensional “boundary” geometry into a fascinating new
kind of discrete geometric structure, which we call a
“conformal quasicrystal.” The main goals of this paper
were to point out the existence of these new structures, to
define and explain their basic properties, and to emphasize
that they appear to be the natural discrete spaces living on
the boundary side of the holographic duality.
We think these observations provide important clues for

the ongoing efforts to formulate a discrete version of
holography (perhaps in terms of tensor networks) [46]:
In a correct discrete formulation of AdS/CFT, we expect the
boundary theory to live on a conformal quasicrystal (rather
than on an ordinary lattice, as imagined in previous works).
Similarly, since the boundary theory in AdS/CFT is scale
invariant, it suggests that the natural way to discretize and
numerically simulate scale-invariant systems (such as
conformal field theories, or condensed matter systems near
their critical points) is to discretize them on a conformal
quasicrystal, rather than on a periodic lattice. Thus, we
hope that this work opens the door to more efficient
simulation of the dynamics and quantum states of such
systems (although much work remains in order to translate
this hope into practice).
Let us now mention various directions for future work.

We expect our definitions and results to extend readily to
higher dimensions. Consider, for example, the self-dual
f3; 5; 3g regular honeycomb in three-dimensional hyper-
bolic space. This honeycomb is constructed by gluing
together icosahedra such that the vertex figure at every
corner is a dodecahedron [28,41]. Now, imagine that we
take the initial seed S to be one such icosahedron and then
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carry out vertex completion, assigning boundary unit cells at
every step. At each step, we obtain a 2D layer of spherical
topology with 12 points of exact fivefold orientational
symmetry (or, more precisely,D5 symmetry), lying radially
above the 12 vertices of the initial icosahedron. Hence, after
iterating infinitelymany times, we obtain a layer of spherical
topology at the boundary, tesselated by an infinite number of
tiles. This layer still has 12 points ofD5 symmetry, and in the
vicinity of any such point, it appears to be an infinite tiling of
the 2D Euclidean plane. Since points of D5 symmetry are
forbidden in an ordinary (periodic) 2D crystal, we expect the
boundary to once again be quasicrystalline. Indeed, the 2D
quasicrystalline tilings with fivefold orientational order are
all closely related to the Penrose tiling [33,35,37,38,49].
(Note that, although the usual Penrose tiling has, atmost, one
point of exactD5 symmetry, the Penrose-like CQC living at
the boundary of f3; 5; 3g can have 12 such points, as
explained above. This case is the higher-dimensional ana-
logue of a phenomenon that already occurs in the 1D CQCs
constructed above: The CQC generated from a regular p-
gon initial seed will have 2p points of perfect reflection
symmetry, in contrast to the self-similar 1D quasicrystal that
it locally resembles, which has, at most, one such point.)
The conjecture that f3; 5; 3g hosts a CQC generalization

of the Penrose tiling on its boundary is supported by a
calculation [50] of the ratio Nkþ1=Nk as k → ∞, where Nk
is the number of boundary cells after k layers of vertex
completion (this ratio is expected to be equal to the largest
eigenvalue of the matrix Mτ associated with the inflation
rule τ induced by the vertex completion). The limiting ratio
is found to be Nkþ1=Nk → φ8, where φ is the golden ratio.
Note that this result is irrational and PV (as expected for a
2D quasicrystal) and is a power of φ (as expected for a
quasicrystal with fivefold orientational order, in particular
[33,35,37,38]). If we compare this result to the scaling ratio
for the standard Penrose tiling (Nkþ1=Nk → φ2), it suggests
either that a single layer of vertex completion in the
f3; 5; 3g honeycomb corresponds to four iterations of the
usual Penrose tiling inflation rule or that the Penrose tiling
and f3; 5; 3g CQC are related in some way besides local
isomorphism.
We have seen that applying vertex completion to a

regular fp; qg tiling of hyperbolic space yields a τQðp; qÞ
quasicrystal. There are, however, other τ quasicrystals that
are not obtained in this way—like the example given above
in Eq. (3). We wonder whether every remaining inflation
rule τ is also naturally induced by applying some appro-
priate generalization of vertex completion to some appro-
priate tiling of hyperbolic space. Tilings beyond the regular
fp; qg type seem to be necessary.
The remarkable conformal geometry of CQCs suggests

that their importance extends beyond the realm of holo-
graphic TN models. We propose to use them as the under-
lying spaces on which to discretize CFTs, in at least two
ways. First, one can discretize a QFT partition function onto

a τ quasicrystal directly. After implementing a real-space
renormalization-group procedure whereby d.o.f. are deci-
mated according to τ−1, the renormalization-group fixed
points can be identified with the discrete CFTs. Second, one
canwork, by analogy, with AdS/CFT. Consider the partition
function ZS;n½y� of a discretized field theory on the n-fold
image Sn under vertex completion of a simply connected
subset S of the bulk tessellation, such that the fields take
values y at the boundary of Sn. As n → ∞, we propose to
interpret ZS;∞½y� as the moment-generating function of a
discrete CFT on the boundary.
From a practical standpoint, such CQC-based discreti-

zations may be important for studying scale-invariant
physical systems such as CFTs or condensed matter
systems at their critical points. These discretizations should
permit finite-size simulations of such systems, in ways that
preserve an exact discrete subgroup of their scale sym-
metry. This case is in contrast with ordinary lattice gauge
theory simulations or other periodic lattice models, which
instead preserve an exact discrete subgroup of translation
symmetry, at the cost of breaking scale invariance. We can
attempt to finitize a numerical calculation on a conformal
quasicrystal by restricting ourselves to an annulus in the
reciprocal space of the quasicrystal and imposing the
boundary condition that observables on the inner and outer
boundaries of the annulus are the same up to an appropriate
scale factor. This method would provide the analog in
discrete CFTs of a periodic boundary condition in a
periodic lattice model, along the scale direction instead
of in real space. The resulting finite problem can then be
attacked with a large arsenal of Monte Carlo and tensor
network methods. Our hope is that this approach may lead
to more accurate and efficient numerical simulation of such
systems, perhaps allowing us to simulate much larger
systems and leading to qualitative improvements in our
understanding.
TN algorithms based on inflations and deflations may

also find use in the numerical description of quantum
critical states. We can imagine implementing a MERA-
like coarse-graining scheme induced by the quasicry-
stalline structure. Consider the simplest τ quasicrystals,
the 1D Fibonacci quasicrystals generated by the inflation
rule τ∶fα; βg ↦ fβ1=2β1=2; β1=2αβ1=2g. Given an initial
Fibonacci quasicrystal Π, we can use a deflationlike rule
to obtain a coarser quasicrystal cðΠÞ in two steps: (i) Slice
every β interval into two halves, β1=2, resulting in a string
that can be uniquely partitioned into substrings of the form
β1=2β1=2 and β1=2αβ1=2; (ii) glue these substrings together to
form intervals α0 ¼ β1=2β1=2 and β0 ¼ β1=2αβ1=2 of respec-
tive lengths Lα0 ¼ Lβ and Lβ0 ¼ Lα þ Lβ. Iterating this
procedure yields a sequence fckðΠÞgk∈Z≥0

of successively
coarser quasicrystals. We can now construct a MERA-like
circuit as follows. Embed each quasicrystal ckðΠÞ into the
two-dimensional plane, such that ckþ1ðΠÞ is parallel to and
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lies above ckðΠÞ for every k. Assign to every point in
ckðΠÞ a tensor, and contract each tensor only with its
nearest neighbors in ckþ1ðΠÞ and ck−1ðΠÞ. This method
results in three- and four-legged tensors; if we choose
these to be isometries and unitary disentanglers, respec-
tively, then we acquire the desired MERA-like circuit. We
call this network, depicted in Fig. 4, the “quasi-MERA”
due to its relationship with the quasicrystalline inflation
rule τ.
To see why the quasi-MERAmay be special, we contrast

the deflation-based decimation procedure of the τ quasi-
crystal with the standard block decimation of the periodic
crystal. Unlike the periodic crystal, for every τ-quasicrystal
layer, there is a local refinement (inflation) rule that is
inverted by an unambiguous local coarse-graining (defla-
tion) rule. To see why this cannot hold for an ordinary
crystal, consider the example of a 1D periodic lattice with
intervals of length a. We can produce a more refined lattice
(with intervals of length a=2) by the local rule of chopping
each interval in half, but the inverse coarse-graining
transformation is not locally well defined: There is an
ambiguity about which pair of short intervals we need to
glue together to make a long one, so N “joiners” at widely
separated points on the lattice would make different,
incompatible choices about which tiles to join, and
OðNÞ defects would be produced. Hence, block decimating
a periodic lattice destroys information about how to locally
recover the original lattice. Since the ordinary (binary)
MERA architecture relies on this form of block decimation,
its description of a quantum state is necessarily lossy, even
at criticality. By contrast, when coarse-graining the
Fibonacci quasicrystal as in Fig. 4, one can locally and
unambiguously determine, from the tiles α and β in a given
layer, where to place the larger intervals α0 and β0 in the next
layer up. In this sense, the coarse-graining transformation

for a τ quasicrystal is lossless, in contrast to the block
decimation of a periodic lattice. For this reason, we ask
whether the quasi-MERA can give an exact description of a
quantum critical state provided that the system is already
discretized on the appropriate quasicrystal. This is a non-
trivial statement that requires numerical checking and
benchmarking.
Geometrically, the quasi-MERA construction of Fig. 4

generates a novel emergent “tiling” of the hyperbolic half-
plane by hexagons, with three or four glued together at a
vertex. However, this network should be conceptually
separated from the TNs considered in the main paper
because, unlike those TNs, this network can harbor unitary
disentanglers and has a preferred causal direction.
Specifically, we do not believe that the quasi-MERA should
be interpreted as a discretization of a spacelike slice of
AdS2þ1. In view of Refs. [18] and [27], we ask whether
Fig. 4 could be interpreted as a discretization of the
kinematic space or some other causal geometry.
We leave the investigation of these many exciting

possibilities for future studies.
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