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Superconductivity is often found in a dome around quantum critical points, i.e., second-order quantum
phase transitions. Here, we show that an enhancement of superconductivity is avoided at the critical pressure
of the charge-density-wave (CDW) state in 2H -NbSe2. We present comprehensive high-pressure Hall effect
and magnetic susceptibility measurements of the CDW and superconducting state in 2H -NbSe2. Initially, the
second-order CDW transition is suppressed smoothly but it drops to zero abruptly at PCDW = 4.4 GPa thus
indicating a change to first order, while the superconducting transition temperature Tc rises continuously up
to PCDW but is constant above. The putative first-order nature of the CDW transition is suggested as the cause for
the absence of a superconducting dome at PCDW. Indeed, we show that the suppression of the superconducting
state at low pressures is due to the loss of density of states inside the CDW phase, while the initial suppression
of the CDW state is accounted for by the stiffening of the underlying bare phonon mode.
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I. INTRODUCTION

The interplay of competing orders is of fundamental and
practical interest [1–4]. Controlled switching between phases
promises new applications in data storage and sensing [1].
On a fundamental level, understanding the interplay between
ground states provides important insight into the mechanism
underlying each ground state and can reveal new phenom-
ena at the border of ordered phases [5–7]. For instance,
a large body of work focuses on the interplay of super-
conductivity and charge order in cuprate high-temperature
superconductors [8].

With both superconductivity and charge-density-wave
(CDW) order stabilised by the opening of a gap on (parts
of) the Fermi surface, a mutual competition between the
two states has been anticipated since early studies [9]. As
an alternative, superconductivity in a dome around quantum
critical points was suggested to be promoted by quantum
fluctuations of the ordered state with prominent examples in
heavy-fermion antiferromagnets [5], CDW systems [10], and
the CDW and pseudogap order in cuprate superconductors
[11]. In addition to competition and promotion, superconduc-
tivity and charge order can coexist for instance by opening a
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gap on different parts of the Fermi surface; 2H-NbSe2 is a
prototypical material hosting both CDW order and supercon-
ductivity. However, fundamental questions about the interplay
of the CDW and superconductivity remain open.

The interplay of CDW order and superconductivity in
2H-NbSe2 remains disputed [12,13]. CDW order sets in
at TCDW ∼ 33 K, while superconductivity is present below
Tc = 7.1 K at ambient pressure [14–17]. Superconductivity
opens gaps of different sizes on most of the Fermi surface,
while the CDW opens a gap on small parts of the zone-corner
niobium-derived Fermi surface sheets only [12,13,15,18,18–
21]. The separation of the CDW and superconducting gaps
in k space was interpreted as a hallmark for coexistence
of the two ordered states. In addition, some studies sug-
gested that superconductivity is boosted by the static CDW
order [12], while further studies suggested a promotion of
superconductivity by the soft modes present at the quan-
tum critical point of the CDW order [22,23]. Finally, some
studies suggested a bidirectional competition for density of
states between the CDW and superconductivity [13,23–25].
Here, we use comprehensive high-pressure tuning of the
CDW and superconducting states to reveal the absence of a
superconducting dome thus ruling out a promotion of super-
conductivity by soft modes of the CDW. Rather, we show
very clearly that superconductivity is reduced inside the CDW
phase because of the loss of density of states. At the same
time, we find indications of a first-order CDW transition
which is likely to be the reason for the absence of a dome-
shaped superconducting phase at the critical pressure of the
CDW.
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II. EXPERIMENTAL METHODS

A. Samples

2H-NbSe2 samples were grown by J. A. Wilson [16] us-
ing the vapour transport method and have a high residual
resistivity ratio, ρ(T = 300 K)/ρ(T = 9 K) > 60, confirming
the good crystal quality. Samples were cut with a scalpel.
Lateral sample dimensions have been measured with an op-
tical microscope at ambient pressure [see inset in Fig. 3(a)],
the sample thickness, t , was estimated from the sample
mass and the lateral dimensions using the known density of
2H-NbSe2. The uncertainty of 10% for t results in a system-
atic relative uncertainty of the Hall coefficient of the same
amount. The magnetic field was applied along the crystallo-
graphic c direction.

B. High-pressure measurements

High-pressure measurements used moissanite anvils cells
with a culet size of 800 μm for both the electrical and mag-
netic measurements. Both types of measurement used metallic
gaskets which were prepared by indenting 450 − μm-thick
BeCu to approximately 60 μm followed by drilling a
450-μm hole.

Pressure was determined at room temperature by ruby flu-
orescence, with multiple ruby flakes placed within the sample
chamber as a manometer. The uncertainty of the pressure is
taken as the standard deviation between pressure estimates
from rubies across the sample chamber, both before and after a
measurement. A comparison with the pressure obtained from
ruby at room temperature and the superconducting transition
of a piece of lead revealed good agreement to within 0.2 GPa
for the pressure cells used for magnetization measurements.

The effect of different pressure media is discussed in S II
of the Supplemental Material Ref. [26].

C. Electrical transport measurements

For the electrical measurements, six bilayer electrodes
were deposited on one anvil in a three-step process without
breaking vacuum. Firstly, the anvil was cleaned using an RF
argon plasma etch, followed by sputtering 20 nm of nichrome,
and finally evaporation of 150 nm gold. To remove potential
electrical shorts between electrodes, any nichrome overspray
was removed using TFN etchant.

Gold contacts were evaporated on top of the sample. Epo-
Tek H20E silver paint was used to connect the samples to the
electrodes on the anvil. A four-probe AC method was used
to measure the resistance with a current I = 1 mA. The six
electrodes were used to measure Vl, the longitudinal and Vt,
the transverse voltages, respectively. The Hall coefficient was
calculated from the antisymmetric part of Vt(H ) under reversal
of the magnetic field H as

RH = Vt(H ) − Vt(−H )

2μ0H

t

I
.

For the electrical measurements, the gaskets were insulated
using a mixture of Stycast epoxy 2850FT and BN powder; the
mixture was pressed between the anvils to above the maxi-
mum pressure required for the experiments and then cured,
while pressurised. A 400 − μm hole through the insulation
was drilled for the sample space.

D. Magnetic measurements

A Quantum Design Magnetic Property Measurement Sys-
tem (MPMS) was used to measure the DC magnetic moment
of the sample inside the pressure cell as detailed in Sec. IV of
the Supplemental Material Ref. [26]. The transition tempera-
ture Tc has been determined as the temperature where χ (T )
has dropped by 10% of the normalised step, i.e., close to the
onset of the transition. This procedure results in uncertainty
less than 0.05 K of Tc.

III. EXPERIMENTAL RESULTS

Our high-pressure Hall effect measurements show the
suppression of TCDW under pressure in Fig. 1(a). At high
temperatures, the Hall coefficient, RH, is weakly temperature
dependent and does not change with pressure indicating that
the electronic structure in the non-CDW state remains un-
changed by pressure. At TCDW, RH(T ) shows a large drop
and a sign change consistent with earlier results at ambi-
ent and low pressure [27–29]. Such a sign change has been
linked to the CDW transition in a variety of systems including
2H-NbSe2 [14,24], cuprate YBa2Cu3Oy [30], and 1T − TiSe2

[31] and has been confirmed by model calculations [32]. The
contribution of the CDW to the Hall coefficient �RH(T, P) =
RH(T, P) − RH(T, 5.5 GPa), is calculated by subtracting the
non-CDW form well above the critical pressure. In the
derivative, d�RH/dT , the CDW transition manifests as a
pronounced peak as shown in Fig. 1(c). TCDW(P) associated
with the maximum in d�RH/dT shifts to lower temperature
as pressure is increased in good agreement with TCDW(P) ex-
tracted from resistivity measurements as well as with previous
results of TCDW as highlighted in Fig. 2(a). The benefit of
analyzing the Hall coefficient is that the strong signature can
be traced to higher pressures where the signature in resistivity
is lost [33]. We observe the CDW transition in �RH(T ) up to
a pressure of 4.3 GPa.

The CDW transition temperature drops abruptly above
4.3(1) GPa as can be seen from both the isobaric tempera-
ture dependence and the isothermal pressure dependence of
the Hall coefficient. The peak in the isobaric temperature
dependence d�RH/dT is reduced in amplitude above 3 GPa
as shown in Fig. 1(d). In fact, the reduction is most consistent
with a power-law suppression where the amplitude vanishes
at 4.3(1) GPa suggesting an absence of the CDW above this
pressure. Thus we conclude that the CDW signature is ab-
sent from the temperature dependence of the Hall effect and
highlight this in the phase diagram as TCDW(4.4 GPa) = 0
[blue triangle at 4.4 GPa in Fig. 2(a)]. The isothermal pres-
sure dependence RH(P) exhibits a pronounced kink associated
with the critical pressure of the CDW phase, PCDW(T )
[cf. intersecting linear fits in Fig. 1(b)]. The position of
PCDW(T ) is included as black squares in the phase diagram
in Fig. 2(a). PCDW(T ) becomes independent of temperature
for T � 10 K, i.e., the kink in RH(P) is found at the same
pressure PCDW(T ) = 4.4 GPa for 5 and 10 K. In Sec. S I of the
Supplemental Material Ref. [26], we show that this result is
also true if the Hall effect is probed in smaller magnetic fields.

Superconductivity is boosted under pressure in clear an-
ticorrelation to the CDW. We trace Tc(P) as the onset of
the diamagnetic signal in magnetic susceptibility measure-
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FIG. 1. Suppression of the CDW transition in 2H -NbSe2 under
pressure. (a) The temperature dependence of the Hall coefficient
for sample 1. (b) Pressure dependence RH(P) measured at μ0H =
10 T at selected temperatures. Straight lines highlight linear fits
to the data. (c) Derivative of the Hall coefficient (d�RH/dT )
was calculated after subtracting the high-pressure background, i.e.,
�RH(T, P) = RH(T, P) − RH(T, 5.5 GPa). Arrows indicate TCDW

extracted as the maximum. (d) Amplitude of the peak in dRH/dT .
Solid line denotes empirical power-law fit d�RH/dT |TCDW

=
A|P − Pc|b to the data above 3 GPa giving a critical pressure Pc =
4.3(1) GPa.

ments, χ (T ), as presented in Fig. 3(a). The sharp onset gives
Tc = 7.1 K at ambient pressure in good agreement with our re-
sistivity measurements (cf. S II of the Supplemental Material
Ref. [26]) and other published work, e.g., Refs. [16,17,34].
With increasing pressure, Tc(P) shifts to higher temperature,
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FIG. 2. High-pressure phase diagram of 2H -NbSe2. (a) Experi-
mental values of TCDW(P) are determined as the peak in d�RH/dT
as shown in Fig. 1, as the minimum in dρ/dT as shown in SI,
and the kink in RH(P) as shown Fig. 1(b). Theoretical values of
TCDW(P) are calculated as described in section S V and S VI of
the Supplemental Material Ref. [26]. Data from Refs. [22,33] are
included. The solid line marks a power-law fit to our experimental
datasets of TCDW(P) for P � 4.3 GPa. The dashed line illustrates the
sharp decrease of TCDW at 4.4 GPa (see text). (b) Experimental results
for Tc(P) are extracted from magnetization measurements [Fig. 3(a)].
A detailed comparison of Tc(P) using different pressure media is
given in S I. Theoretical values of Tc(P) are calculated as described in
S VI. The boundary of the CDW phase is reproduced from (a). Inset
(c) shows the relation of the superconductivity and CDW transition
temperatures for two samples: Red circles and black squares denote
Tc of sample 1 and 2 detected with χ (T ) and ρ(T ), respectively. The
solid line is a linear fit.

while the transition remains very sharp. Above 4.4 GPa, Tc(P)
saturates at 8.5 K. The measurements presented in Fig. 3(a)
used argon as a pressure transmitting medium (PTM) which
remains hydrostatic up to 11 GPa [35]. We find very good
agreement with Tc(P) extracted from our resistivity measure-
ments up to 5.5 GPa–the limiting pressure for hydrostaticity
of the PTM glycerol used for the electrical transport measure-
ments [35].
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FIG. 3. Enhanced superconductivity in 2H -NbSe2 under pres-
sure. (a) The volume susceptibility χ measured on warming for
sample 2 in a magnetic field μ0H = 0.5 mT after zero-field cool-
ing. The transition into the superconducting state inferred from the
diamagnetic signal shifts to higher temperatures as the pressure is in-
creased. Inset shows a picture of the sample and ruby chips inside the
pressure cell. Argon was used as a pressure medium. (b) Comparison
of our measurements with previous studies beyond the CDW critical
pressure [23,36].

Our measurements of Tc(P) differ significantly from the
two previous studies which extend beyond the critical pressure
of the CDW by Smith et al. [36] and Suderow et al. [23]
as presented in Fig. 3(b). A similar initial slope of Tc(P) is
seen in our work and those previous studies (including further
work limited to below 3 GPa [33,34]). However, a marked
difference is observed above 4 GPa where all datasets show
a plateau at different values of Tc. Notably, we observe the

highest Tc in any of the measurements. Given that impurities
have been shown to cause a suppression of superconductivity
outside the CDW phase [24,25], this suggests that the studies
by Smith et al. and Suderow et al. suffered from sample
impurities or inhomogeneities. Our electrical resistivity mea-
surements reveal that the residual resistance ratio remains
large at above 60 while Smith et al. and Suderow et al. have
not provided a characterization of their samples at ambient
pressure and could not monitor the pressure inhomogeneity
effects with the ac susceptibility measurements. In fact, Smith
et al. used non-hydrostatic solid pressure medium, which is
know to lead to pressure inhomogeneities and anisotropy. In
the case of Suderow et al., methanol:ethanol was used with a
hydrostatic limit of ≈ 9 GPa [35]. However, we show in the
S II of the Supplemental Material Ref. [26] that the sample
preparation and stresses from the sample touching the gasket
can lead to a reduced Tc outside the CDW phase and we
reproduce the Tc(P) of Suderow in a sample with a broad-
ened transition. In summary, we argue that our data for the
first time reveal the intrinsic high-pressure evolution of the
superconducting transition temperature of 2H-NbSe2.

We use measurements of the upper critical field Hc2 to
characterize the Fermi velocity, vF, on the strong coupling
Nb cylinders. At all pressures, we observe a linear dependency
of Hc2(T ) below Tc as presented in Fig. 4(a) and in agree-
ment with earlier ambient-pressure experiments [24,37]. We
use the slope dHc2/dT |Tc

to calculate the Fermi velocity vF,
shown in Fig. 4(b). Both ab initio calculations and analysis
of the Usadel equations show that dHc2/dT |Tc

for H along
the crystallographic c direction, used here, is almost entirely
determined by the strong coupling Nb cylinders [38,39]. In
addition, we find perfect agreement with vF associated with
the Nb cylinders identified in the previous high-pressure mea-
surements by Suderow et al. at low pressures in the pressure
range where Tc of Suderow’s sample is in agreement with our
measurements [23] [grey squares in Fig. 4(b)].

At the critical pressure of the CDW phase, we observe a
jump in the Fermi velocity suggesting a collapse of the CDW
gap [dotted line in Fig. 4(b)]. Initially, a steady increase of vF

by 40% is observed for P � 4.3 GPa, i.e., where Tc < TCDW.
This initial steady rise is most naturally associated with a
continuous shrinkage of the CDW gap and reduction of the
average renormalization on the niobium bands. By contrast,
a jump of ≈10% is observed over a narrow pressure range
at P ∼ 4.4 GPa, exactly at the pressure where TCDW drops
to zero consistent with a collapse of the CDW gap. Above
5 GPa vF saturates suggesting that the coupling of the CDW
mode to the electronic states quickly reduces outside the CDW
phase. As Hc2(T ) is well fitted by a linear dependence to
lowest magnetic fields (i.e., right to Tc), we conclude that
the CDW collapse is also present in zero magnetic field at
4.4 GPa corroborating the evidence for a drop in TCDW from
the Hall-effect measurements in magnetic fields above 2 T
discussed above.

IV. THEORETICAL MODELLING

We find that the stiffening of the bare longitudinal acoustic
phonon from which the CDW develops can account for the
suppression of TCDW under pressure. We use electron-phonon
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FIG. 4. Upper critical field and Fermi velocity in 2H -NbSe2.
(a) Linear fits to Hc2(T ) have been used to extract vF(P) shown in (b).
For details see S III of the Supplemental Material Ref. [26]. Data of
Suderow et al. [23] have been included in (b) for the pressure range
with good agreement of Tc (see SII of the Supplemental Material
Ref. [26]). Lines are guides to the eye.

coupling dependent on the ingoing and outgoing momentum
and the specific shape of the Fermi surface of 2H-NbSe2

including the orbital character. The model was developed
earlier by one of us as outlined in (Secs. S V and S VI of the
Supplemental Material Ref. [26]) [40,41]. In our random
phase approximation (RPA) calculations, the overall mag-
nitude of the electron-phonon coupling g is constrained to
reproduce TCDW(P = 0) = 33.4 K (cf. Sec. S III of the Sup-
plemental Material Ref. [26]) and we keep g fixed for all

FIG. 5. Reduction of DOS as a function of CDW gap magnitude
for the two Nb-derived bands at EF. Insets show the Fermi sur-
face in a wedge of the Brillouin zone for specific values of �CDW

and equivalent pressure. The plotted points were identified as the
points at which the RPA spectral function is within 15% of its
maximum value.

pressures. To describe TCDW(P), we assume a linear stiffening
of the longitudinal acoustic phonons underlying the CDW
formation consistent with high-pressure inelastic x-ray studies
[42] as detailed in section S V of the Supplemental Material
Ref. [26]. In Fig. 2(a), the experimental transition temper-
atures are compared to model calculations. From the good
match with the experimental phase boundary up to 4.3 GPa,
we conclude that the suppression of the CDW is indeed
driven by the increase of the bare phonon frequency, while
the electron-phonon constant remains unchanged. While our
model tracks the phase boundary well for P < 4.3 GPa, it is
too simple to account for a possible change in the order of the
transition. Features omitted from the model which could ac-
count for such a change include higher-order lattice coupling,
fluctuation effects, or the effect of pressure on the electronic
band structure.

A partial competition for density of states (DOS) is the
main driver for the evolution of Tc(P). We use the experimen-
tally determined phase boundary [solid line in Fig. 2(a)] to
scale the evolution of the CDW phase to our pressure data as
detailed in Sec. S VI of the Supplemental Material Ref. [26].
Inside the CDW phase, the DOS available for superconduc-
tivity is reduced due to the gapping of the inner K pockets of
the Fermi surface as illustrated in Fig. 5 leading to a reduction
of Tc. As the CDW gap becomes smaller, the DOS available
for superconductivity becomes larger which in turn accounts
for almost the entire increase of Tc and naturally explains why
Tc saturates above PCDW as can be seen in Fig. 2(b). Thus we
conclude that it is a competition for DOS which suppresses Tc

inside the CDW phase.

V. DISCUSSION AND CONCLUSIONS

Our study provides the most comprehensive and consistent
dataset of the boundary of the CDW phase in 2H-NbSe2 to
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date and suggests a first-order transition at PCDW = 4.4 GPa.
The combined evidence of a drop in TCDW(P) at PCDW ex-
tracted from the isobaric and isothermal analysis of the
Hall effect and the jump in vF(P) at PCDW suggest that the
first-order transition at PCDW is an intrinsic characteristic of
the CDW in 2H-NbSe2.

Our work is the first high-pressure study to find indications
of a first-order transition at the critical pressure of the CDW
order. The previous pressure study by Berthier et al. traced
TCDW to 3.6 GPa [33]. Only one further study has obtained
information about the boundary of the CDW phase above
3.7 GPa: the x-ray measurements of Feng et al. [22,43] who
have interpreted a kink in the pressure dependence of the
c-axis lattice constant at 4.6 GPa and 3.5 K as the critical
pressure of the CDW phase [green triangle in Fig. 2(a)]. An
uncertainty has not been given by Feng et al., however, taking
into account the scatter of c(P) we estimate an uncertainty
of 4.6(−0.5)(+0.2) GPa as included in our phase diagram
Fig. 2(a). Taking into account this uncertainty, the data of
Feng et al. are consistent with the critical pressure of 4.4 GPa
found in our study.

The XRD measurements of Feng et al. cannot rule out
a first-order transition at 4.4 GPa [22,43]. The in-plane lat-
tice constant a was measured with very high precision up
to 8.5 GPa but does not reveal any signature at PCDW and
thus cannot be used to discriminate the order of the quantum
phase transition. Together the lattice constants give an upper
limit of 0.5% for a discontinuity in the volume leaving the
possibility of a weak first-order transition compatible with
the small TCDW ≈ 10 K just below PCDW. Scaling in the x-ray
diffraction measurements of Feng et al. is cut off above 4 GPa
[22,43]. At 4.55 GPa the XRD measurements find a cut-off
of the divergence of the inverse static correlation length and
an order-of magnitude drop of the CDW intensity. Only the
low-pressure XRD data show clear evidence of second-order
behavior (divergence of the inverse static correlation length
and smooth decrease of the intensity of the CDW reflections
up to 4 GPa) consistent with our continuous suppression of
TCDW(P) up to 4.3 GPa.

Indications of a first-order transition were observed be-
fore in electron-irradiated 2H-NbSe2 but were attributed to
disorder effects [25]. Our samples preserve the high residual
resistance ratio across PCDW thus disorder is of negligible
effect in our study. Instead, our results suggest that quan-
tum fluctuations or coupling to the lattice may induce a
first-order transition in 2H-NbSe2. Indeed, a suppression
of CDW order by quantum fluctuations was proposed for
2H-NbSe2 [42,43] and a strong coupling to the lattice plays
a crucial part for the formation of the CDW in 2H-NbSe2

[44]. A weak first-order phase transition to the incommen-
surate CDW state was observed in related CDW systems
1T -TiSe2 and 1T -TaS2[14,45]. Thus our results suggest that
quantum fluctuations and/or coupling to the lattice play an
important role when suppressing CDW order to zero tem-
perature and induce a first-order transition in many CDW
materials.

Our detailed measurements lead us to different conclusions
on the interplay between superconductivity and CDW order
compared to previous studies. The increase in Tc is in clear

anticorrelation with TCDW(P) as highlighted in Fig. 2(c). In
addition, Tc(P) is virtually constant for P � 4.4 GPa, i.e. out-
side the CDW phase. This anticorrelation and the saturation
are clear signs that the superconductivity is in competition
with the CDW phase as suggested for CDW superconductors
in general and 2H-NbSe2 in particular in previous studies
[9,33]. Our model calculations show quantitatively that the
suppression is caused by the depletion of density of states in-
side the CDW phase. Notably, we do not observe a maximum
in Tc around the critical pressure of the CDW phase. Thus we
can rule out a boost to Tc from quantum critical fluctuations.
Similarly, we can rule out a boost to superconductivity from
the presence of the static CDW as suggested by Kiss et al.
[12]. Such a boost should manifest in a correlation of TCDW

and Tc and a drop of Tc at PCDW neither of which is observed.
Furthermore, our data suggest that a notable maximum is
absent for pressures below 10 GPa thus suggesting that the
electron-phonon coupling responsible for the superconductiv-
ity is largely independent of pressure.

The first-order nature of the CDW close to PCDW maybe
the reason for the absence of a dome-shaped enhancement
in Tc(P) upon suppression of the CDW. At a second-order
quantum phase transition, i.e., a quantum critical point, a su-
perconducting dome was observed in many systems including
at the CDW QCP in 1T − TiSe2 [10], close to the structural
QCP in (Sr,Ca)3Ir4Sn13 [46], and at the antiferromagnetic
QCP in CePd2Si2 [5]. By contrast, dome-shaped supercon-
ducting phases are usually absent in systems with first-order
quantum phase transitions as shown for instance in UGe2 [47].
This is a clear indication that the gapped fluctuation spectrum
at first-order quantum phase transitions is not suitable to me-
diate or enhance superconductivity. Our data suggest that this
principle applies to 2H-NbSe2, too.

While we have shown clearly that CDW order is
suppressing superconductivity, our data also reveal that
superconductivity has no effect on TCDW. Firstly, the gradual
suppression of TCDW for P < 4 GPa cannot be driven by the
superconductivity because TCDW > Tc. Secondly„ while the
drop of TCDW occurs at the pressure where the power-law
fit predicts TCDW<Tc(H=0), our Hall-effect data have
detected the CDW transition in high magnetic fields where
superconductivity is suppressed. In addition, the suppression
of the amplitude (peak height) of the CDW signature in RH(T )
is based entirely on data where TCDW > Tc(H = 0). Thus our
data suggest that the drop of TCDW at 4.4 GPa is intrinsic to
the CDW in 2H-NbSe2 and not driven by competition with
superconductivity. Hence, we conclude that the competition
between superconductivity and CDW is mostly unidirectional
in 2H-NbSe2 with only superconductivity suppressed by
CDW but not the other way around. Such a unidirectional
competition is supported by previous x-ray measurements at
ambient pressure, which show that the intensity of the CDW
reflection is not reduced at Tc in zero field and not enhanced
upon suppressing superconductivity in large magnetic
fields [14,48].

In summary, our results lead to several profound con-
clusions about the interplay of CDW order and supercon-
ductivity in 2H-NbSe2: (i) Superconductivity is suppressed
inside the CDW phase due the reduced electronic density

043392-6



ABSENCE OF SUPERCONDUCTING DOME AT THE … PHYSICAL REVIEW RESEARCH 2, 043392 (2020)

of states available for superconductivity, (ii) Supercon-
ductivity is not reducing TCDW. Instead the suppression
of TCDW under pressure is consistent with the stiffening
of the underlying bare phonon mode. (iii) TCDW drops
abruptly at PCDW = 4.4 GPa indicating a first-order transition.
(iv) Superconductivity is not enhanced at PCDW potentially
due to CDW fluctuations being cut off at the first-order
transition.

Data are available at the University of Bristol data
repository, see Ref. [49].
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S I. HIGH-PRESSURE HALL EFFECT
MEASUREMENTS

The phase boundary TCDW(P ) has been extracted
from both d∆RH/dT and RH(P ) presented for measure-
ments in µ0H = 10 T in the main manuscript. An impor-
tant observation is the abrupt drop of TCDW at 4.4 GPa.
This is best seen in RH(P ) in the inset of Fig. 1 of the
main text.

In Fig. S1 we show RH(P ) extracted at µ0H = 2 T,
i.e. a field just above the critical field of the supercon-
ducting state. We find the same behaviour: A kink in
RH(P ) at 4.4 GPa which does not shift between 5 K and
10 K, i.e. a very steep phase boundary of TCDW(P ) at
4.4 GPa. Thus, we observe that the drop in TCDW(P )
is not due to the effect of a finite magnetic field on the
CDW transition. This argument is extended to lower
fields by the observation of linear Hc2(T ) at 4.5 GPa pre-
sented in Fig. 4(a) with no indications of a change in
slope expected for a transition from the CDW state to
the pure superconducting state (cf. Fig. 4(b) of the main
text).

In Fig. S2 we show RH(P ) for further temperatures. At
T ≤ 10 K, a single kink is observed in RH(P ). At 15 K
and 20 K, two kinks are visible in RH(P ). The kink at
3.8(1) GPa and 3.5(2) GPa, respectively from the steepest
slope to a very much reduced slope matches with the
phase boundary PCDW(T ). At T ≤ 10 K the steepest
part of RH(P ) has a similar steep slope compared to 15 K
and 20 K. Thus, we identify the low-pressure kink at
15 K and 20 K and the single kink at T ≤ 10 K with the
boundary of the CDW phase.

At 15 K and 20 K, a second kink at 4.4 GPa towards
constant RH(P ) happens at the same pressure like the
single kink at 5 K and 10 K. The origin of this second
kink remains elusive and we can only speculate that it
is related to fluctuations of the CDW order for pressures
below 4.4 GPa. In fact, strong fluctuations have been
inferred from ARPES experiments [1] and mode-mode-
coupling calculations [2].

∗ Sven.Friedemann@bristol.ac.uk

FIG. S1. Pressure dependence of the Hall coefficient at µ0H =
2 T for T = 5 K and T = 10 K. Straight lines show linear fits.
The T=10 K data has been offset in the inset to match the
high-pressure value of the T=5 K data.

S II. INFLUENCE OF PRESSURE MEDIA AND
SAMPLE PREPARATION ON

SUPERCONDUCTIVITY

We have studied the influence of different pressure me-
dia and sample preparation on superconductivity under
pressure in 2H-NbSe2. In Fig. S3(a) we provide a compar-
ison of two different pressure media used in this study:
argon and glycerol. Argon was used for the measure-
ments of the magnetic susceptibility presented in Fig. 3
of the main manuscript. Glycerol was used for all elec-
trical transport measurements, e.g. Fig. 1 of the main
manuscript. A second measurement of the magnetic sus-
ceptibility was done with glycerol as a pressure medium
as presented in Fig. S4.

The comparison of Tc(P ) from these three measure-
ments shows very good agreement up to P = 5.5 GPa (cf.
Fig. S3(a)). This corresponds to the hydrostatic limit of
glycerol which undergoes a glass transition around this
pressure at 300 K [3]. Above 5.5 GPa, Tc(P ) is reduced
for the samples in glycerol pressure medium. We at-

mailto:Sven.Friedemann@bristol.ac.uk
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FIG. S2. Pressure dependent Hall coefficient RH(P ) at se-
lected temperatures. Straight lines highlight linear fits to the
data.

tribute this reduction of Tc to a uniaxial compression
along the crystallographic c axis of the sample as sam-
ples were mounted with the crystallographic c-direction
perpendicular to the anvil cutlets [4, 5]. Pressure has
been applied at room temperature and the pressure cells
have been warmed to 300(1) K after application of pres-
sure. We conclude that glycerol provides high-qualtiy
hydrostatic conditions for 2H-NbSe2 up to 5.5 GPa.

Our measurements of Tc(P) differ significantly from
previous studies extending to beyond the critical pres-
sure of the CDW as highlighted in Fig. S3(b) [6, 7]. In
order to identify the cause for these differences, we have
studied the relevance of the pressure medium and sam-
ple preparation. As discussed above, we find a reduced Tc
in non-hydrostatic conditions for glycerol above 5.5 GPa.
Thus, we conclude that the reduced Tc observed by Smith
et al [6] is due to the usage of a solid pressure medium.

Suderow et al. used methanol:ethanol which provides
good hydrostatic conditions up to 10 GPa [8]. Yet, Tc
is reduced and a much smoother rise of Tc(P ) is ob-
served by Suderow et al.. We could reproduce the be-
haviour seen by Suderow et al. in one measurement
using pentane:isopentane as a pressure medium (sam-
ple 1 in Fig. S3(b)). Pentane:isopentane is very simi-
lar to methanol:ethanol and provides good hydrostatic
conditions to 10 GPa [8]. A second sample measured in
pentane:isopentane, however, followed the Tc(P ) of our
argon measurements (sample 2 in Fig. S4(b)). Thus, we
conclude that the differences in Tc(P ) are not due to the
pressure medium used as long as it provides good hydro-
static conditions.

We could identify a difference in the sharpness of the
superconducting transition in χ(T ) to correlate with the
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FIG. S3. Superconductivity in 2H-NbSe2. (a) Comparison
of measurements using argon and glycerol as pressure media.
(b) Comparison of our measurements with previous studies
beyond the CDW critical pressure [6, 7].

behaviour of Tc(P ): For all samples showing the clear
kink in Tc(P ) (as observed with argon PTM), transitions
in χ(T ) are very sharp (see Fig. 3 of the main text and
Fig. S4(a) and (c)). For samples with a reduced Tc and
a smooth rise in Tc(P ), transitions in χ(T ) are much
broader (Fig. S4(b)). We note that the broad transitions
in glycerol above the solidification pressure (Fig. S4(a)
for P & 5.5 GPa) are attributed to the uniaxial compo-
nent of the pressure as discussed above. With two sam-
ples measured in pentane:isopentane following different
behaviour in Tc(P ) and in χ(T ) we identify the differ-
ences to arise from sample preparation. Indeed, sample
2 and our sample in argon have been screened for sharp
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FIG. S4. Superconducting transition of 2H-NbSe2 in a pressure cell using glycerol as the pressure transmitting medium (a).
After subtraction of the background as described in the Methods section of the main manuscript, χ has been normalised
χnorm(T ) = (χ(T ) − χ(9 K))/(χ(9 K) − χ(4 K)). Measurements were done during heating up in µ0H = 0.5 mT after zero-field
cooling. Pictures in (b) and (c) show the sample inside the pressure cell at high pressures.

transitions at ambient pressure before the study.

With best hydrostatic conditions and sharp transitions
in χ(T ) correlated to a sharp kink in Tc(P ) at the critical
pressure of the CDW we conclude that the behaviour
observed with argon as a pressure medium reveals the
intrinsic behaviour of 2H-NbSe2 under pressure.

S III. HIGH-PRESSURE RESISTIVITY
MEASUREMENTS

Fig. S5 shows a zero-pressure resistivity trace and its
temperature derivative for a sample from the same batch
like the high-pressure measurements. The CDW transi-
tion is observed at 33.4 K.

Fig. S6 shows the signature of the CDW in the elec-
trical resistivity in our high-pressure measurements. We
trace TCDW(P ) as the minimum in dρ/dT as shown in
the inset of Fig. S6.

The upper critical fieldHc2(T ) has been extracted from
temperature sweeps measuring Tc at a fixed field. At
each field Tc was determined as the temperature where
the resistivity reaches 10 % of the normal state value (see
Fig. S7).

We use the Ginzburg-Landau equation

dµ0Hc2

dT

∣∣∣∣
Tc

= −2.83π2k2B
e~

Tc
v2F

(S1)

to extract the Fermi velocity vF from the slope of the
critical field. Our measurements show a linear slope over
a similar large temperature range as previous studies [9].
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FIG. S5. Zero-pressure resistivity measurements on a sam-
ple of 2H-NbSe2 from the same batch as used for the high-
pressure resistivity measurements.
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FIG. S6. Electrical resistivity at selected pressures. Inset
shows the derivative dρ/dT . Data in the inset have been
offset for clarity. Arrows indicated the minimum in dρ/dT on
both panels.

FIG. S7. Resistivity of 2H-NbSe2 normalised to the normal
state resistivity at T = 9 K. Dotted line indicates 10 % which
was used to determine the critical field Hc2(T ) presented in
Fig. 4 of the main text.

S IV. BACKGROUND SUBTRACTION IN
MAGNETIC MEASUREMENTS

A pressure cell mirror symmetric about the sample po-
sition was used. Thus, the MPMS software is able to re-
liably fit a dipole function with the amplitude giving the
total magnetic moment of the sample and pressure cell.

FIG. S8. Magnetic moment of the pressure cell with 2H-
NbSe2 sample on warming after zero-field cooling and on field
cooling in µ0H = 0.5 mT. The red line shows the Curie-type
fit of the background.

We remove the background contribution arising from the
pressure cell by subtracting a Curie-Weiss type contribu-
tion fitted to the field-cooled measurement as illustrated
in Fig. S8.

The demagnetisation factor, D, of the sample was cal-
culated using the rectangular prism approximation [10].
The magnetic susceptibility, χ, is calculated from the
sample magnetic moment ms, sample volume Vs, and the
applied static magnetic field H as

χ =
ms

VsH
(1 −D). (S2)

Small variations in χ at low temperatures are associ-
ated with uncertainty of the sample position relative to
the SQUID pick-up coils.

S V. CALCULATION OF THE
CHARGE-DENSITY-WAVE TRANSITION

TEMPERATURE

We employed diagrammatic expansions based on the
Random Phase Approximation (RPA), assuming the
CDW to develop from a structured electron-phonon cou-
pling dependent on both the ingoing and outgoing elec-
tron momenta and the orbital content of the bands. This
model, which has as its only free parameter the over-
all magnitude of the electron-phonon coupling (fixed by
TCDW(P = 0)), has previously been shown to agree well
with the full range of experimental observations on the
charge ordered state in 2H-NbSe2.
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The Random Phase Approximation provides the fol-
lowing expression for the softening of the bare (high-
temperature) phonon mode Ω0(q) as a function of mo-
mentum transfer q as the temperature decreases towards
the CDW phase transition at TCDW:

Ω(q, T )2 = Ω0(q)(Ω0(q) −D2(q, T ))

where D2(q, T ) is the generalized susceptibility to CDW
formation [2, 11, 12]. D2(q, T ) is the Lindhard func-
tion convolved with the square of the electron-phonon
coupling. As temperature decreases D2(q, T ) increases
until, at TCDW and wavevector QCDW ≈ 0.986 · 2

3ΓM ,
D2(QCDW, TCDW) = Ω0(QCDW), and Ω softens to zero.
A CDW with wavevector QCDW results. The one free
parameter in the model, the magnitude of the electron-
phonon coupling, is set to give the measured value of
TCDW = 33.4 K at P = 0.

Generally, the effect of increased pressure is to increase
the frequency of phonons. Thus, we model high pres-
sures as an increase of Ω0, the frequency of the longi-
tudinal acoustic mode from which the CDW develops in
2H-NbSe2. We find that the momentum transfer q at
which D2(q, T ) peaks is largely independent of tempera-
ture down to T = 0 in agreement with temperature and
pressure-dependent X-ray diffraction results [13]. Thus,
we can obtain the pressure dependence of TCDW from
D2(QCDW, T = 0) using the ambient-pressure QCDW.

As a consequence of the increase of Ω0(QCDW) at
higher pressures, a larger D2(QCDW, T ) is required to
reach Ω = 0 necessary to achieve the CDW transition.
As D2 increases with decreasing temperature, this cor-
responds to a decrease in TCDW with pressure. In our
model calculations, we analyse the isothermal behaviour:
For a fixed D2(QCDW, T ), i.e. for a fixed temperature, we
find the pressure PCDW(T ) at which Ω(q, T )2 = 0 corre-
sponding to the boundary of the CDW phase. The value
of D2(QCDW, T = 0) sets the maximum bare phonon
energy (and therefore pressure) from which a CDW can
develop. From this we extract a pressure scaling fac-
tor to fit the experimentally observed phase boundary.
This scaling corresponds to a rate of stiffening of the
bare phonon mode. Finally, by inverting the relation we
obtain TCDW(P), the phase boundary plotted in Fig. 2 of
the main manuscript.

S VI. CALCULATION OF THE
SUPERCONDUCTIVITY TRANSITION

TEMPERATURE

Our calculation of Tc as a function of pressure is based
on the change of the density of states (DoS) at the Fermi
level, gEF

(∆CDW), as a function of the CDW gap mag-
nitude ∆CDW.

The total DoS gEF
(∆CDW) is calculated from the con-

tributions of the two Nb d3z2−r2 orbitals gNb
EF

(∆CDW),
captured by our model of the Fermi surface developed
in Refs. [2, 11, 12]. We add a contribution gSeEF

(∆CDW)

FIG. S9. Density of states gNb(E) of the Nb orbitals as a
function of energy for different values of the gap, normalised
to the gap value at zero pressure. The energy is given relative
to EF.

from the selenium band such that the total matches the
Sommerfeld coefficient [14].

The DoS of the Nb orbitals was calculated as the sum
over the Brillouin zone of the spectral function A(E,k):

gNb =
1

N

∑
k∈BZ

A (E,k) = − 1

πN
Im

∑
k∈BZ

G (E,k)

where G (E,k) is the retarded electronic Green’s function
at energy E and wavevector k. We calculated the Green’s
function, including the CDW gap, using the Nambu-
Gor’kov method [2]. For the wavevector dependence of
the CDW gap we solved for the gap self-consistently at
six high-symmetry points across the Brillouin zone, and
used the results to create a six-parameter tight-binding
fit. This calculation was previously shown to give a good
match to scanning tunneling spectroscopy measurements
of g(E) over a range of energies around EF [15]. Fig. S9
shows this result. Note that the CDW gap is centred
16 meV above EF; nevertheless, it is gEF which is rele-
vant for the formation of superconductivity.

We simulate the pressure dependence of Tc assuming
that ∆CDW varies from the zero-pressure value ∆0 =
12 meV down to zero. We obtain the DoS of the Nb
orbitals gNb

EF
(∆CDW) as shown in Fig. S10. We assume

a BCS temperature dependence of ∆CDW(T ) at a given
pressure to obtain gNb

EF
(∆CDW) at the superconducting

transition temperature self consistently.
We relate the CDW gap to pressure by scaling to the

fitted TCDW(P ) in Fig. 2(a):

P = PCDW(T = 0)

[
1 −

(
∆CDW

∆0

)1/n
]

(S3)
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FIG. S10. Density of states gEF(∆CDW) at the Fermi level as
a function of the CDW gap size ∆CDW.

where n and PCDW(T = 0) are the exponent and critical
pressure from the fit to the phase boundary (solid line in
Fig. 2).

In order for the total density of states gEF to be consis-
tent with the Sommerfeld coefficient, we add a constant
value of 0.0013 meV−1 which is associated with the DoS
from the Se-orbitals.

We use the BCS expression to calculate the transition
temperature of the superconducting state

Tc = 1.14Θ exp

(
− 1

gEF
V

)

where the coupling constant V = 0.035 was obtained
to fit the zero-pressure Tc using the zero-pressure gEF

(which is consistent with the experimentally determined
DoS from the Sommerfeld coefficient).
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