
Floquet Engineering Ultracold Polar Molecules to Simulate Topological Insulators

Thomas Schuster,1 Felix Flicker,1, 2 Ming Li,3 Svetlana

Kotochigova,3 Joel E. Moore,1, 4 Jun Ye,5 and Norman Y. Yao1, 4

1Department of Physics, University of California, Berkeley, California 94720 USA
2Rudolph Peierls Centre for Theoretical Physics, University of Oxford,

Department of Physics, Clarendon Laboratory, Parks Road, Oxford, OX1 3PU, UK
3Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, USA

4Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
5JILA, National Institute of Standards and Technology and Department of Physics,

University of Colorado, Boulder, CO 80309, USA

(Dated: May 25, 2021)

We present a quantitative, near-term experimental blueprint for the quantum simulation of topo-
logical insulators using lattice-trapped ultracold polar molecules. In particular, we focus on the
so-called Hopf insulator, which represents a three-dimensional topological state of matter existing
outside the conventional tenfold way and crystalline-symmetry-based classifications of topological
insulators. Its topology is protected by a linking number invariant, which necessitates long-range
spin-orbit coupled hoppings for its realization. While these ingredients have so far precluded its
realization in solid state systems and other quantum simulation architectures, in a companion
manuscript [1] we predict that Hopf insulators can in fact arise naturally in dipolar interacting
systems. Here, we investigate a specific such architecture in lattices of polar molecules, where the
effective ‘spin’ is formed from sublattice degrees of freedom. We introduce two techniques that al-
low one to optimize dipolar Hopf insulators with large band gaps, and which should also be readily
applicable to the simulation of other exotic bandstructures. First, we describe the use of Floquet
engineering to control the range and functional form of dipolar hoppings and second, we demonstrate
that molecular AC polarizabilities (under circularly polarized light) can be used to precisely tune
the resonance condition between different rotational states. To verify that this latter technique is
amenable to current generation experiments, we calculate from first principles the AC polarizability
for σ+ light for 40K87Rb. Finally, we show that experiments are capable of detecting the unconven-
tional topology of the Hopf insulator by varying the termination of the lattice at its edges, which
gives rise to three distinct classes of edge mode spectra.

The rich internal structure of ultracold polar molecules
has led to intense interest for their use in a wide range of
applications, ranging from quantum simulation and com-
putation, to ultracold chemistry and precision measure-
ment [2–17]. Understanding and controlling this struc-
ture has led to the development of a host of techniques en-
abling the preparation and manipulation of rovibrational
states in polar molecules [17–26]. From the perspective of
quantum simulation, polar molecules enjoy a unique ad-
vantage compared to their neutral atom cousins, owing
to the presence of strong, anisotropic, long-range dipo-
lar interactions; these interactions have proven useful for
theoretical proposals aiming to realize a number of ex-
otic phases, including disordered quantum magnets [27–
29], Weyl semimetals [30] and fractional Chern insula-
tors [29, 31]. Motivated, in part, by these prospects, the
last decade has seen tremendous experimental progress,
advancing from rovibrational ground state cooling [17]
to the recent realization of a Fermi degenerate molec-
ular gas [25]. Moreover, from a geometric perspective,
molecules can either be loaded into optical lattices [23]
or optical tweezer arrays [26]. As in other quantum sim-
ulation platforms, Floquet engineering [32, 33] – high-
frequency, periodic time-modulation – can further sculpt
the molecules’ interaction, broadening the scope of ac-
cessible phases [34, 35].

In this article, we provide an explicit experimental
blueprint for realizing another heretofore unobserved
phase of matter, the Hopf insulator, in polar molecules.
The Hopf insulator is a particular topological insulator,
characterized by a linking number topological invariant
arising from the unique topology of knots in three dimen-
sions and the Hopf map of mathematics [36, 37]. No-
tably, it exists only in two-band systems, falling outside
the traditional ‘tenfold way’ classification of topological
insulators [38, 39] and suggesting that it might possess
different physics than the most well-known examples of
these phases. Despite much interest in both the Hopf in-
sulator [37, 40–51] and physics associated with the Hopf
map more generally [52–55], experimentally realizing the
Hopf insulator has remained an open challenge, and even
proposed implementation platforms (e.g. in either con-
ventional quantum materials or cold atomic quantum
simulators) remain few and far between [42, 46]. The
key challenges arise directly from the nature of the Hopf
map. In particular, realizing the Hopf insulator requires
two essential ingredients: 1) the presence of long-range
hoppings and 2) strong spin-orbit coupling, manifested
in hoppings whose phase is spatially anisotropic.

In a companion manuscript [1], we predict that com-
bining the dipolar interaction with Floquet engineer-
ing [32, 33] can naturally give rise to the Hopf insula-
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tor in interacting spin systems. Here, we build upon this
result by providing a quantitative blueprint using lattice-
trapped ultracold polar molecules, focusing for concrete-
ness on 40K87Rb [17, 19–23]. Our approach takes ad-
vantage of the full toolset of controls developed for polar
molecular systems. In particular, we envision a deep,
three-dimensional optical lattice, so that the molecules’
rotational motion constitutes the fundamental degrees of
freedom in the system. Rotational excitations are ex-
changed between lattice sites via the dipolar interaction,
which simulates the hopping of hardcore bosons on the
lattice. The two band, or ‘spin’, degrees of freedom of
the Hopf insulator are formed from two sublattices, dis-
tinguished from each other by the lattice light itself –
different intensity light forming the two sublattices in-
duces different level structures in the trapped molecules,
according to the molecules’ polarizability [24].

In contrast to prior studies [29, 31, 56], we utilize
this polarizability to isolate the ∆m = ±1 angular-
momentum-changing component of the dipolar interac-
tion, which precisely induces the requisite spin-orbit cou-
pling of the Hopf insulator [37]. To complete our con-
struction, we demonstrate that Floquet engineering can
be implemented using amplitudes of applied laser light
and DC electric fields which are easily accessible in cur-
rent generation experiments; moreover, we show that this
engineering can tune the system’s hoppings into the Hopf
insulating phase with large band gaps & 0.26 tnn (in units
of the nearest-neighbor hopping, tnn), enabling easier ex-
perimental observation. Finally, a particularly simple
way to achieve the requisite rotational level structure
(Fig. 1) is to utilize circularly-polarized optical radiation
in conjunction of the molecule’s AC polarizability. To
this end, in order to demonstrate quantitative feasibility,
we provide the first detailed calculations of the relevant
circular polarizabilities for 40K87Rb.

Direct experimental verification of the Hopf insulator is
most simply achieved through spectroscopy of its gapless
edge modes. In a companion manuscript [1], we demon-
strate that these edge modes are robust at any smooth
boundary of the Hopf insulating phase, while for sharp
boundaries their presence or absence signifies the exis-
tence of an underlying crystalline symmetry [45]. We will
show that all three of these qualitatively distinct bound-
ary spectra can be manufactured and probed in ultracold
polar molecule simulations. Since the Hopf insulator’s
edge behavior is a direct result of it being outside the
conventional tenfold way, this serves as a direct experi-
mental probe of the Hopf insulator’s unique topological
classification.

Our manuscript is structured as follows. We begin with
an overview of the Hopf insulator, with a specific focus on
the requirements – a two band system, and long-range,
spin-orbit coupled hoppings. We then turn to the setting
of our proposal, outlining precisely how the rotational ex-
citations of polar molecules can simulate spin-orbit cou-

FIG. 1. Schematic geometry depicting a 3D optical lattice of
polar molecules with two layered sublattices A and B. Orbital
motion of the molecules is frozen by the optical lattice. The
level structure of the J = 0, 1 rotational states on the A (left)
and B (right) sublattices. The purple highlighted states form
the hard-core bosonic doublet for each sublattice, and their
energy splitting ∆ is tuned by external fields to be degenerate
between sublattices.

pled particles hopping on a lattice. Next, we demonstrate
how particular patterns of Floquet driving can provide
tremendous control over these hoppings, and numerically
verify that these can be used to tune the system into a
large band-gap, Hopf insulator phase. We present the
edge modes of the polar molecular Hopf Hamiltonian,
and show that they display three qualitatively distinct
spectra dependent on the lattice termination. Finally, we
conclude by providing a detailed description of all aspects
of the proposal’s implementation in a three dimensional
optical lattice of 40K87Rb.
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THE HOPF INSULATOR

We begin with an introduction to the Hopf insulator,
seeking to motivate the connection between the linking
number interpretation of the Hopf invariant and the long-
range spin-orbit coupling required for its physical realiza-
tion.
The Hopf insulator is a particular type of topological

insulator [57–64], a class of phases of matter most notable
for exhibiting conducting surface states despite an insu-
lating bulk. They are differentiated from conventional
insulators by a non-zero topological invariant associated
with their underlying spin-orbit-coupled band structure;
moreover, their surface states are unusually robust to the
detrimental effects of impurities. Their organization was
first captured via the so-called ten-fold way classifica-
tion [38, 39], and consists of a wide landscape of phases
dependent on a system’s dimensionality and symmetries.
Nevertheless, more recent work has exposed topological
insulators that exist beyond this classification framework;
notable examples include topological crystalline insula-
tors [65], higher-order topological insulators [66], and our
insulator of interest, the Hopf insulator [37, 40–42, 44–
46].
The Hopf insulator exists in three-dimensions in the

absence of any symmetries, for which the ten-fold way
classification [38, 39] would nominally predict only an
ordinary insulator. In our context, it will consist of
hard-core boson degrees of freedom hopping on a three-
dimensional lattice (although one is accustomed to think-
ing of topological insulators in terms of fermions, their
single-particle nature also enables a hard-core bosonic re-
alization). The bosons come in two ‘pseudospins’, A and
B, which will form the two bands of the system. These
may be formed from physical spins, but are not required
to be – in our realization, they will correspond to two
sublattices of the three-dimensional lattice. In real space,
the Hopf insulator Hamiltonian takes the generic form

Heff =
1

2

∑

v,r 6=0,
α,β

[

tαβ
r

a†
v+r,αav,β+h.c.

]

+
∑

v,α

µαa†
v,αav,α, (1)

where a†
v,α is the creation operator for a hard-core boson

at lattice site v of pseudospin α ∈ {A,B}. The Hamil-
tonian consists of both pseudospin-preserving (tAA

r
and

tBB
r

) and pseudospin-flipping (tAB
r

and tBA
r

) hoppings, as
well as a pseudospin-dependent chemical potential µα.

The topology of the Hopf insulator is most easily seen
in its momentum-space representation, governed by the
two-by-two matrix Hαβ(k) =

∑

r
t̃αβ
r

eik·r + µαδαβ . This
is conveniently decomposed as H(k) = n0(k)✶+n(k) ·σ,
where the Pauli matrices σ act on the pseudospin de-
grees of freedom, which form the two bands of the Hopf
insulator, and the condition that the bands are gapped
requires |n(k)| > 0. We can view this Hamiltonian as a
map that takes vectors k in the Brillouin zone to points

FIG. 2. The Hamiltonian of the Hopf insulator maps closed
loops in the Brillouin zone to points on the Bloch sphere, with
the unique property that any two loops have linking num-
ber equal to the Hopf invariant. The above loops are solved
for using the proposed experimental dipolar spin Hamiltonian
specified in the text – their linking provides a visual verifica-
tion of the Hopf insulating phase. The n̂ = x̂, ŷ pre-images
(blue, black tubes) are 90◦ rotations of each other about the
kz-axis (vertical black line) due to the spin-orbit coupled hop-
ping tAB

r
∼ eiφ.

n̂ ≡ n/|n| on the Bloch sphere. To see the Hopf insu-
lator’s topology, consider the pre-images of two different
Bloch sphere points n̂, n̂′ in the Brillouin zone, i.e. the
set of momenta k such that n̂(k) = n̂, or n̂(k) = n̂′.
Since the Brillouin zone is three-dimensional – one di-
mension higher than the Bloch sphere – these pre-images
are generically 1D loops in the Brillouin zone. The Hopf
invariant h of the Hamiltonian H(k) is precisely equal to
the linking number of these two loops, for any choice of
n̂, n̂′ [Fig. 2(a)]. The invariant can be calculated from
the Bloch Hamiltonian via the Chern-Simons form [37]:

h =

∫

BZ

d3k jµ(k)Aµ(k), (2)

where jµ(k) = 1
8π ǫ

µνλn̂ · (∂kν
n̂× ∂kλ

n̂) is the Berry cur-
vature and Aµ(k) its associated vector potential.
The linking number interpretation leads to two obser-

vations, one which explains the need for long-range hop-
pings and the other which justifies the required form of
spin-orbit coupling. First, the rapid variation in n(k)
required for pre-image linking necessitates the presence
of strong long-range hoppings, which contribute oscil-
lations ∼ eik·r to n(k), at a frequency proportional to
their range r. Specifically, no nearest neighbor Hamil-
tonian is known for the Hopf insulator; the prototyp-
ical Hopf insulator Hamiltonian [37] features as far as
next-next-nearest neighbor hoppings. Second, pre-image
linking by definition requires a strong coupling between
the pseudospin degree of freedom and the momentum,
much as is true for other topological insulators. In-
spired by the model of Ref. [37], in this work we realize
a specific form of this spin-orbit coupling, generated via
pseudospin-flipping hoppings with a direction-dependent
phase tAB

r
∼ eiφ, where φ is the azimuthal angle of the

hopping displacement r (Fig. 3). This form of hopping



4

locks the nx, ny components of pseudospin to the kx, ky
components of the momentum, such that the pre-image
of, e.g. n̂ = x̂, is exactly a 90 degree rotation about the
kz-axis of the pre-image of n̂ = ŷ. As illustrated in Fig. 2,
this simple correspondence leads naturally to linking of
the two pre-images. While this simple argument applies
only to pre-images related by 90 or 180 degree rotations
about the z-axis (due to the cubic lattice symmetry), this
is in fact sufficient: in a gapped model, the linking num-
ber is constant for all pairs of pre-images. We note that
this same phase profile of the hoppings is also present in
two-dimensional realizations of Chern insulating physics,
both in the prototypical Qi-Wu-Zhang model [67] as well
as in positionally disordered systems [68]
In the following two sections, we demonstrate that sys-

tems of dipolar interacting spins provide a natural ground
to realize both of these key ingredients. We begin by de-
scribing how a particular configuration of the spins’ level
structures leads to the effective hard-core boson Hamilto-
nian of Eq. (1), including the desired spin-orbit coupling
tAB
r

∼ eiφ. We then augment the bare dipolar hoppings
with a Floquet engineering scheme, which serves to de-
crease the relative strength of nearest-neighbor hoppings
and provides useful experimental parameters for tuning
into the Hopf insulating phase.

THE DIPOLAR HAMILTONIAN

We now turn to the setting of our proposal. We envi-
sion a three-dimensional optical lattice filled with ultra-
cold polar molecules. We work in the deep lattice limit,
so that the molecules themselves do not hop between
lattice sites, and the molecules’ rotational states form
the fundamental degrees of freedom of our system [69].
As shown in Fig. 1, the lattice is formed by alternating
planes of two-dimensional square lattices, stacked in the
z-direction. These form two sublattices, A and B, which
will play the role of the pseudospin in the Hopf insulator.
The molecules are most strongly governed by the rota-

tional Hamiltonian Hrot = ∆J2, with eigenstates |J,mJ〉
indexed by their orbital (J) and magnetic (mJ) angu-
lar momentum quantum numbers, which have energies
E = ∆J(J+1) and wavefunctions described by the spher-
ical harmonic functions [70]. While naturally organized
into degenerate manifolds of each J , the mJ eigenstates
are split by both intrinsic hyperfine interactions and tun-

able extrinsic effects resulting from electric fields, mag-
netic fields and incident laser light. These extrinsic ef-
fects (which set the molecules’ quantization axis, i.e. ẑ
in Fig. 1) enable a direct modulation of the rotational
states’ energies in both space (to distinguish between the
A and B sublattices) and time (to implement Floquet
engineering).
We now aim to use these rotational states to realize an

effective Hamiltonian of hard-core bosons, as in Eq. (1).

FIG. 3. Depiction of the inter-sublattice ‘hopping’
|0, 0〉A |1, 1〉B → |1, 0〉A |0, 0〉B , in which a hard-core bosonic
excitation on sublattice B hops to sublattice A. This is in-
duced by the dipolar interaction, and occurs with a hopping
matrix element tAB

r
∼ eiφ with phase equal to the azimuthal

angle φ between the dipoles. This phase profile arises from the
spherical harmonic C2

−∆m=1(θ, φ), since the hopping changes
the total angular momentum of the system by ∆m = −1.
Sublattice B molecules are depicted as spinning to indicate
their non-zero z-angular momentum in the excited state.

We focus on the lowest four rotational eigenstates (i.e.
the J = 0, 1 manifolds), and use these to define two
distinct hard-core bosonic degrees of freedom. On the
A-sublattice we form a hard-core boson from the dou-
blet {|0A〉 = |0, 0〉A , |1A〉 = |1, 0〉A}, while on the B-
sublattice we utilize {|0B〉 = |0, 0〉B , |1B〉 = |1, 1〉B}, as
illustrated in Fig. 1. The hard-core bosons interact with
each other through the dipolar interaction [71]:

Hij
dd =

−
√
6

4πǫ0r3

2
∑

∆mJ=−2

C2
−∆mJ

(θ, φ)T 2
∆mJ

(d(i),d(j)), (3)

where (r, θ, φ) parameterizes the separation of the inter-
acting molecules i and j in spherical coordinates, and
we compress unit and sublattice indices into a single
index i = v, α. The dipole moment operator d(i) =

(d
(i)
− , d

(i)
z d

(i)
+ ) is a rank-1 spherical tensor acting on the

rotational states of the molecule i, whose three com-
ponents change the molecule’s magnetic quantum num-
ber by (−1, 0,+1) respectively. The spherical harmonics
C2

−∆m(θ, φ) capture the spatial dependence of the inter-
action, and are accompanied by the corresponding com-
ponent of T 2

∆m, the unique rank-2 spherical tensor gen-
erated from the dipole operators d(i), d(j). Explicitly,

we have T 2
±2 = d

(i)
± d

(j)
± , T 2

±1 = (d
(i)
± d

(j)
z + d

(i)
z d

(j)
± )/

√
2,

T 2
0 = (d

(i)
± d

(j)
∓ + 2d

(i)
z d

(j)
z + d

(i)
∓ d

(j)
± )/

√
6.

A few remarks are in order. First, we will assume that
the dipolar interaction strength is significantly weaker
than the energy splittings within the J = 1 manifold.
Second, we will tune the splitting between the |0A〉 and
|1A〉 states to be resonant with that of the |0B〉 and
|1B〉 states (Fig. 1). Conservation of energy then dic-
tates that the dipolar interaction can only induce tran-
sitions within our prescribed hard-core bosonic doublets,
i.e. those that preserve boson number. These transitions
take the form of hoppings in the bosonic Hamiltonian,
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tij = 〈0i, 1j |Hij
dd |1i, 0j〉. These hoppings may occur ei-

ther within a sublattice (tAA
r

and tBB
r

) or across sub-
lattices (tAB

r
). With the prescribed geometry and level

structure, we have:

tAA
r

= − d200
4πǫ0

3 cos2(θ)− 1

r3

tBB
r

=
d201
8πǫ0

3 cos2(θ)− 1

r3

tAB
r

= (tBA
−r

)∗ = −3 d00d01

4
√
2πǫ0

cos(θ) sin(θ)

r3
eiφ,

(4)

where (r, θ, φ) parameterizes the displacement between
sites in spherical coordinates, equal to r for intra-
sublattice hoppings and r + b ẑ for inter-sublattice hop-
pings (where b is the vertical distance between A and
B planes), and d00, d01 are the dipole moments d00 =
〈1, 0| dz |0, 0〉 and d01 = 〈1,±1| d± |0, 0〉. Our choice of
rotational states guarantees that the inter-sublattice hop-
ping, tAB

r
, arises solely from the ∆mJ = +1 term in

Hdd, which gives rise to a hopping phase tAB
r

∼ eiφ via
the C2

−1 spherical harmonic. As illustrated in Fig. 2,
this naturally leads to linking between the Bloch sphere
pre-images. Finally, variations in the energy splitting be-
tween sublattices naturally appear as effective chemical
potentials µα, completing the realization of the Hamilto-
nian Eq. (1).

FLOQUET ENGINEERING

While the dipolar interaction elegantly realizes the req-
uisite spin-orbit coupling, relatively strong nearest neigh-
bor hopping as well as the slow asymptotic decay of the
1/R3 power-law preclude numerical observation of Hopf
insulating behavior. To this end, we utilize Floquet en-
gineering to two effects: first, to decrease ‘odd’ hoppings
in the xy-plane (those with odd rx + ry) and second, to
truncate the dipolar power-law in the z-direction [33].
We achieve each effect by adding spatio-temporal de-
pendence to the chemical potential µα

v
(t), and oscillating

each µα
v
(t) at timescales much faster than the hopping.

Under certain conditions (specified below), this leads to
an effective time-independent Hamiltonian of the same
form as Eq. (1), but with modified hoppings

tαβ
r

→ βαβ
r

tαβ
r

, (5)

where the damping coefficients, βαβ
r

, are determined by
the specific profiles of the oscillated chemical potentials,
µα
v
(t). In what follows, we first derive this relation explic-

itly [Eq. (12)], and then introduce two Floquet engineer-
ing schemes [i.e. explicit profiles for the spatio-temporal
dependence of µα

v
(t)] that achieve the hopping modifica-

tions described above.

Overview of Floquet engineering

We begin with a broad introduction to Floquet engi-
neering using a time-dependent chemical potential, fol-
lowing Ref. [33] but modified to include sublattices and
complex hoppings. We consider a time-dependent Hamil-
tonian of the form Eq. (1) where the chemical potential
µα
v
(t) now varies with the lattice site v as well as period-

ically in time t, with a period T . To calculate the effect
of the driving, we move into a rotating frame, defining
the unitary

U(t) = exp

[

− i

∫ t

0

dt′
1

2

∑

v,α

µα
v
(t)σz

r

]

, (6)

and the rotated wavefunction

|Ψ′(t)〉 = U †(t) |Ψ(t)〉 , (7)

whose time-evolution is governed by the Hamiltonian

H ′(t) =U †(t)H(t)U(t)− iU†(t)U̇(t)

=
1

2

∑

v,r 6=0,
α,β

(

exp

[

− i

∫ t

0

dt′ (µα
v+r

(t′)− µβ
v
(t′))

]

×

tαβ
r

a†
v+r,αav,β + h.c.

)

.

(8)

At high-frequencies, 1/T ≫ |tαβ
r

|, the rotated Hamil-
tonian is well-approximated by replacing all quantities by
their average over a single period. This gives an effective
time-independent Hamiltonian

Heff =
1

2

∑

v,r 6=0,
α,β

[

βαβ
v+r,v t

αβ
r

a†
v+r,αav,β + h.c.

]

+
∑

v,α

µα
v
a†
v,αav,α,

(9)

with a static chemical potential

µα
v
=

1

T

∫ T

0

dt µα
v
(t), (10)

and hoppings suppressed by the dampings

βαβ
v+r,v =

1

T

∫ T

0

dt exp

[

− i

∫ t

0

dt′ (µα
v+r

(t′)− µβ
v
(t′))

]

=
1

T

∫ T

0

dt

(

cos

[
∫ t

0

dt′ (µα
v+r

(t′)− µβ
v
(t′))

]

− i sin

[
∫ t

0

dt′ (µα
v+r

(t′)− µβ
v
(t′))

])

.

(11)
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For convenience, we will always choose µα
v
(t) to be an

even function of t, in which case the imaginary part of
the damping vanishes and we have

βαβ
v+r,v =

1

T

∫ T

0

dt cos

[
∫ t

0

dt′ (µα
v+r

(t′)− µβ
v
(t′))

]

.

(12)

In this case, the dampings modulate only the hoppings’
magnitudes, and not their phase.
Since the modulation is generically inhomogeneous,

care must be taken to ensure that the dampings are
in fact translation invariant, βαβ

v+r,v = βαβ
r

, if one
desires translation invariance in the effective Hamilto-
nian. This constraint requires that cos

[ ∫ t

0
dt′ (µα

v+r
(t′)−

µβ
v
(t′))

]

be independent of v. For intra-sublattice hop-
pings (α = β), there are two ways to achieve this:
1) with a ‘gradient’ modulation, where µα

v
(t) is linear

in v, and 2) with an ‘even-odd’ modulation µα
v
(t) =

µα(−1)sxvx+syvy+szvz , si ∈ {0, 1}. (The latter is pos-
sible because we restrict to the cosine term of Eq. (11),
which is even in µ and thus requires only the absolute
value of µα

v+r
(t′) − µα

v
(t′) to be independent of v.) For

inter-sublattice hoppings (α 6= β), this constraint addi-
tionally requires that the sublattices’ modulations differ
only by a position-independent function of time, namely

µA
v
(t) = µv(t)

µB
v
(t) = µv(t) + µSL(t).

(13)

These lead to damping coefficients

βAA
r

= βBB
r

=
1

T

∫ T

0

dt cos

[
∫ t

0

dt′ (µv+r(t
′)− µv(t

′))

]

βAB
r

=
1

T

∫ T

0

dt cos

[
∫ t

0

dt′ (µv+r(t
′)− µv(t

′)− µSL(t′))

]

(14)

for the intra- and inter-sublattice hoppings. We must also
ensure that µα

v
is translation invariant, which requires

only that the average modulation is the same in each
unit cell v.

Even-odd modulation in xy-plane

The first scheme for Floquet engineering serves to sup-
press the strength of nearest neighbor hoppings relative
to next nearest neighbor hoppings in the xy-plane. The
modulation takes the form of the even-odd modulation
previously mentioned, with sx = sy = 1, sz = 0. Specifi-
cally, we take

µxy
v
(t) =

1

2
(−1)vx+vyΩxygxy cos(Ωxy t)

µxy
SL(t) = ΩxygxySL cos(Ωxy t),

(15)

Egh

λFloquet driving amplitude

Hopf

Trivial

Gapless

FIG. 4. Numerical evaluation of the Hopf invariant h for
N×N×N discretizations of momentum space (colored circles)
and the band gap Eg (black diamonds; in units of the nearest-
neighbor hopping tnn) of the specified dipolar spin system as
a function of the strength λ of the Floquet driving (defined
in the main text), calculated with hopping range R = 8. The
Hopf insulating phase (blue, right shaded) is observed across a
range of λ; outside this range the system transitions to gapless
(white) and trivial insulating (gray, left shaded) phases.

where frequency Ωxy is 2π times the inverse pe-
riod, and gxy and gxySL are parameters to be tuned.
Performing the integral inside Eq. (14) and using
1
T

∫ T

0
dt cos

[

g sin(2πt/T )
]

= 1
2π

∫ 2π

0
dx cos

[

g sin(x)
]

=
J0(g) gives damping coefficients

βxy,AA
r

=

{

J0(g
xy) rx + ry = odd

1 rx + ry = even

βxy,AB
r

=

{

J0(g
xy + gxySL) rx + ry = odd

J0(g
xy
SL) rx + ry = even,

(16)

where J0(g) is a Bessel function of the first kind. We see
that ‘odd’ distance hoppings (including nearest neighbor,
rx + ry = 1) are reduced relative to ‘even’ hoppings (in-
cluding next-nearest [rx = ry = 1] and next-next-nearest
neighbor [rx = 2, ry = 0, and vice versa.] hoppings, both
with rx + ry = 2). The parameters gxy and gxySL give in-
dependent control over the ratio of even to odd hoppings
for both inter- and intra-sublattice hoppings.

Truncation in the z-direction

The second use of Floquet modulation is to trun-
cate hoppings from power law to short ranged in the z-
direction [33]. Unlike the previous xy-modulation, we do
not have an intuitive explanation for why one needs such
a truncation. Nevertheless, we observe numerically that
it is necessary for realizing the Hopf insulator phase. We
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take µz
v
(t) to be a gradient in the z-direction,

µz
v
(t) = vzΩ

zgz(Ωzt)

µz
SL(t) = ΩzgzSL(Ω

zt)
(17)

with frequency Ωz in time. This gives dampings

βz,AA
r

=
1

2π

∫ 2π

0

dx cos

[

rz

∫ x

0

dx′ gz(x′)

]

βz,AB
r

=
1

2π

∫ 2π

0

dx cos

[
∫ x

0

dx′ [rzg
z(x′)− gzSL(x

′)]

]

.

(18)

These can be evaluated numerically once the functions
gz(Ωzt), g

z
SL(Ωzt) are chosen. Ref. [33] showed that the

modulation can be tuned to give hoppings that are effec-
tively nearest-neighbor in the z-direction, at the cost of
some loss of magnitude of the nearest-neighbor (|rz| = 1)
hopping. For experimental simplicity, we take the mod-
ulations to be piecewise constant in time:

µz
A,v(Ωzt)

Ωz

=































(2g1 + 2)vz 0 < Ωzt ≤ φ1/2

(2g2 + 2)vz φ1 < Ωzt ≤ φ2/2

(2g3 + 2)vz φ2 < Ωzt ≤ π/2

−µz
A,v(π − Ωzt) + 4vz π/2 < Ωzt ≤ π

−µz
A,v(2π − Ωzt) π < Ωzt ≤ 2π

µz
B,v(Ωzt)

Ωz

=































2g1vz + 2gSL
1 0 < Ωzt ≤ φ1/2

2g2vz + 2gSL
2 φ1 < Ωzt ≤ φ2/2

2g3vz + 2gSL
3 φ2 < Ωzt ≤ π/2

−µz
B,v(π − Ωzt) π/2 < Ωzt ≤ π

−µz
B,v(2π − Ωzt) π < Ωzt ≤ 2π.

(19)

Note that µz
A,v(Ωzt) is even about π, guaranteeing that

damping coefficients are real-valued [see Eq. (12)]. The
parameters gi, g

SL
i can be tuned to achieve the desired

hopping truncation.

Combining the two modulations

We now show that both of the above schemes can be
implemented simultaneously, by choosing the frequencies
of each to be well-separated. Specifically, we take the
modulation to be the sum of two components,

µα
r
(t) = µxy,α

r
(t) + µz,α

r
(t), (20)

where µxy,α
r

(t) is periodic with frequency Ωxy and µz,α
r

(t)
with frequency Ωz, and the frequencies satisfy either
Ωxy ≫ Ωz or Ωxy ≪ Ωz. Under this assumption, the
dampings βαβ

v
factorize into a product of the two indi-

vidual damping coefficients defined in Eqs. (16) and (18),

βαβ
v

= βxy,αβ
v

βz,αβ
v

, (21)

as desired. We verify that this assumption holds quanti-
tatively in Fig. 6.

Egh

Sublattice spacing b

Hopf

Trivial

Gapless

FIG. 5. Numerical evaluation of the Hopf invariant h for
N×N×N discretizations of momentum space (colored circles)
and the band gap Eg (black diamonds; in units of the nearest-
neighbor hopping tnn) of the specified dipolar spin system as a
function of the vertical spacing b between sublattices (in units
of the nearest-neighbor spacing in the xy-plane), calculated
with hopping range R = 8. The Hopf insulating phase (blue,
right shaded) is observed across a large range of b; outside
this range the system transitions to gapless (white) and trivial
insulating (gray, left shaded) phases. Note that the Floquet
modulation breaks the geometric symmetry b → 1 − b, and
hence the spectrum is not symmetric about b = 0.5.

NUMERICAL VERIFICATION OF THE HOPF
INSULATING PHASE

We now turn to a numerical exploration of the single
particle bandstructures supported in our dipolar Floquet
system. By tuning the geometric and Floquet engineer-
ing parameters, we find transitions from topologically
trivial bandstructures to the Hopf insulator and identify
parameter regimes where the Hopf insulator’s band gap
can be as large as Eg & 0.26tnn (see Figs. 4, 5). This
occurs with a spacing a = 0.99 between adjacent planes
of the same sublattice in the z-direction (in units of the
nearest-neighbor spacing in the xy-plane), a spacing b =
0.66 between adjacent planes of the opposite sublattice, a
staggered chemical potential µA −µB = 2.28 (in units of
the nearest-neighbor hopping in the xy-plane), and Flo-
quet engineering parameters gxy = 1.2, gxySL = 0.1, g1 =
−0.6, g2 = 0.1, g3 = 1.1, gSL

1 = 0.7, gSL
2 = −0.4, gSL

3 =
1.6, φ1 = 0.2, φ2 = 1.8. These optimal parameters were
found to optimize the Hopf insulating band gap via the
basin-hopping optimization algorithm, a stochastic op-
timization algorithm that works well in rugged, high-
dimensional optimization landscapes. [72, 73]. It con-
sists of alternating steps of i) performing local optimiza-
tion to find a nearby local minima in the nearby energy
landscape (i.e. the ‘basin’), and ii) randomized ‘hop-
ping’ to more distant basins, whose local minima are then
computed by repeating the first step. The Floquet en-
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gineering amplitudes are quite robust and can be varied
together (replacing g → λg for all amplitudes defined
above) by ∼ 25% about their optimal values while pre-
serving Hopf insulating behavior (Fig. 4). The staggered
chemical potential can be varied by ∼20% [1]. Perform-
ing similar calculations for the lattice parameters, we find
that the intra-sublattice distance is also relatively robust
and can be varied between 0.5 − 0.9 (Fig. 5), while the
z-lattice spacing is slightly more sensitive, and should be
kept within 0.92−1.08 in units of the x/y-lattice spacing
(note that the most natural value, 1, lies well-within this
range).
We compute the momentum-space Bloch Hamiltonian

by summing the Floquet engineered dipolar hoppings de-
fined in Eqs. (4, 14, 18). To truncate the infinite sum over
hopping distance, we only including hoppings to sites at
most R unit cells away in each direction, i.e. |rµ| ≤ R
for each µ = {x, y, z}. The Hopf invariant is computed
by evaluating the integral Eq. (2) on an N × N × N
grid in momentum space, solving ∇ × A(k) = j(k) in
the inverse Fourier domain to obtain the Berry connec-
tion [37]. The computed invariant converges quickly to 1
as the discretization N becomes large, e.g. h− 1 ≈ 10−6

at N = 70, R = 4 (see also Figs. 5, 4). We also see quick
convergence of the band gap when increasing R, observ-
ing quantitative agreement within 10% for all 4 ≤ R ≤ 32
and within 1% for all 8 ≤ R ≤ 32.

EDGE MODES OF THE DIPOLAR FLOQUET
HOPF INSULATOR

In addition to its linking number invariant, the Hopf
insulator’s edge modes represent one of its key signa-
tures, and crucially, one which can be experimentally
probed. Up to now, these edge modes are only expected
to appear at boundaries that are smooth at the scale of
the lattice length, which act as a continuous variation of
the two-band momentum-space HamiltonianH(k) across
the boundary region. In this case, the Hopf insulator’s
nontrivial homotopy classification requires a gap closing
in any edge between the Hopf insulator and the trivial
insulator. Nevertheless, gapless edge modes have been
observed numerically for ‘sharp’ boundaries (i.e. open
boundary conditions) [37] and moreover, for the (001)-
edge, were even shown to be robust to certain perturba-
tions [40].
Meanwhile, recent work [45] has shown that the Hopf

insulator’s classification can be stabilized to higher bands
by a certain crystalline symmetry,

JH(k)∗J−1 = −H(k), (22)

where JJ∗ = −1, although its classification is reduced to
a Z2 invariant for band number greater than 2. This sym-
metry is in fact automatically satisfied in translationally-
invariant two band systems (taking J = σy), and can

generally be viewed as the composition of inversion and
particle-hole symmetries.
Interestingly, we observe that – despite involving inver-

sion symmetry – this crystalline symmetry is also obeyed
at the edge of a two-band system, in the specific case of a
sharp boundary (open boundary conditions). To see this,
note that open boundary conditions are equivalent to an
infinite delta function potential barrier at the edge of the
system, Hedge = ρσzδz, ρ → ∞, where σz acts on the
sublattice degrees of freedom. In momentum space, this
potential induces real all-to-all couplings between differ-

ent values of kz, H
k,k′

edge = ρσzδkx,k′

x
δky,k′

y
. This is now

easily seen to obey Eq. (22) with J = σy.
This observation suggests that the edge modes pre-

viously observed at sharp boundaries of the Hopf insu-
lator are in fact protected by this ‘unintentional’ crys-
talline symmetry, and are therefore not robust to pertur-
bations that break the symmetry. To test this, we solve
for the (100)-edge modes of the dipolar Hopf insulator
via exact diagonalization for three different edge termi-
nations: sharp, sharp with a symmetry-breaking pertur-
bation, and adiabatic. We observe three qualitatively
distinct spectra [Fig. 6(a-c)]. The sharp edge hosts a
linear energy degeneracy, consistent with previous stud-
ies [37, 40]. To break the crystalline symmetry, we add
a site-dependent chemical potential µv✶ localized on the
two unit cells v nearest the edge. This perturbation gaps
the edge mode, supporting our conjecture that the sharp
edge modes of the Hopf insulator are in fact crystalline-
symmetry-protected [74].
Finally, we consider smooth boundaries between the

Hopf insulator and the trivial insulator. To construct
smooth boundaries, we take the hoppings to be constant
throughout the lattice, while an x-dependent staggered
chemical potential µxσz tunes the Hamiltonian between
the trivial phase at each end of the lattice and the Hopf
insulating phase in the center. This interpolation oc-
curs smoothly over two ‘edge regions’ on either side of
the Hopf insulating phase, consisting of ∼ 20 lattice sites
each. Shown in Fig. 6(c), these smooth edges also fea-
ture gapless edge modes. Importantly, the gaplessness of
these edge modes is robust to any smooth perturbation
to the lattice, including a ‘smoothed’ version of the site-
dependent chemical potential that was observed to gap
the sharp edge mode [Fig. 6(d)].

EXPERIMENTAL PROPOSAL

We now turn to our central result: a detailed blueprint
for realizing the dipolar Hopf insulator using ultracold
polar molecules. An explosion of recent experimental
progress has led to the development of numerous pos-
sible molecular species [3–5, 7, 17], but for concreteness
(and to demonstrate that the requisite separation of en-
ergy scales can be quantitatively realized), here we focus
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FIG. 6. Spectra for the (100)-edge of the Hopf insulator along the diagonal ky = k, kz = π + k, calculated from the effective
Hamiltonian in Eq. (9). Color indicates a mode’s mean x-position, from red/light gray (localized at left edge), to black (bulk),
to blue/dark gray (localized at right edge). Dashed lines mark the bulk band gap. A sharp edge (open boundary conditions)
respects the symmetry Eq. (22) and leads to a gapless Dirac cone spectrum (far left). Adding a symmetry-breaking perturbation
– in this case, a chemical potential on the two sites nearest the edge – gaps the Dirac cone (left center), demonstrating the
non-adiabatic edge modes’ lack of protection. In the adiabatic limit with edge termination smoothed over ∼ 20 lattice sites,
the edge spectrum is again gapless (right center). However, the Hopf invariant now protects the edge modes against all smooth
perturbations to edge, including a smoothed bump in the chemical potential in the edge region (far right). For given transverse
momenta ky, kz, the spectrum is calculated by first Fourier transforming the Hamiltonian along the y- and z-directions, and
then performing exact diagonalization on the remaining 1D Hamiltonian. Sharp/smooth edge spectra are calculated for a
lattice with 80/160 unit cells in the x-direction, and hoppings are truncated at a range R = 8. As a check on the high-
frequency approximation leading to the effective Hamiltonian, Eq. (9), we also perform the same computation for the exact

Floquet Hamiltonian, HF = i log
(

T exp
(

−i
∫ 2π/Ωxy

0
H(t) dt

))

, at driving frequencies Ωxy = 25 tnn, Ωz = 600 tnn, and observe

qualitatively identical edge spectra.

on 40K87Rb [17, 19–23].
We begin with the geometry and rotational level dia-

gram illustrated in Fig. 1. The 3D optical lattice is gener-
ated using four pairs of counter propagating beams, two
forming the xy-lattice and two forming the A and B sub-
lattices in the z-direction. For experimental convenience,
we envision the two sublattices to be formed by beams
with orthogonal linear polarizations of light. In this case
a birefringent mirror can control the relative phase be-
tween the two reflected beams, which in turn determines
the separation between sublattices.
To realize the rotational level diagrams of Fig. 1, we

first propose to tune the rotational states |1, 0〉 and |1, 1〉
of all molecules to be approximately degenerate using
applied DC electric and magnetic fields, oriented in the
z-direction with amplitudes 1650 V/m and -490 G respec-
tively [75]. The degeneracy between the |1, 0〉 and |1, 1〉
states, and, in turn, the sublattice symmetry between
the A and B planes, can then be broken by using differ-

ent intensities of light to form each sublattice. Owing to
the AC polarizability of 40K87Rb, the lattice beams not
only trap the molecules in the designated geometry, but
also induce mJ -dependent shifts in the molecules’ rota-
tional states proportional to the beams’ intensities [24].
The individual intensities, IA and IB , can therefore be
tuned such that the transitions |1, 0〉A ↔ |0, 0〉A and
|1, 1〉B ↔ |0, 0〉B are near-resonant with each other, yet
off-resonant with all other transitions. Specifically, we

calculate that x-polarized light with intensities IA =0.43
kW/cm2 and IB =0.54 kW/cm2 leads to the desired
near-resonance, with an energy gap δ ∼ 5 kHz to the
nearest rotational state outside the prescribed doublets.
Energy levels are calculated as in Ref. [24], and we as-
sume the x- and y-lattices are formed with z-polarized
light of intensity .5 kW/cm2. The molecule 40K87Rb has
a rotational splitting ∆ = 2.2 GHz and a measured dipo-
lar interaction strength t ∼ 50 Hz when trapped in a 3D
optical lattice with 1064nm light [22]. This scheme there-
fore naturally leads to the desired separation of energy
scales t ≪ δ ≪ ∆.
Energy levels in hand, let us turn to the implementa-

tion of the Floquet modulations (Fig. 7). To realize the
xy-plane modulation, we can again rely upon the AC po-
larizability, using a two-dimensional intensity-modulated
standing wave to directly tune the molecules’ energy lev-
els non-uniformly in both space and time. The energy
shifts of the |1, 0〉A and |1, 1〉B states can be made equal
[necessary to ensure the modulation is of the form of
Eq. (13)] by tuning the polar angle of the light’s polariza-
tion to θ = .96 rad, owing to the anisotropic polarizability
of 40K87Rb [24]. An additional stationary standing wave
on the even sites can cancel the site-dependent non-zero
average of the modulation, preserving translation invari-
ance of the effective chemical potential. At a modulation
frequency, Ωxy ∼ 500 Hz, much greater than the dipolar
interaction strength, tnn ∼ 50 Hz, the optimal modu-
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ε̂ = ẑ

ε̂ = x̂+ iŷ

FIG. 7. Schematic of the proposed experiment, highlight-
ing the mechanisms for Floquet modulation. The lattice
(light gray waves) is formed by three standing waves of laser
light (beams not pictured). Stable electric field gradients
are controlled an electrode system of tungsten rods (dark
gray cylinders) and transparent plate electrodes (tan rect-
angles), while coils (brown spirals) generate a homogeneous
magnetic field [76]. The xy-Floquet modulation is gener-
ated by z-polarized lasers forming a standing wave in the
(x̂ ± ŷ)-directions (large orange arrows, left and right; po-
larization in small black arrows), using the AC polarizability
of 40K87Rb. The z-Floquet modulation is generated by a
circularly-polarized laser in the z-direction (large purple ar-
row, bottom; polarization in small black arrow), which forms
an intensity gradient along its direction of propagation due to
the natural transverse spreading of a Gaussian laser beam.

lation strength gxy = 1.2 requires an intensity ∼ 10−2

kW/cm2. An additional space-independent modulation
of the two beams enables a difference between the two
sublattices’ modulations, achieving a nonzero gxySL.

This method does not work for the z-gradient Flo-
quet modulation, as a z-gradient in the light’s intensity
is necessarily accompanied by a polarization in the or-
thogonal xy-plane. In addition to shifting the molecules’
energy levels, such a polarization would also induce mix-
ing between rotational states, contaminating the desired
hopping phase structure. Rather, we propose to achieve
the z-gradient Floquet modulation by combining two in-
dependent sources of modulation [Fig. 8(c-e)]. First,
we apply an oscillating electric field gradient of order
δE/δz ∼ 1 kV/cm2. This gradient alone is not sufficient
to realize the modulation of Eq. (13), because it shifts the
energies of the the |1, 0〉A and |1, 1〉B states differently,
owing to their different polarizability. We therefore com-
bine this with a circularly-polarized beam tuned near,
but off-resonant with, the 3Π0+ electronic excited state

of 40K87Rb, which shifts the energy levels of the low-
lying rotation states of interest via the AC Stark shift
[Fig. 8(a-c)]. We imagine the beam to be traveling in
the z-direction, with the natural transverse spreading of
the beam along its propagation axis giving rise to a z-
gradient in intensity δI(z)/δz ∼ I(z)/z [77]. To this
end, we perform calculations of the AC polarizabilities
of 40K87Rb with circularly-polarized light as a function
of detuning from the b3Π0+ state [Fig. 8(b)] using ex-
perimentally adjusted potential energy curves [78, 79] as
well as parallel and perpendicular electronic polarizabil-
ities [24], which we expand on in detail in the following
section. For σ+ light, the polarizabilities have poles at
the resonant transition frequency to the excited J = 2
state, which allows the corresponding energy shifts to be
precisely controlled by the detuning over a large range.
Modulating the detuning about resonance (as a step func-
tion, to avoid any resonance-induced decay) precisely re-
alizes the desired Floquet modulation. Quantitatively,
we find that detunings ∆ν ∼ 1 GHz lead to AC polariz-
ibilities α/h ∼ 1 kHz/(W/cm2), which in turn requires
intensity gradients δI/δz ∼ 5 W/(µm cm2) to achieve
the optimal Floquet parameters at modulation frequency
Ωz ∼ 5 kHz ≫ Ωxy. At a distance z ∼ 100µm, the de-
sired intensity gradient is thereby achieved with a modest
intensity I ∼ .5 kW/cm2 and power P ∼ I(z)× z2 ∼ 50
mW [77].

We do not expect our proposed Floquet modulations
to introduce substantial heating to the molecular system
for a number of reasons. First, the modulations occur at
a frequency significantly faster than the Hamiltonian en-
ergy scales, which exponentially suppresses many-body
energy absorption [80]. Second, since the Hopf insula-
tor’s topology is characterized via its single-particle band
structure, one only needs to excite a small number of
molecules at any given time. At this single-particle level,
the primary concern turns to heating from parametric
processes associated with the laser intensity modulation.
In this case, one can again utilize a separation of energy
scales, by choosing the frequencies of the Floquet mod-
ulation to be far removed from any trap resonances (i.e.
the trap frequency and its harmonics) such that no para-
metric heating will take place [24, 81]. Typical values of
the trap frequency for 40K87Rb experiments are ∼20 kHz
with a quality factor ∼ 20 [81]; resonances are therefore
easily avoided both in our simple order-of-magnitude esti-
mate, Ωz ∼ 5 kHz and Ωxy ∼ 500 Hz, as well as our more
quantitative estimate in Fig. 6, using Ωz = 600tnn ≈ 30
kHz and Ωxy = 25tnn ≈ 1.25 kHz.

The edge modes of the dipolar Hopf insulator can be
probed experimentally via molecular gas microscopy [82,
83]. Here, a tightly-focused beam applied near the edge
induces local differences in the molecules’ rotational split-
tings, enabling one to spectroscopically address and ex-
cite individual dipolar spins. The extent to which such
an excitation remains localized on the edge during sub-
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sequent dynamics can be read out using spin-resolved
molecular gas microscopy. For polar molecules separated
by a distance of 1µm, single-molecule addressing of the
|0, 0〉 → |1, 0〉 transition has been estimated to require a
beam of radius 1µm and a reasonable power 10µW [83].
The width of the edge region, typically large due to a
wide harmonic confining potential, can be tuned via a
number of recently developed techniques, including: box
potentials [84], additional ‘wall’ potentials [85], or optical
tweezers [86], allowing one to realize the three scenarios
depicted in Fig. 6.

DETAILS ON AC POLARIZABILITIES FOR
z-DIRECTION MODULATION

To effectively implement the Floquet modulation along
z-direction, we use circularly polarized light tuned near
a narrow transition, which allows light shifts to be
precisely controlled by the detuning from the transi-
tion. Specifying to the molecule 40K87Rb, we choose the
dipole-forbidden transition |X1Σ+, v = 0, J = 1,mJ〉 →
|b3Π0+ , v = 0, J = 2,mJ + 1〉 with 1028.7 nm [87] σ+

light where mJ = 0 for the A sublattice and 1 for the B
sublattice. With relatively weak laser intensity (on the
order of W/cm2), the light shift can be characterized by
the AC polarizability of the molecular state of interest.
The polarizability is calculated from two different con-
tributions. The first and more important contribution
comes from the resonant transition which has a strong
dependence on the detuning, and the second contribution
comes from all other transitions that has negligible de-
pendence on the detuning in the range we are interested
in. Here we assume the detuning is much larger than the
spacings between |X1Σ+, v = 0, J = 1,mJ〉 states with
mJ = 0 and ±1, and these spacings are much larger than
the light shifts.

To characterize the contributions from the resonant
transition, we follow the recipe in Refs. [88–90]. The
generally complex dynamic polarizability for alkali-metal
molecule in a rovibrational state of the ground X1Σ+

potential is given by

α(hν, ε̂) =

1

ε0c

∑

f

Ef − Ei − ihγf/2

(Ef − Ei − ihγf/2)2 − (hν)2
|〈f |dR̂ · ε̂|i〉|2

(23)

ε̂ and ν are the polarization vector and the frequency of
the light, respectively, c is the speed of light, ε0 is the
electric constant, R̂ is the orientation of the interatomic
axis, and d is the dipole operator. i denotes the rovibra-
tional state |i〉 of interest with energy Ei in the ground
X1Σ+ potential, and the summation over f denotes the
summation over all rovibrational states |f〉 other than i

with energies Ef in all electronic potentials, and γf de-
scribe the natural linewidths of |f〉.
When the laser frequency is very close to the nar-

row dipole-forbidden transition, the most significant con-
tribution comes from that transition which has a pole
at the resonant frequency and weakens as the inverse
function of the detuning. We treat all transitions from
|X1Σ+, v = 0, J = 1,mJ〉 to rovibrational states in the
b3Π0+ potential using Eq. (23). The largest contribution
by far comes from the transition to the excited v = 0
state due to the similarity of its radial wavefunction to
the ones in the ground potential. We use the experimen-
tally adjusted potential energy curves for both the ex-
cited b3Π0+ state [78] and the ground X1Σ+ state [79],
and a spin-orbit modified transition dipole moment be-
tween them [91]. Since the natural linewidths of the low-
est rovibrational states in the b3Π0+ potential are much
smaller (on the order of kHz [87]) then the detunings we
are interested in (on the order of GHz), we take γf = 0.
The background contributions from all other transi-

tions have negligible frequency dependence close to the
1028.7 nm transition due to the large detunings from the
corresponding excited states. Thus we treat the back-
ground polarizabilities as constants throughout the de-
tuning range. We use the method in Ref. [92] with ex-
perimentally determined electronic parallel and perpen-
dicular polarizabilities [24] to calculate the background
polarizabilities at 1064 nm and assume them to be the
same near the 1028.7 nm transition. More specifically, we
use α‖/h = 10.0(3) × 10−5 MHz/(W/cm2) and α⊥/h =
3.3(1) × 10−5 MHz/(W/cm2) determined for the wave-
length of 1064 nm and obtain the background polariz-
abilities αbg,|1,0〉/h = 4.64 × 10−5 MHz/(W/cm2) and
αbg,|1,1〉/h = 5.98×10−5 MHz/(W/cm2) for σ+ polariza-
tion.
Finally, we add the two parts together to arrive at the

total AC polarizabilities shown in Fig. 8(b).

CONCLUSIONS

We have completed our specification of how Hopf insu-
lating phases can be realized and detected in near-term
experiments on ultracold polar molecules. As one of the
few known topological insulators to fall outside both the
traditional tenfold way classification as well as its exten-
sion to crystalline symmetries, the Hopf insulator is a
particularly interesting phase of matter with many open
questions eager for experimental input. For instance,
we have proposed using the presence of a gapless edge
mode at a smooth boundary, probed by spectroscopy,
as a robust experimental diagnostic of the Hopf insulat-
ing phase. Recent work suggests that at the (001)-edge
this mode should feature a nonzero Chern number associ-
ated with an unusual bulk-to-boundary flow of Berry cur-
vature [47]; numerous techniques to measure the Chern
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FIG. 8. Depiction of the two-component driving scheme used to implement the z-gradient Floquet modulation. (a) One
component is realized using circularly-polarized (σ+) light tuned near, but off-resonant with the electronic transitions |X1Σ, v =
0, J = 1,mJ〉 → |b3Π0+ , v = 0, J = 2,mJ+1〉, with detuning ∆ν. Here X1Σ, v = 0 denotes the electronic ground state manifold
of the molecule, and b3Π0+ , v = 0 the relevant electronic excited state manifold. This induces energy shifts in the electronic
ground states of interest, |1, 0〉A and |1, 1〉B , proportional to the AC polarizability α of 40K87Rb at the particular detuning.
(b) AC polarizabilities under circularly polarized σ+ light as a function of the detuning ∆ν, calculated from first principles
(see the Supplemental Material for details). Red dotted lines label two detunings that are oscillated between to achieve a step
function Floquet modulation. Red arrows indicate the corresponding polarizibilities. (c) Simplified depiction of the detuning
and resulting polarizibilities as a function of time t. In the dipolar simulations, we use a higher parameter step function,
Eq. (19), which allows greater flexibility to optimize the band gap of the Hopf insulating phase. The AC light intensity is held
constant in time (not depicted). (d) The other component of modulation consists of an electric field gradient δE oscillated in
time according to the same step function. The (DC) polarizibilities αE of the |1, 0〉A, |1, 1〉B states under this field are constant
in time. (e) The polarizibilities and field amplitudes in (c-d) multiply to produce oscillating energy shifts µz (dotted purple)
of the |1, 0〉A, |1, 1〉B states. While each individual component of the z-gradient modulation produces a different magnitude
shift for each state owing to the states’ differing polarizibilities, the linear combination of both components can be chosen to
produce equal shifts.

number have been developed [93–96], which may allow
one to detect this physics. Looking to the future, an ex-
perimental Hopf insulator would be a vital resource in
the search for a bulk response characterized by the Hopf
invariant (analogous to the Hall effect in a Chern insula-
tor), which so far remains unknown.

Our blueprint may also provide a basis from which to
realize various extensions of the Hopf insulator. In our
proposal, we have already seen that polar molecules can
realize certain crystalline symmetry-protected extensions
of the Hopf insulator [45, 47], which can be detected inde-
pendently from the ordinary (non-crystalline) Hopf insu-
lator by looking at sharp edge terminations that respect
the crystalline symmetry. Polar molecules might also be
used to realize driven extensions of the Hopf insulator,
for instance, the Floquet Hopf insulator [48]. Here, one
subjects the system to periodic driving at a time-scale
comparable to the hopping time, which can lead to a
new Floquet Hopf insulating phase, characterized by a
❩ × ❩2 pair of topological invariants that underlie an
even richer spectrum of edge mode behavior than in the
non-driven case. The Floquet Hopf insulator can be re-
alized by strobing a flat band static Hopf insulator with
periodic π/2-pulses of a staggered chemical potential [48]
– the latter would be easily realized via a∼100 Hz oscilla-
tion of the lattice light intensity. Realizing a sufficiently

flat band Hopf insulator is a less trivial task, but the
bandwidth could be optimized via standard optimization
techniques depending on the specific set of available ex-
perimental parameters. More speculatively, a flat band
Hopf insulator might also be a natural launching ground
into many-body generalizations of the Hopf phase (much
as a flat band Chern insulator is a key ingredient for the
fractional Chern insulator [97]), which are thus far unex-
plored territory.

In the context of polar molecules, our work applies a
number of tools developed for controlling and cooling po-
lar molecules towards quantum simulation. We hope that
some selection of these tools may find broader utility. For
instance, our use of a sublattice-dependent lattice light
intensity to realize (pseudo)spin-orbit coupling via the
∆m = 1 component of the dipolar interaction may prove
fruitful in realizing other topological phases as well. As
a simple example to demonstrate wider applicability, the
exact same form of spin-orbit coupling (tAB

r
∼ eiφ) in

2D gives rise to Chern insulating physics [67]. In polar
molecule setups limited by the ability to fill only a (ran-
dom) fraction of the full set of lattice sites, the Chern
insulator might therefore provide a disorder-robust [68]
stepping stone to realizing the Hopf insulator. We have
also provided implementations of two independent Flo-
quet engineering schemes: an even-odd patterning utiliz-
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ing the molecules’ AC polarizability under lattice light,
and a truncation of the power-law dipolar interaction
in the z-direction via a single circularly-polarized Gaus-
sian laser beam. Floquet engineering has proven critical
in other quantum simulation platforms, and these tech-
niques may serve as building blocks for its use in polar
molecules. At a higher level, our work provides yet an-
other piece of evidence for the power of dipolar interac-
tion, and the potential of polar molecules as a quantum
simulation platform.
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