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Controlling charge density order in 2H-TaSe2 using a van Hove singularity
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We report on the interplay between a van Hove singularity and a charge density wave state in 2H-TaSe2. We
use angle-resolved photoemission spectroscopy to investigate changes in the Fermi surface of this material under
surface doping with potassium. At high doping, we observe modifications which imply the disappearance of the
(3 × 3) charge density wave and formation of a different correlated state. Using a tight-binding-based approach
as well as an effective model, we explain our observations as a consequence of coupling between the single-
particle Lifshitz transition during which the Fermi level passes a van Hove singularity and the charge density
order. In this scenario, the high electronic density of states associated with the van Hove singularity induces a
change in the periodicity of the charge density wave from the known (3 × 3) to a new (2 × 2) superlattice.
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I. INTRODUCTION

Because of the fundamental importance of the electrons
in the vicinity of the Fermi surface (FS) for low-energy ex-
citations, the shape of this surface has a significant impact
on the properties of metals [1]. This is particularly evident
when, as a function of some external parameter like pressure
[2–4], temperature [5–7], magnetic field [8–10], or doping
[11–13], the FS undergoes a change of topology, resulting
in a Lifshitz transition (also known as electronic topological
transition) [14]. In contrast to the more conventional phase
transitions described by the Landau theory, Lifshitz transitions
do not involve symmetry breaking but still lead to singulari-
ties in many observables [15], because changes of topology
of the equi-energetic surface are accompanied by van Hove
singularities in the electronic density of states (DoS).

The impact of van Hove singularities is especially sig-
nificant in low dimensions, d � 2, where divergences in the
DoS are possible at some of the dispersion critical points.
This is the case for saddle points for d = 2 which lead
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to a logarithmic divergence in the DoS [16,17], the pres-
ence of which is often implicated in promoting new orders
in two-dimensional and layered materials [18–34], includ-
ing high-temperature superconducting cuprates [18,23,24],
topological kagome superconductors [25–28], and magic-
angle twisted bilayer graphene and other graphene materials
[29–34].

Here, we study the impact of a Lifshitz transition and the
associated van Hove singularity on a charge density wave
(CDW)—a correlated ordering of electrons which form a
standing-wave pattern accompanied by a periodic distortion
of the atomic lattice—by surface doping bulk 2H-TaSe2 with
potassium. Using angle-resolved photoemission spectroscopy
(ARPES), we map out directly the electronic dispersion in
its low-temperature commensurate (3 × 3) CDW, that is, one
with a superstructure described by tripling of the in-plane
primitive lattice vectors of the uncorrelated state. We then ob-
serve how it changes as the previously unoccupied electronic
states in the topmost layers are filled so that the chemical
potential crosses a saddle point in the dispersion. Based on
calculations of generalized susceptibility within a minimal
two-band model and effective description of the coupling
between the saddle points, we conclude that the change in
FS topology drives a change in the CDW from a (3 × 3)
to a (2 × 2) order. Such a scenario supports a theoretical
prediction from almost half a century ago [20] that suggested
involvement of the van Hove singularities in the formation of
the CDW in TaSe2 but was later shown not to be relevant
for the (3 × 3) phase. It also demonstrates the potential of
engineering many-body phases using van Hove singularities.
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FIG. 1. Dispersion and topology of electronic bands of 2H-
TaSe2. In the top left, the quasi-2D Fermi surface of undoped
2H-TaSe2 is shown within the bulk Brillouin zone (hexagonal prism),
as calculated with density-functional theory (see Appendix A), with
the blue and green surfaces marking two different bands. The change
of the dispersion and topology of these two bands with doping is
shown in the center for kz = 0 for ε = ε0 (purple contours; also
shown within the bulk Brillouin zone), as well as for ε = εLT = ε0 +
0.05 eV (orange) and ε > εLT (yellow). The same contours are shown
again on top of the gray regular hexagon, representing the projected
two-dimensional Brillouin zone, below the dispersion. Also shown
are arrows depicting representative qCDW wave vectors for the (3 × 3)
[green], (2 × 2) [cyan], and (2

√
3 × 2

√
3)R30◦ [blue] charge density

wave orders. The inset in bottom left shows the top and side views
of the 2H-TaSe2 lattice structure. Ta and Se atoms are marked with
blue and yellow spheres, respectively, and the right rhombic prism
indicated with the black solid lines is the unit cell.

II. TOPOLOGY OF ELECTRONIC BANDS OF 2H
TANTALUM DISELENIDE

2H-TaSe2 consists of weakly coupled layers, each of which
is made of a plane of tantalum atoms sandwiched between
two planes of seleniums. The consecutive layers are rotated
by 180◦ and stacked so that the transition metals are placed
on top of each other, as shown in the inset in the bottom left
of Fig. 1. The material exhibits a second-order transition into
a near-commensurate (3 × 3) CDW phase at 122 K, followed
by a first-order transition which locks the charge order into
the (3 × 3) superlattice at 90 K [35,36]. As suggested by the
high critical temperature of the transition into the commen-
surate CDW, electronic band reconstruction in this phase is
quite strong, with the CDW gap 50−100 meV in high-quality
crystals [37,38]. For this reason, 2H-TaSe2 serves as a model
to understand the electronic properties of the isostructural
and isoelectronic 2H-NbSe2, 2H-TaS2, and 2H-NbS2 in which

charge order is weaker so that only the incommensurate phase
appears [39,40] (in NbS2 the CDW order is so fragile that it
has only been observed in its two-dimensional limit [41,42]),
as well as the mechanisms behind CDW phases in general.

The driving force behind the (3 × 3) CDW was long de-
bated, partly due to incorrect predictions of the position of
the Fermi level [36,43–45]. Experimental and computational
studies have established that the Fermi surface, shown in the
top left of Fig. 1, consists of �- and K-centered tube-shaped
hole sheets from the first band (blue) and M-centered elec-
tron dog-bone sheets from the second (green) and that the
CDW is driven by a combination of Fermi-surface nesting
and electron-phonon coupling [37,38,46,47]. Because of the
quasi-two-dimensional nature of the FS, in what follows we
focus on the plane for which the out-of-plane component of
the wave vector, kz, is constant (we choose kz = 0). This al-
lows us to parametrize the two relevant bands as surfaces with
energy εi ≡ εi(kx, ky), (i = 1, 2), dependent on the in-plane
wave vector k = (kx, ky), and shown in the right of Fig. 1
using the same colors, green and blue, as for the bulk FS. The
FS then becomes a Fermi contour (FC), indicated in purple
solid lines on top of the full FS in the top left as well as on
top of the dispersion surfaces εi and the gray regular hexagon
below which represents the two-dimensional Brillouin zone of
TaSe2. We denote the Fermi energy of the bulk as ε = ε0.

By inspecting the green dispersion surface, ε2, it can be
seen that an increase in the Fermi energy leads to a change
of the topology of the Fermi contour. As the energy increases
above ε0, the � pocket decreases slightly. At the same time,
the dog-bone pockets grow and connect with each other at en-
ergy εLT ≈ ε0 + 0.05 eV and momentum close to 1

2 K, which
determines the position of saddle points of the green surface,
leading to energy contours as shown in orange in Fig. 1. For
energies ε > εLT, the connected dog bones split to form an-
other set of K-centered pockets as well as one more centered
around � (contours shown in yellow). Our work is motivated
by the presence of this saddle point, with the potential to tune
the Fermi level through a Lifshitz transition—change in the
topology of the Fermi contour from the three dog-bone pock-
ets to one �- and one K-centered pockets—and the question
of how it impacts the CDW order.

III. ARPES SPECTRA OF SURFACE-DOPED 2H-TaSe2

In order to study the electronic band structure of 2H-TaSe2,
we use angle-resolved photoemission spectroscopy. Our mea-
surements were taken at the Diamond Light Source (I05)
and Advanced Light Source (MERLIN) using photons with
energy of 80 eV (see the Supplemental Material (SM) [48]
for further details of the ARPES measurements). The map
of the Fermi surface as measured at temperature T = 130 K
is shown in Fig. 2(a), clearly reflecting the single-particle
Fermi contour at ε = ε0 shown in purple in Fig. 1. (For direct
comparison, in all panels of Fig. 2 we draw in solid red lines
the theoretical band cuts obtained using the single-particle
tight-binding model discussed in Sec. IV.) When measured at
temperature T = 10 K, Fig. 2(b), the Fermi surface undergoes
reconstruction due to the formation of the (3 × 3) charge
density wave [37,38,47,49]: (i) the circular pockets around K
are gapped; instead, a set of six triangular features appears
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FIG. 2. Angle-resolved photoemission spectra of 2H -TaSe2: (a), (f), (k) as grown and at temperature T = 130 K; (b), (g), (l) at temperature
T = 10 K and without surface doping; (c), (h), (m) after the first, (d), (i), (n) second, and (e), (j), (o) third dose of surface potassium deposition
at T = 22 K. The top row [panels (a)–(e)] shows constant-energy maps at the Fermi level; the middle row [panels (f)–(j)] shows spectra along
the path crossing the saddle point at 1

2 K as indicated in green dashed lines in panels (a)–(e); the bottom row [panels (k)–(o)] shows spectra
along the path crossing the saddle point, as indicated in orange dashed lines in panels (a)–(e). The blue solid lines indicate the Brillouin zone
boundaries, and the red solid lines show bands as predicted by our tight-binding model. The position of the Fermi energy εF for each case is
provided above the constant-energy maps and indicated with the dashed blue line in panels (f)–(o). ARPES spectra were symmetrized with
respect to kx = 0 and ky = 0 for better comparisons with calculations (see the SM for a brief discussion of this process [48]); they were all
plotted using the same intensity scale with color mapping as shown in the inset of panel (a).

around each Brillouin zone corner; (ii) the dog bones become
more rounded and develop gaps along their contour due to
Bragg scattering caused by the CDW periodicity; (iii) the �

pocket remains unaffected. Because the CDW superpotential
is much weaker than the original periodic lattice potential, the
spectral intensity of CDW-folded bands is much weaker than
the original, “main” bands. This allows us to track the latter
and determine that the connectivity between the dog bones
remains unchanged upon CDW formation so that the presence
of a Lifshitz transition can still be anticipated if the Fermi
energy could be increased.

In order to tune the Fermi energy, we deposit potassium
atoms on the surface of our samples at a temperature of 22 K.
The small electron affinity of potassium makes it a strong elec-
tron donor to most surfaces and leads to n doping of the top
layers of the crystal (the low temperature makes intercalation
unfeasible). At the same time, surface sensitivity of ARPES
means that only the very top layers are probed experimentally
[50–52] (2H-TaSe2 unit-cell height is c = 1.228 nm [53] as
compared to the electron escape depth l ∼ 1 nm [54]). In

Figs. 2(c)–2(e), we show the Fermi surfaces as measured
after three consecutive potassium depositions (the position
of the Fermi energy εF after each deposition is estimated
based on the effective model described in Sec. IV). After
the first potassium dose, panel (c), spectral features around
the K points disappear, while the most intense signal is from
the states around �. Importantly, connectivity between dog
bones remains the same as in panels (a) and (b), implying
that the Fermi level is still below the dispersion saddle points.
Moreover, similar gaps along a dog-bone contour can be
identified in panels (b) and (c), indicating persistence of the
(3 × 3) CDW. Following a second potassium dose, panel (d),
broadening of the dog bones indicates that the Fermi level is
in the close vicinity of the saddle points. While it is difficult
to determine whether the change of topology has already
occurred at that point, after the third potassium dose and an
additional shift of the Fermi level, panel (e), connectivity of
the Fermi surface has changed: merging of the dog bones leads
to the formation of a circular pocket around K, as well as
one around �. Note that weak-intensity features connect the

013088-3



W. R. B. LUCKIN et al. PHYSICAL REVIEW RESEARCH 6, 013088 (2024)

FIG. 3. Closeup on the ARPES Fermi-level maps for 2H-TaSe2

in the vicinity of the Brillouin zone corner K [as marked in
Figs. 2(b) and 2(e)], (a) before surface doping with potassium and
(b) after the third dose of potassium deposition. Black arrows mark
the signature of the C6 symmetry in panel (a). The spectra have
been taken at the temperature T = 10 K and T = 22 K for panels
(a) and (b), respectively, below the transition temperature of the
commensurate (3 × 3) charge density wave.

pocket around � to pockets around K—we assign these to the
new order we discuss in the rest of the text.

To further confirm that after the third dose of potassium the
Fermi level moved above the saddle point, for each of the pan-
els (a)–(e), we show in (f)–(j) the measured band dispersion
along the momentum path perpendicular to the �-K direction
and passing through the location of the saddle point, as indi-
cated with the green dashed lines. In panels (f)–(h), the higher
energy band is not entirely below the Fermi level (note that
the weaker intensity, M-shaped band in panel (g) is due to the
(3 × 3) CDW [38]). In contrast, in panels (i) and (j) this band
is fully below the Fermi level, which demonstrates that the
Lifshitz transition has occurred. The same can be seen in the
bottom row of panels (k)–(o), in which we show the measured
band dispersion along the K-� direction passing through the
saddle point. This is the direction perpendicular to that shown
in panels (f)–(j) and along which the dispersion displays oppo-
site curvature. In panels (n) and (o), showing dispersion after
the second and third potassium deposition, respectively, one
can identify spectral features indicating another band in the
vicinity of the Fermi level. This again implies that the Fermi
level has crossed the saddle point (we comment further on the
ARPES maps and the Lifshitz transition in the SM).

The spectra in all but the first column of Fig. 2 have
been taken at a temperature significantly below the transition
temperature of the commensurate (3 × 3) CDW, Tc ≈ 90 K
[35,36]. This allows us to study the interplay between the
Lifshitz transition, driven by the single-particle electronic
band structure, and the charge density order present in the
material. In Fig. 3 we compare the ARPES Fermi-level maps
in the vicinity of the Brillouin zone corner K for a pristine
2H-TaSe2 surface in the (3 × 3) state (a), as well as the surface
after the final deposition of potassium (b) [zoom-in of parts
of the maps in Figs. 2(b) and 2(e), respectively]. Within the
single-particle picture, the symmetry of the band dispersion
around K is C3. In panel (a) of Fig. 3, this is reflected in
the threefold symmetry of the outer band corresponding to
the dark blue intensity contour (interrupted in some places

by CDW-induced gaps). The inner band, however, displays a
set of six weak-intensity features indicated with black arrows.
These features are also due to the (3 × 3) state, the wave
vector of which folds the two otherwise-inequivalent Brillouin
zone corners onto each other [38] and hence allows for a weak
sixfold rather than exclusively threefold symmetry [37,38].
After the third dose of potassium, panel (b), the C6 features in
the inner band disappear and only the C3 symmetry remains.
Because the Lifshitz transition alone cannot be responsible for
this change in symmetry, we conclude that the electronic order
has changed as a result of the Fermi-level shift and the (3 × 3)
CDW is no longer present. At the same time, modulation of
the photoemission intensity along the outer and inner bands in
Fig. 3(b) is indicative of new gaps in the electronic dispersion
incompatible with the single-particle picture. We compare
the intensity profiles along the inner band before and after
potassium doping in the SM.

IV. DISCUSSION

In order to understand the impact of doping and the Lifshitz
transition on the charge density order, we describe our system
using an effective two-band model based on the tight-binding
expansion due to the Ta sites only (as the transition-metal
d orbitals provide a predominant contribution to the bands
crossing the Fermi level) [37,38,55,56], with one orbital per
site. Because of the quasi-two-dimensionality of the bulk band
structure, we focus on the dispersion for a constant kz. For
simplicity, we choose kz = 0—the exact choice is, however,
not important, as the functional form of the model is indepen-
dent of kz, and its parameters are prescribed by experimental
data (we comment further on the importance of the out-of-
plane dispersion in the SM [48]). The essential features of
the band structure can be reproduced by keeping terms up to
next-nearest intra- and interlayer neighbors,

ĤTB(k) = f (t0, t1, t2; k)σ0 + f (t̃0, t̃1, t̃2; k)σx,

f (α, β, γ ; k) = α + 2β

[
cos kxa + 2 cos

kxa

2
cos

√
3kya

2

]

+ 2γ

[
cos

√
3kya + 2 cos

3kxa

2
cos

√
3kya

2

]
,

(1)

where σ0 is a 2 × 2 identity matrix, σx is the x Pauli matrix,
a = 3.43 Å is the lattice constant of 2H-TaSe2, t0 = 0.113 eV
is the Ta on-site energy, t̃0 = 0.184 eV is the direct inter-
layer coupling, and t1 = 0.073 eV (t̃1 = 0.029 eV) and t2 =
0.142 eV (t̃2 = 0.038 eV) are the nearest and next-nearest
intralayer (interlayer) couplings. We fixed our parameters
using a hybrid approach in which we fit the model to the
ARPES data below the Fermi energy and density-functional-
theory calculations above (see Appendix A for the details of
the latter). We have also tuned the on-site term t0 so that
εLT = 0. Our model provides the minimal description which
captures the topology of the Fermi contour as a function
of the Fermi level and allows us to investigate analytically
the saddle points located at k(n)

LT = R̂nπ/3[ 2π
3a + 4√

5a
δ, 0]T ,
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n = 0, 1, . . . , 5, where R̂θ is the operator of rotation by angle
θ and δ = t1+t̃1

6(t2+t̃2 ) � 1. While we find that introducing further
neighbors or including nonorthogonality corrections allows us
to fit the band structure better, the additional parameters com-
plicate the description of the saddle point without providing
new insight into the physics.

Following the approach developed in Refs. [57,58] and
previously applied, for example, to 2H-NbSe2 [59,60], we use
the Hamiltonian ĤTB(k) to approximate the electron-phonon
matrix element, gi

k,k+q, which describes scattering of an elec-
tron in band i from a state with wave vector k to a state in
the same band with wave vector k + q with the simultaneous
absorption (emission) of a phonon with wave vector q (−q),
using gradients of the electronic dispersion,

gi
k,k+q = [∇εi(k + q) − ∇εi(k)] · q

|q| , (2)

where we have ignored a constant prefactor. Moreover,
because formation of the charge density wave in 2H-TaSe2 in-
volves softening of the longitudinal acoustic phonon [40], we
have projected the electron-phonon coupling on the direction
of momentum transfer. Also, in the scheme of Refs. [57,58],
the symmetric form of the Hamiltonian ĤTB in Eq. (1) implies
that the interband electron-phonon coupling is strictly zero.

The knowledge of the electron-phonon coupling allows us
to compute the static generalized susceptibility,

D2(q, εF) =
∑

i

∫
BZ

dk
(
gi

k,k+q

)2 f [εi(k)] − f [εi(k + q)]

εi(k) − εi(k + q)
,

(3)

where, for a given Fermi energy εF, f [εi(k)] is the filling
factor of the state with energy εi(k) in band i and with
wave vector k, and the integral is over the two-dimensional
Brillouin zone. As peaks of D2(q, εF) provide information
about structural instabilities in the material [57,58,61], we
present the plots of D2(q, εF) for the high-symmetry direc-
tions �-K-M-� in Fig. 4(a). The curves for increasing εF

have been shifted for clarity, starting from εF = ε0 (purple)
to εF = ε0 + 0.25 eV (red). Two features persist across the
whole range of energies: (i) a broad peak in the vicinity of
2
3 M and (ii) a peak in the vicinity of 1

2 K. The former is
related to the (3 × 3) CDW [46,47]. Given the symmetry of
the ARPES constant-energy maps, which excludes consid-
erations of one-dimensional CDW, the latter would imply a
(2

√
3 × 2

√
3)R30◦ order with a wave vector that nests the

saddle points onto each other, as shown with the blue arrow
in the bottom right of Fig. 1 (ideal nesting occurs for δ →
0). Interestingly, another feature, strongly dependent on εF,
appears in D2(q, εF) at M, as highlighted in Fig. 4 by the
bright purple dashed oval. This lower peak which develops
for εF slightly above εLT [we show in black the curve for εF =
εLT + 0.075 eV which corresponds to the Fermi-level estimate
for Figs. 2(e) and 2(j)] but disappears for εF � εLT + 0.15 eV
suggests potential instability towards a (2 × 2) CDW. Such
order would also nest saddle points onto each other as shown
with the cyan arrow in Fig. 1 (again, ideal nesting takes place
for δ → 0), albeit in two groups of three.

Motivated by the symmetry breaking shown in Fig. 3, we
compare in Fig. 4(b) the Brillouin zones of the uncorrelated

FIG. 4. (a) Generalized static susceptibility D2(q, εF ) as a func-
tion of the Fermi level εF from εF = ε0 (purple) to εF = ε0 + 0.25 eV
(red) in steps of 0.0125 eV, along the high-symmetry Brillouin zone
directions. The curves have been shifted vertically for clarity. On the
right we indicate the curves corresponding to the Fermi energy of
the pristine material, εF = ε0, as well as for the Fermi energy at the
saddle point, εF = εLT. The curve for εF = ε0 + 0.125 eV = εLT +
0.075 eV, corresponding to the Fermi-level estimate for Figs. 2(e)
and 2(j), is shown in black. The bright purple dashed oval highlights
a susceptibility feature at M which appears in the energy range
∼0.1 eV above εLT. (b) Comparison of Brillouin zones of the un-
correlated phase (black) and the (3 × 3) (blue), (2

√
3 × 2

√
3)R30◦

(green), and (2 × 2) (red) superlattices. (c) Spectral function in the
vicinity of K computed at the energy ε0 + 0.125 eV for the (2 × 2)
CDW using the model described in Appendix B with broadening
η = 0.1 eV. The red lines depict the boundaries of the (2 × 2) su-
perlattice Brillouin zone.

phase (black) as well as the (3 × 3) (blue), (2
√

3 × 2
√

3)R30◦
(green), and (2 × 2) (red) CDW. Note that for both the (3 × 3)
and (2

√
3 × 2

√
3)R30◦ superlattices, the two originally in-

equivalent zone corners K and K ′ are folded onto �. In
contrast, they remain inequivalent for the (2 × 2) superlattice,
guaranteeing C3 symmetry of dispersions in their vicinity in
agreement with Fig. 3(b). In Fig. 4(c) we show the spectral
function in the vicinity of the corner K, computed at the en-
ergy ε0 + 0.125 eV for the (2 × 2) CDW using the approach
described in Appendix B. In agreement with Fig. 3(b), each
band is divided into three arcs, with the spectral weight de-
creasing where the contours cross the red lines, which indicate
the boundaries of the (2 × 2) Brillouin zone. This suggests
that gaps observed in Fig. 3(b) can be understood as a conse-
quence of Bragg scattering of electrons by the newly formed
(2 × 2) superlattice. We show in the SM [48] that similar
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FIG. 5. Comparison of experimental (top) and simulated (bottom) ARPES intensities following the final potassium deposition for wave-
vector cuts at different angles starting from the K point of the Brillouin zone (as indicated with the red lines in the insets of each panel).
The Fermi energy, εF = ε0 + 0.125 eV, is indicated with the dashed black line. In the top row, the dark red and orange arrows indicate the
momentum at which the inner and outer band, respectively, cross the Fermi level. All cuts cover the same distance in k space; the green scale
bars in the top row correspond to 0.2 Å−1. For the theoretical plots we used energy broadening η = 0.05 eV.

spectral function maps for the (3 × 3) and (2
√

3 × 2
√

3)R30◦
phases display features which disagree with our observations.

While both the (2
√

3 × 2
√

3)R30◦ and (2 × 2) phases lead
to nesting of the saddle points with each other, further support
for the latter comes from studying a minimal model describing
such coupling which we present in Appendix C. For the (2 ×
2) phase, introducing attractive coupling between electrons in
the vicinity of the saddle points leads to opening of a gap at a
filling corresponding to the position of the Fermi level at the
saddle point for the uncorrelated state. This agrees with exper-
imental observations—gap above the saddle point in Fig. 2(j).
At the same time, no such gap opens in the (2

√
3 × 2

√
3)R30◦

phase. We have also confirmed that formation of a (2 × 2)
phase, as described by our effective model, lowers the total
electron energy of the system as compared to the uncorrelated
state (see further discussion in the SM [48]). This energetic
benefit is due to the new phase opening gaps in the electronic
spectrum which remove the van Hove singularities located at
the saddle points from the vicinity of the Fermi level.

In Fig. 5 we show in the top row the measured ARPES
intensities for the sample after the third deposition of potas-
sium for k-space cuts in different directions from K, from K
towards M (first panel) to K towards � (last panel), in constant
intervals. These cuts provide further information on the evolu-
tion of the band gaps observed as discontinuities of the Fermi
contour in Fig. 3(b). We mark with maroon and orange arrows
the wave vectors at which the two bands, which correspond
to the inner and outer contours, respectively, around K in
Fig. 3(b), cross the Fermi level, εF = ε0 + 0.125 eV (the latter
is indicated in all the panels by the black dashed line). In panel

(III) the intensity of the inner band gradually fades away and
the band exhibits a gaplike feature at the Fermi level. This
feature persists in the remaining panels, (IV)–(VI). In turn, the
outer band becomes flatter as the angle increases, suggestive
of the formation of a gap in panels (V) and (VI) (the latter is
equivalent to the K-� direction).

In the theoretical plots in the bottom row of Fig. 5, we
have deliberately shown the intensity for the states above the
Fermi level to illustrate the evolution of the gaps in the outer
and inner bands for different k-space cuts. Crucially, the trend
of a gap at the Fermi level appearing first in the inner band,
followed by a gap in the outer band, is preserved. In the inner
band this is due to a band gap moving down in energy as the
direction of the cut moves from K-M to K-�. In the outer band
the gap appears due to the coupling of the saddle points with
each other and is hence maximized along the K-� direction
which passes through a saddle point. With the help of an
effective model of coupled saddle points (see Appendix C),
this maximum gap can be estimated as ∼3�, with � the
intraband CDW gap parameter. While the data presented here
were obtained using photons with linear horizontal polariza-
tion, we have performed measurements using linear vertical
polarization as well (we present a comparison of the two in
the SM [48]). The agreement between the two polarizations
and the theoretically calculated spectral function suggests that
effects related to the polarization of the incoming light or
matrix element effect [62,63] do not play any role in our
observations. Also, we do not observe any novel bandlike fea-
tures in our spectra, which are expected if the modifications of
the dispersion are due to ordering of potassium on the surface
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of TaSe2 (see [48] for an additional discussion of potassium
deposition).

As the bulk of our crystal necessarily continues to host the
(3 × 3) charge density wave, it might be interesting to explore
the crossover between the bulk and the surface-correlated
states, possibly using soft-x-ray ARPES with a longer pho-
toelectron attenuation depth than traditional photoemission
[64]. At the same time, because the change of charge-density
order relies on nesting of electronic van Hove singularities,
the (2 × 2) phase should be further stabilized in thin enough
(with a number of layers ∼2) doped or gated crystals of TaSe2,
similarly to the case of TaS2 [65]. Thin flakes also have the
advantage that the Fermi level could be shifted using electro-
static gating rather than by surface deposition of alkali atoms,
as done here. In that case, scanning transmission microscopy
could be used to observe the existence of the new CDW
directly in real space (in contrast to our situation in which, as
we discuss in the SM, the deposited potassium prevents access
to the TaSe2 surface). Another approach would be alloying
of Ta with another metal. For example, tungsten atoms have
one more d electron than tantalum, so that in Ta1−xWxSe2 the
Fermi level crosses the vHS for a small W concentration, x
[66]. Moreover, in 2H-NbSe2, the Fermi level lies above a
saddle-point equivalent to the one discussed here, and the ma-
terial displays the incommensurate (3 × 3) order [46]. (This
matches up with the persistence of the peak corresponding
to the (3 × 3) instability in generalized susceptibility as a
function of the Fermi level in Fig. 4(a).) This means that in
Ta1−xNbxSe2, the Fermi level has to cross the saddle point
for some Nb concentration x (as Nb is isoelectronic with Ta,
this is because of a deformation of the band structure which
should occur smoothly between the two pure compositions,
rather than due to electronic doping per se). In both cases,
engineering of the band structure might allow study of the
presence of the (2 × 2) state without obstructing the surface.

The presence of saddle points roughly midway between �

and K in the d-orbital-derived bands is a generic feature of
the band structure of all 2H transition-metal dichalcogenides
(including the semiconducting members of the family), and
so we suggest that several seemingly unrelated observations
of a (2 × 2) superlattice in these materials are connected by
the underlying mechanism of van Hove singularity nesting.
In the metallic TaSe2, TaS2, NbSe2, and NbS2, as discussed
here, the relevant bands contribute to the Fermi surface and so
the saddle points are relatively close to the Fermi level. Some
spectroscopy measurements suggest a weak (2 × 2) charge
density wave can coexist with the (3 × 3) order in NbSe2

[67]. In the same work, no (2 × 2) superlattice was observed
in TaSe2 and TaS2. However, this CDW order was observed
in chalcogen-poor TaSe2 [36], which is consistent with the
driving mechanism as discussed here, given that chalcogen
vacancies effectively n-dope the material [68–70]. A (2 × 2)
superlattice was also observed in intercalated TaSe2 (and so
was highly n-doped), although the origin was suggested to be
due to intercalant ordering rather than a new charge-density
order [71]. In semiconductors like MoS2 or WSe2, the saddle
points can be found in the lowest-lying conduction band.
Moving the Fermi level into their vicinity requires a consid-
erable doping, achievable, for example, by intercalation, as
suggested by the observations on MoS2 [72].

V. SUMMARY

To summarize, by depositing potassium on bulk 2H-TaSe2,
we have induced band bending near the surface of the crystal
which allowed us to tune the Fermi level past a saddle point of
the quasi-two-dimensional dispersion. We have used ARPES
to observe the interplay between the resulting single-particle
Lifshitz transition and the (3 × 3) CDW existing in the mate-
rial. With the help of an effective two-band model fitted using
both the ARPES data and density-functional theory, we found
that the resulting change in the Fermi surface is consistent
with a change in CDW geometry from (3 × 3) to (2 × 2). For
the latter phase, spectral reconstruction nests saddle-point van
Hove singularities close to the Fermi level.

The saddle-point nesting mechanism of CDW formation
was proposed in 1975 [20], shortly after the first experimen-
tal observations of CDWs in dimensions higher than one.
Whereas in one-dimensional metals the weak-coupling nest-
ing (Peierls) mechanism generically leads to CDW formation,
in two and three dimensions a single wave vector will typ-
ically not connect large regions of the Fermi surface, and
it was originally unclear how CDWs could be energetically
beneficial. While saddle-point nesting addressed this issue by
taking advantage of the high density of states at the van Hove
singularities, it is now accepted that in most transition-metal
dichalcogenides, CDWs are not generated by weak-coupling
nesting instabilities, instead relying on the detailed structure
of the interactions [59,73]. Our measurements on potassium-
doped 2H-TaSe2 could be the first observation of changes in
the electronic dispersion due to the formation of saddle-point-
induced CDW order in transition-metal dichalcogenides, as
originally proposed.

Given the differences in mechanisms driving the (3 × 3)
and (2 × 2) CDW phases, it would be interesting to inves-
tigate how different their interplay with superconductivity
is. For example, recently, a pair density wave (PDW) was
observed in 2H-NbSe2 using scanning Josephson tunneling
microscopy [74]. In a PDW it is Cooper pairs rather than
electrons which break the symmetry of the crystal structure.
This was the first evidence of a PDW outside the cuprate high-
temperature superconductors and, owing to the remarkable
similarity of the band structures of transition-metal dichalco-
genides, it would seem highly likely that a PDW could also
be observed in 2H-TaSe2 (albeit requiring temperatures below
the critical temperature, 0.13 K, for the pristine material [75],
in contrast to 7 K for NbSe2 [76]). In such a case, we might
expect a similar change in PDW geometry under doping, as
discussed here for the CDW.

Finally, a doping-controlled change in CDW geometry
from (3 × 3) to (2 × 2) would constitute a quantum phase
transition, indicating a presence of an underlying quantum
critical point. A doping-based quantum phase transition is
suspected to lead to the superconducting dome in the hole-
doped cuprates [77,78], and the opportunity to study a similar
scenario in the absence of high-temperature superconductivity
could help disentangle the complicated knot of intertwined
phenomena accompanying that state. In the case of potassium-
doped 2H-TaSe2, the quantum phase transition would occur in
the vicinity of a Lifshitz transition. The resulting high density
of states makes the system highly tunable, leading to a change
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in the electron, crystal, and phonon structures. Access to such
a controllable quantum phase transition would make doped
2H-TaSe2 a promising candidate for future studies as a source
of new exotic phenomena.
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APPENDIX A: AB INITIO CALCULATION
OF BAND STRUCTURE

In order to obtain the bulk band structure of 2H-TaSe2

shown in the top left of Fig. 1, we used the QUANTUM

EXPRESSO package [79], with relativistic pseudopotentials
constructed using the PSLibrary [80] for the local-density
approximation and a 10 × 10 × 10 Monkhorst-Pack grid [81]
for the bulk crystal. From this we extracted the data for
kz = 0 plane (we show in the Supplemental Material [48]
that the dependence of the dispersion on kz is negligible),
which we used together with the experimental data to fit
our tight-binding model. Note that density-functional-theory
calculations anticipate an incorrect position of the Fermi level.
This is a well-known effect in these materials [47], which was
corrected by comparison to the experiment.

APPENDIX B: MODELING ARPES INTENSITY
OF THE (2 × 2) CDW

We can simulate theoretically the experimental ARPES
intensities by implementing Bragg scattering on a (2 × 2)
superlattice,

Ĥ (2×2) =

⎡
⎢⎢⎢⎣

Ĥ (k) �̂ �̂ �̂

�̂ Ĥ (k+G0) �̂ �̂

�̂ �̂ Ĥ (k+G1) �̂

�̂ �̂ �̂ Ĥ (k+G2)

⎤
⎥⎥⎥⎦,

(B1)

where Ĥ (k) = 1
2 (σx + σz )ĤTB(σx + σz ) is the diagonal form

of the tight-binding Hamiltonian ĤTB from Eq. (1), σz is the z
Pauli matrix, G j = R̂2 jπ/3[0, 2π√

3a
], and �̂ describes the CDW

gap. For simplicity we take �̂ as constant and diagonal (no
coupling between bands of different character). Guided by
the effective description, Eq. (C2) in Appendix C, we require

FIG. 6. (a) Schematic of the minimal model for the coupling
between the saddle points in the (2 × 2) charge density wave phase.
The red hexagon represents the Brillouin zone of the (2 × 2) super-
lattice, and the green surfaces show the electronic dispersion in the
vicinity of three saddle points coupled by the superlattice reciprocal
vectors indicated with the cyan arrows. (b) Constant-energy contours
in the vicinity of a saddle point as described by ĤLT(k̃) in Eq. (C1)
for the energies ε < εLT (yellow), ε = εLT (orange), and ε > εLT

(purple). For ε = εLT, one-third of the electronic states are occupied
as illustrated in light green. (c) The electronic dispersion in the
vicinity of a saddle point reconstructed by attractive (2 × 2)-periodic
coupling.

�̂11 < 0, and we find that we can obtain qualitative agreement
with experiment by using a single parameter if �̂ = �̃σz,
�̃ < 0. In the theoretical plots in Figs. 4 and 5, we have used
�̃ = −60 meV and simulated the ARPES intensity using the
wave-vector-resolved spectral function,

A(k) = − 1

π

∑
n

�[〈k, n|(Ĥ (2×2) − ε − iη))−1|k, n〉], (B2)

where �[x] stands for the imaginary part of x, |k, n〉 denotes
the state with wave vector k in the band n, and η is the phe-
nomenological energy broadening. In Fig. 4(c) we have used
η = 0.1 eV, and in the bottom row of Fig. 5, η = 0.05 eV.

APPENDIX C: EFFECTIVE MODEL
OF SADDLE-POINT COUPLING

Because of the energy separation between the bands, we
only focus here on the band ε2(k) that contains the saddle
point of interest. For δ = 0 the dispersion in the vicinity of
the saddle point at k(0)

LT , shown in the right of Fig. 6(a), can be
described by the effective Hamiltonian,

ĥ(k̃) = 3a2(t2 + t̃2)

2

(
3k̃2

x − k̃2
y

)
, (C1)

where k̃ = (k̃x, k̃y) = k − k(0)
LT is the wave vector measured

from the saddle point (we discuss corrections to this minimal
model arising from δ �= 0 in [48]). As shown in light green
in Fig. 6(b), for the Fermi level positioned exactly at such a
saddle point, a third of the electronic states are occupied while
two-thirds remain empty. The (2 × 2) CDW-induced superlat-
tice provides a new source of Bragg scattering which couples
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the saddle point at k(0)
LT to two other saddle points at k(2)

LT and
k(4)

LT . We present this coupling schematically in Fig. 6(a), with
the red hexagon indicating the Brillouin zone of the (2 × 2)
superlattice and the cyan arrows its basic reciprocal vectors
which connect the saddle points. A simple description of this
coupling is provided by the Hamiltonian,

ĥ(2×2) =

⎡
⎢⎣ĥ(k̃) � �

� ĥ
(
R̂ 2π

3
k̃
)

�

� � ĥ
(
R̂ 4π

3
k̃
)
⎤
⎥⎦, (C2)

where the diagonal terms describe each of the three saddle
points and � is the coupling due to the CDW order, which

we take to be real and a constant across the small area of the
Brillouin zone that is of relevance. The Hamiltonian coupling
saddle points at k(1)

LT , k(3)
LT , and k(5)

LT can be obtained by setting
k̃ → −k̃ in Ĥ (2×2).

Diagonalizing ĥ(2×2) exactly at the saddle point, k̃ = 0,
gives energies ε = 2� and ε = −�, with the latter doubly
degenerate. For attractive interaction, � < 0, such a spectrum
results in a gap at one-third filling. The full spectrum of the
Hamiltonian ĥ(2×2) for � < 0 is presented in Fig. 6(c). Note
that a gap separates the lowest band, shown in light green,
from the higher ones, in agreement with experiment where
no ARPES intensity is seen above the saddle point, Fig. 2(j).
As we demonstrate in the SM [48], a gap does not appear at
one-third filling in the case of the (2

√
3 × 2

√
3)R30◦ order.
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