
PX2132 Introductory Quantum Mechanics

Problems

F. Flicker

September 13, 2022

You have the videos, notes, and textbooks to help you. All videos are available on the youtube

channel Introductory Quantum Mechanics, and links to videos, notes, and textbooks are available

at felix�icker.com/teaching, or on Learning Central.

Each question is worth 20 marks. The exam will consist of �ve such questions, of which you must

choose 4 to answer (80 marks total), for which you will have 2 hours. The number of marks is

provided to give an idea of how long should be spent on each question.

For each question, a similar question with a worked solution is provided. The questions are designed

to match the exam closely.

Satisfactory completion of each week's problem set is worth 2% of your total mark for the

course.

Satisfactory completion is de�ned as follows: for each mark within of the question, EITHER

you make an attempt (which need not be successful) OR you write answers to the following:

(i) What didn't you understand which led you to get stuck?

(ii) Which textbook sections did you deem to be closest to what you needed? List at least 2 books.

(iii) How did these sections fall short?

Questions should be submitted via turnitin by the speci�ed date.
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Mark scheme

Worked examples include an indication of the style of question being asked, using letters A-G. The

scheme is used when designing exam questions to ensure a balance of question types (you do not

see the letters in the exam). The meanings are as follows.

(A) simple recollection from notes

(B) from notes but requires pulling together knowledge from across the course

(C) calculation similar to one seen in class

(D) derivation worked through in lectures

(E) derivation discussed but not worked through

(F) familiar concepts in an unseen situation

(G) unseen extension to concepts from lectures

Problem Set
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1 The Motivation for Quantum Mechanics

1.0 Videos

There is no problem set this week. Please watch videos: V1.0, V1.1, V1.2, V1.3, V1.4, V1.5.

Problem Set 1 THE MOTIVATION FOR QUANTUM MECHANICS
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2 Scattering and tunnelling

Please hand in answers via turnitin no later than 2pm Monday week 2 (10th October).

2.0 Videos

Please watch videos: V2.1a, V2.1b, V2.1c, V2.1d, V2.2, V2.3.

2.1 Worked example

Consider the potential

V (x) =


0, x < −L (region 1)

V0, −L ≤ x ≤ L (region 2)

0, x ≥ L (region 3).

(1)

Assume the energy of the particle E > V0, and that a wave is incident from the left (x = −∞).

De�ne the solutions to the time independent Schrodinger equation (TISE) in each region to be

φ1 = exp (ikx) + r exp (−ikx) (2)

φ2 = a exp (ik′x) + b exp (−ik′x) (3)

φ3 = t exp (−ikx) . (4)

(i) Sketch the potential.

[2 marks,C]

(ii) State the TISE in terms of V (x).

[1 mark,A]

(iii) Use the TISE to �nd k and k′ in terms of E and V0.

[4 marks,D]

(iv) State the two boundary conditions at each end of the barrier.

[4 marks,A]

(v) What is meant by `resonant transmission'?

[1 mark,A]

(vi) Solving for the transmission probability gives the result

T =
4E (E − V0)

4E (E − V0) + V 2
0 sin2

(
L
√

2m (E − V0)/~
) . (5)

For which energies is the barrier at resonance?

Problem Set 2 SCATTERING AND TUNNELLING
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[3 marks,E]

(vii) Show that the resonant transmission condition in this case is that k′L = nπ for positive

integer n.

[2 marks,E]

(viii) Use the result of (vii) to sketch the wavefunctions of the two lowest-energy resonant states,

marking on any key points.

[3 marks,G]

Problem Set 2 SCATTERING AND TUNNELLING
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Answers to 2.1

(i)

V(x)

-L L0

V0

x
region 1 region 2 region 3

� correct shape [1 mark]

� axis labels for L,−L, V0 [1 mark].

� No marks are available for labelling the three regions, but it is helpful to do so, and if you

make errors later based on misunderstanding which region is which, marks can carry through

from this earlier error if it's made clear.

(ii)

− ~2

2m

∂2φ (x)

∂x2
+ V (x)φ (x) = Eφ (x) . (6)

(iii) In region 1, TISE takes the form:

− ~2

2m

∂2φ1 (x)

∂x2
= Eφ1 (x) . (7)

[1 mark].

Substitute the stated form to �nd:

~2k2

2m
φ1 (x) = Eφ1 (x) (8)

and therefore

~2k2

2m
= E (9)

and

k =

√
2mE

~
. (10)

Problem Set 2 SCATTERING AND TUNNELLING
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[1 mark].

In region 2, TISE takes the form:

− ~2

2m

∂2φ2 (x)

∂x2
+ V0φ2 (x) = Eφ2 (x) . (11)

Substitute the stated form of φ2 (x) to �nd

~2k′2

2m
φ2 (x) + V0φ2 (x) = Eφ2 (x) (12)

[1 mark] and therefore

~2k′2

2m
+ V0 = E (13)

and

k′ =

√
2m (E − V0)

~
(14)

[1 mark].

(iv) These are the two general boundary conditions which always apply: the wavefunction is

continuous, and its �rst derivative is continuous except at in�nite discontinuities in potential. This

gives two conditions at each end of the barrier:

� φ1 (−L) = φ2 (−L) [1 mark]

� φ′1 (−L) = φ′2 (−L) [1 mark]

� φ1 (L) = φ2 (L) [1 mark]

� φ′1 (L) = φ′2 (L) [1 mark].

(v) Resonant transmission is when the probability for transmission is equal to 1. [1 mark]

(vi) Using the expression and the answer to (v), we require that

T = 1 =
4E (E − V0)

4E (E − V0) + V 2
0 sin2

(
L
√

2m (E − V0)/~
) (15)

[1 mark]. Rearranging gives

sin2
(
L
√

2m (E − V0)/~
)

= 0 (16)

Problem Set 2 SCATTERING AND TUNNELLING
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[1 mark]. This is true whenever

E = V0 +
1

2m

(
nπ~
L

)2

(17)

where n is any positive integer [1 mark].

(vii) Now combine the results of (vi) and (iii). From Eq. 13

E − V0 =
~2k′2

2m
(18)

and substituting into Eq. 17 gives

~2k′2

2m
=

1

2m

(
nπ~
L

)2

(19)

[1 mark] or

k′L = nπ (20)

as required [1 mark].

(viii) This question is a bit harder, to di�erentiate the top students. In general such questions may

not have been discussed directly in class. It is perhaps easiest to think in terms of wavelengths

using λ′ = 2π/k′. Then the resonance condition is that

λ′ =
2L

n
(21)

and hence an integer number of wavelengths must �t along the barrier length of 2L [1 mark].

These are the results for n = 1 and n = 2.

Problem Set 2 SCATTERING AND TUNNELLING
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V(x)

-L L0

V0

x
region 1 region 2 region 3

A decent sketch with the zeroes marked on gives [1 mark]. NB there is no re�ected wave, making

the sketch simpler. You don't strictly need to show the waves above the barrier, as this is just a

shorthand (really the real parts of the wavefunctions, shown here, have their own y-axes, but it is

conventional to draw them on the potential plot like this).

Finally, note that the wavelength must be smaller in regions 1 and 3 than region 2, as the particle's

energy has not had the barrier energy subtracted from it in these regions [1 mark]. I didn't draw

this well on inkscape: note that the wavefunction and its derivative must still be continuous

everywhere.

Problem Set 2 SCATTERING AND TUNNELLING
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2.2 Question

A particle is incident from the left (x = −∞) on a potential step de�ned by

V (x) =

 0, x < 0 (region I)

V0, x ≥ 0 (region II).
(22)

(i) Sketch the potential.

[2 marks]

(ii) State the TISE in terms of V (x).

[1 mark]

(iii) Assuming E < V0 explain why the solutions to the TISE take the forms

φ
I

(x) = exp (ikx) + r exp (−ikx) (23)

φ
II

(x) = t exp (−κx) . (24)

[3 marks]

(iv) Using the TISE, �nd expressions for k and κ in terms of E and V0.

[3 marks]

(v) State the two boundary conditions obeyed at the step.

[2 marks]

(vi) Find the re�ection (r) and transmission (t) amplitudes in terms of k and κ.

[5 marks]

(vii) Sketch the waves in each region, paying attention to the amplitude, phase, and wavelength of

the waves, for the case that E � V0.

[4 marks]

Problem Set 2 SCATTERING AND TUNNELLING
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Problem Set 2 SCATTERING AND TUNNELLING
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3 Bound states

Please hand in answers via turnitin no later than 2pm Monday week 3 (17th October).

3.0 Videos

Please watch videos: V3.1, V3.2, V3.3.

3.1 Worked Example

Consider the TISE

(
− ~2

2m
∂2x + V (x)

)
φn (x) = Enφn (x) (25)

with the potential

V (x) =

 0,

∞,

−L/2 ≤ x ≤ L/2

otherwise.
(26)

(i) Sketch the potential and the �rst four energy eigenfunctions.

[3 marks, D]

(ii) Explain which eigenfunctions φn (x) will be odd functions, and which even.

[2 marks, F]

(iii) Find the eigenvalues En and normalized eigenfunctions φn (x). Note that you will get di�erent

forms for the odd and even functions.

[7 marks, D]

(iv) Why do you not need to worry about the complex phase?

[1 mark, B]

(v) A particle in the well is in the �rst excited state, φ2 (x). What is the probability for it to be

found in the region x > L/4?

[3 marks, B]

(vi) Now consider the �nite potential well with the potential

V (x) =

 0,

V0,

−L/2 ≤ x ≤ L/2

otherwise.
(27)

Stating any assumptions, give a rough estimate of the smallest value of V0 for which φ2 (x) remains

a bound state.

[4 marks, G]

Problem Set 3 BOUND STATES
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Answers to 3.1

(i)

V(x)

-L/2 L/20 x

Sketch of potential, indicating forbidden regions [1 mark]; Correct axis labels x, V (x), ±L/2 [1

mark]; wavefunction sketches [2 marks]. Note that if the sketches are hard to read, marks can still

be awarded provided key points are indicated. In this case this would be some written explanation

of the locations of zeroes of the wavefunctions. NB the process of drawing the wavefunctions o�set

vertically on the same axis as the potential is common but misleading, and no marks would be lost

if the wavefunctions were instead plotted separately. In any case, these are the real parts of the

wavefunctions drawn at a speci�c time (two arbitrary choices).

(ii)

An odd function obeys f (−x) = −f (x), while an even function obeys f (−x) = f (x) [1 mark].

Hence, numbering the ground state n = 1, all odd n are even functions, and all even n are odd

functions [1 mark]. NB if you think this fact will prove important later, you're correct!

(iii)

Getting to the solution is a matter of guessing a form (making an ansatz) and con�rming it solves

the TISE, before normalizing. Based on the previous answers we can see that:

φn (x) =

 an cos (knx) , n odd

bn sin (knx) , n even.
(28)

[1 mark]. Con�rm both solve the TISE (inside the well, V (x) = 0):

− ~2

2m
φ′′n = Eφn (29)

↓

~2k2n
2m

= En (30)

yes, they both work, and once we have kn we also have the energy eigenvalues [1 mark]. Now we

need to constrain kn using the boundary conditions. In this case the conditions are that

Problem Set 3 BOUND STATES
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φn (x = −L/2) = φn (x = L/2) = 0 (31)

[1 mark]. We have e�ectively used one boundary condition to specify that our functions are odd

or even. Therefore just use one more condition to �nd kn:

φn (L/2) = 0 (32)

↓

an cos (knL/2) = 0 (33)

bn sin (knL/2) = 0 (34)

therefore

kn = nπ/L (35)

for both odd and even [1 mark]. Hence from Eq. 30 we have the energy eigenvalues

En =
~2n2π2

2mL2
(36)

[1 mark]. Finally, we need the normalizations. Since the particle must exist somewhere in the

well, the probability to �nd it across the entire well must be one:

∫ L/2

−L/2
|φn|2 dx = 1 (37)

[1 mark]. Hence

|an|2
∫ L/2

−L/2
cos2 (knx) dx = 1

and using

cos2 (x) + sin2 (x) = 1 (38)

cos2 (x)− sin2 (x) = cos (2x) (39)

Problem Set 3 BOUND STATES
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we get

|an|2
∫ L/2

−L/2

1 + cos (2knx)

2
dx = 1

|an|2
L

2
= 1

|an| =
√

2

L
.

Similarly for the odd n case:

|bn|2
∫ L/2

−L/2
sin2 (knx) dx = 1

|bn|2
∫ L/2

−L/2

1− cos (2knx)

2
dx = 1

|bn|2
L

2
= 1

|bn| =
√

2

L
.

[1 mark] in total for the normalization calculations (this might seem a bit stingy, but it's all

standard bookwork). Putting it all together makes it easier for the marker, and hence less likely

anything will be missed:

φn (x) =


√

2
L cos

(
nπx
L

)
, n odd√

2
L sin

(
nπx
L

)
, n even

(40)

and

En =
~2n2π2

2mL2
. (41)

(iv)

The global phase is unobservable in quantum mechanics. It is a redundancy of the mathematics

we use to describe the problem: only relative phases can be measured. (A comment along any of

these lines receives the mark).

(v) Using the Born Rule the probability is

P =

∫ L/2

L/4

|φ2 (x)|2 dx (42)

Problem Set 3 BOUND STATES
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[1 mark]. Therefore

P =
2

L

∫ L/2

L/4

sin2

(
2πx

L

)
dx (43)

[1 mark] and

P =
1

L

∫ L/2

L/4

(1− cos (4πx/L)) dx

=
1

4
−
[
L

4π
sin (4πx/L)

]L/2
L/4

=
1

4
.

[1 mark]. If a solid argument is provided in words to explain why the result must be 1/4 based

on the form of the wavefunction, this can receive full marks without the working.

(vi) This is a di�cult question to di�erentiate the top few students. Getting all the marks will be

hard, but there are book marks available along the way for setting up the problem.

Call the left barrier region I, the well region II, and the right barrier III. Our ansatz for the odd

wavefunctions is

φI = A exp (κx) (44)

φII = B sin (knx) (45)

φIII = −A exp (−κx) (46)

(a sketch would help get you the marks here if there are any errors). [1 mark] for setting up

the problem correctly; the reasoning could be based on the forms of the in�nite well solutions just

obtained, or the full method from the notes could be used.

From the TISE we have

−~2κ2

2m
+ V0 = E (47)

~2k2n
2m

= E. (48)

Finally, we need to use our boundary conditions, say at the region II to III boundary:

Problem Set 3 BOUND STATES
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φII (L/2) = φIII (L/2) (49)

φ′II (L/2) = φ′III (L/2) (50)

giving

B sin (knL/2) = −A exp (−κL/2) (51)

−Bkn cos (knL/2) = Aκ exp (−κL/2) . (52)

Dividing the last two equations gives

tan (knL/2)

kn
=

1

κ
. (53)

Now substitute the expressions for κ and kn in terms of E and V0 :

~
tan

(√
2mEL
2~

)
√

2mE
=

~√
2m (V0 − E)

(54)

and re-arrange:

tan2

(√
2mEL

2~

)
=

E

V0 − E
(55)

↓ (56)

E

V0
= sin2

(√
2mEL

2~

)
(57)

[1 mark] for result, [1 mark] for working. We want a solution for the smallest value of V0, and

so we need the smallest value of
√
2mEL
2~ which gives a solution. Assuming

√
2mEL
2~ is small, we can

expand the sine to give

E

V0
≈ mEL2

2~2
(58)

and so

Problem Set 3 BOUND STATES
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V0 ≈
2~2

mL2
(59)

[1 mark]. Following the notes, a sketch of E/V0 and sin2
(√

2mEL
2~

)
plotted on the same axes makes

it clear why V0 requires a minimum value for solutions to exist. Correct graphical arguments can

give up to 2 marks without a correct answer.

Problem Set 3 BOUND STATES
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3.2 Question

Consider the TISE

(
− ~2

2m
∂2x + V (x)

)
φn (x) = Enφn (x) (60)

with the potential

V (x) =

 0,

∞,

0 ≤ x ≤ L

otherwise.
(61)

(i) Sketch the potential and the �rst four energy eigenfunctions.

[3 marks]

(ii) Find the eigenvalues En and normalized eigenfunctions φn (x).

[7 marks]

(iii) A particle is found to have energy En. Find the probability for it to exist in the region

0 ≤ x ≤ αL where 0 ≤ α ≤ 1.

[3 marks]

(iv) Explain the probabilities you �nd at α = 0, 1/2, and 1.

[3 marks]

(v) Sketch the probability as a function of α for n = 1, marking on key points.

[2 marks]

(vi) Now consider the �nite potential well de�ned by

V (x) =

 0,

V0,

0 ≤ x ≤ L

otherwise.
(62)

Explain whether the probability to exist in the region 0 ≤ x ≤ αL where 0 ≤ α ≤ 1 increases or

decreases compared to the in�nite well case.

[2 marks]

Problem Set 3 BOUND STATES
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Problem Set 3 BOUND STATES
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4 Quantum Superposition

Please hand in answers via turnitin no later than 2pm Monday week 4 (24th October).

4.0 Videos

Please watch videos: V4.1, V4.2, V4.3, V4.4

4.1 Worked Example

(i) Explain why energy eigenstates are also called stationary states.

[2 marks, A]

(ii) Show that a superposition of two energy eigenstates with di�erent energies cannot be a sta-

tionary state.

[3 marks, C]

(iii) Explain why any function f (x) matching the same boundary conditions as the energy eigen-

states φn (x) can be written as

f (x) =

∞∑
n

fnφn (x) (63)

by �nding an expression for the coe�cients fn.

[5 marks, D]

(iv) Consider the in�nite potential well

V (x) =

 0,

∞,

−L/2 ≤ x ≤ L/2

otherwise
(64)

which has energy eigenstates

φn (x) =


√

2
L cos

(
nπx
L

)
, n odd√

2
L sin

(
nπx
L

)
, n even

(65)

for integer n > 0 and energy eigenvalues

En =
~2n2π2

2mL2
. (66)

A state is prepared whose wavefunction takes the form

g (x) =


−A,

A,

0,

−L/4 ≤ x < 0

0 < x ≤ L/4

otherwise.

(67)

Problem Set 4 QUANTUM SUPERPOSITION
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Find A such that the state g (x) is correctly normalized.

[2 marks, C]

(v) Explain why, if a measurement of energy is made, the probability to �nd energy E2n+1 is zero.

[4 marks, B]

(vi) Find the subsequent time evolution g (x, t).

[4 marks, C]

Problem Set 4 QUANTUM SUPERPOSITION
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Answers to 4.1

(i) The time dependence of an energy eigenstate appears only as a complex phase:

ψn (x, t) = φn (x) exp (−iEnt/~) (68)

[1 mark]. Hence the probability density of an energy eigenstate is independent of time:

|ψn (x, t)|2 = |φn (x)|2 (69)

[1 mark].

(ii) A superposition of two energy eigenstates takes the form

1√
2

(ψn (x, t) + ψm (x, t)) (70)

with n 6= m [1 mark] and therefore

1√
2

(φn (x) exp (−iEnt/~) + φm (x) exp (−iEmt/~)) . (71)

The probability density ρ (x, t) is therefore

ρ =
1

2
|φn (x) exp (−iEnt/~) + φm (x) exp (−iEmt/~)|2 (72)

and so

1

2
|φn (x)|2 +

1

2
|φm (x)|2 + Re [φn (x)φ∗m (x) exp (−i (En − Em) t/~)] (73)

[1 mark]. The �nal term is time dependent because En 6= Em [1 mark].

(iii) Energy eigenstates form a complete orthonormal basis [1 mark]. By de�nition this means

that any function matching the same boundary conditions can be written as a linear combination

of these states. Mathematically,

∫ ∞
−∞

φ∗n (x)φm (x)dx = δnm (74)

where

Problem Set 4 QUANTUM SUPERPOSITION



24 PX2132: Introductory Quantum Mechanics � problems

δnm =

 1,

0,

n = m

n 6= m

(75)

[1 mark]. To show that we can write

f (x) =

∞∑
n

fnφn (x) (76)

we just need to show that we have solutions for fn. To do this, work backwards:

f (x) =

∞∑
n

fnφn (x) (77)

↓∫ ∞
−∞

φ∗m (x) f (x) dx =

∫ ∞
−∞

φ∗m (x)

∞∑
n

fnφn (x) dx (78)

=

∞∑
n

fn

∫ ∞
−∞

φ∗m (x)φn (x) dx (79)

=

∞∑
n

fnδnm (80)

= fm (81)

[2 marks]. Hence, changing labels from m to n, we have

fn =

∫ ∞
−∞

φ∗n (x) f (x)dx (82)

[1 mark]. Any reasonable statement as to why it should work (the eigenfunctions form an or-

thonormal basis for the in�nite dimensional Hilbert space of L2 normalizable functions matching

the boundary conditions) can give up to 2 marks in the absence of a correct numerical answer.

(iv) We require

∫ ∞
−∞
|g (x)|2 dx = 1 (83)

and so

∫ L/4

−L/4
|A|2 dx = 1

Problem Set 4 QUANTUM SUPERPOSITION
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[1 mark] requiring

|A| =
√

2

L
(84)

[1 mark].

(v) The function g (x) is odd, meaning g (−x) = −g (x). Therefore any even eigenstates cannot

contribute to the sum [1 mark]. The odd-numbered energy eigenstates, with energies E2n+1, are

even functions, and hence do not contribute [1 mark]. The probability to measure energy E2n+1 is

given by the square modulus of the corresponding coe�cient in the superposition, g2n+1 [1 mark].

But we've just argued that these coe�cients are all zero, and hence there is zero probability to

measure the energy E2n+1 [1 mark].

(vi) Writing

g (x) =

∞∑
n=1

gnφn (x) (85)

the subsequent time evolution is

g (x, t) =

∞∑
n=1

gnφn (x) exp (−iEnt/~) (86)

g (x, t) =

∞∑
n=1

gnφn (x) exp

(
−i~

2n2π2t

2mL2~

)
(87)

[1 mark]. We therefore need the coe�cients gn, which we showed are given by

gn =

∫ ∞
−∞

φ∗n (x) g (x)dx. (88)

We have just explained that gn odd = 0 [1 mark]. For the rest we have

gn even = −
∫ 0

−L/4

√
2

L
sin
(nπx
L

)√ 2

L
dx+

∫ L/4

0

√
2

L
sin
(nπx
L

)√ 2

L
dx

=
4

L

∫ L/4

0

sin
(nπx
L

)
dx

=
4

nπ

[
cos
(nπx
L

)]L/4
0

=
4

nπ

[
cos
(nπ

4

)
− 1
]

[1 mark]. Therefore
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g (x, t) =

√
2

L

∑
n even

4

nπ

[
cos
(nπ

4

)
− 1
]

sin
(nπx
L

)
exp

(
−i~

2n2π2t

2mL2~

)
(89)

[1 mark]. This can be rewritten by noting that the cosine only takes the values ±1, 0, although

there's no real simpli�cation in doing so.
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4.2 Question

(i) Show that the probability density

ρ (x) = |ψn (x, t)|2 (90)

is time independent for all energy eigenfunctions.

[1 mark]

(ii) Now consider the superposition

χ (x, t) = αψ1 (x, t) + βψ2 (x, t) (91)

where α and β are complex numbers. Find a condition on α and β such that χ is properly

normalized.

[4 marks]

(iii) For the special case that φ1, φ2, α and β are all real, show that the probability density

ρχ (x) = |χ (x, t)|2 (92)

is now time dependent, and �nd an expression for the period.

[4 marks]

(iv) Consider the in�nite potential well

V (x) =

 0,

∞,

−L/2 ≤ x ≤ L/2

otherwise
(93)

which has energy eigenstates

φn (x) =


√

2
L cos

(
nπx
L

)
, n odd√

2
L sin

(
nπx
L

)
, n even

(94)

for integer n > 0. Explain why the expectation value of position is zero for every state.

[3 marks]

(v) Find the standard deviation of the position

σx̂ =

√
〈x̂2〉 − 〈x̂〉2 (95)

for each state.

[5 marks]
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(vi) Your experimentalist friend intends to measure the average position of the particle in its ground

state. State the expected result including an estimate of the error.

[3 marks]
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5 Finite-dimensional Hilbert spaces

Please hand in answers via turnitin no later than 2pm Monday week 5 (31st October). [Note:

problem set 6 is also due this week]

5.0 Videos

Please watch videos: V5.1, V5.2, V5.3a, V5.3b, V5.3c, V5.4.

5.1 Worked Example

(i) Prove that Hermitian matrices have real eigenvalues.

[4 marks, A]

(ii) A Stern Gerlach apparatus is used to identify that a silver atom has spin-up along the z-

direction. For each of the following measurements, state the possible outcomes and their probabil-

ities.

(a) A measurement of spin along the x-direction.

[2 marks, B]

(b) A measurement of spin along the y-direction.

[2 marks, B]

(c) A measurement of spin along the z-direction.

[2 marks, B]

(iii) Consider the Pauli matrices

σx =

 0 1

1 0

 (96)

σy =

 0 −i

i 0

 (97)

σz =

 1 0

0 −1

 . (98)

De�ne the spin operators

Ŝi =
~
2
σi (99)

for i ∈ {x, y, z}. Given this de�nintion, explain why the states corresponding to spin-up and

spin-down along x must then take the form
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| ↑z〉 =

 1

0

 , | ↓z〉 =

 0

1

 . (100)

[3 marks, D]

(iv) State the equivalent expressions for | ↑x〉 and | ↓x〉.

[3 marks, D]

(v) Show that the operators Ŝx and Ŝz do not commute.

[2 marks, C]

(vi) Explain what this means physically in terms of repeated Stern Gerlach measurements and

their possible outcomes.

[2 marks, F]
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Answers to 5.1

(i) Denote the eigenvector with eigenvalue λn by |n〉:

M |vn〉 = λn|vn〉. (101)

Taking the Hermitian conjugate we have

(M |vn〉)† = (λn|vn〉)†

↓

〈vn|M† = 〈vn|λ∗n (102)

[1 mark].

Therefore

〈vn|M −M†|vn〉 = (λn − λ∗n) 〈vn|vn〉 (103)

because we can act right with M using Eq. 101 and left with M† using Eq. 102 [1 mark].

Since

〈vn|vn〉 > 0 (104)

[1 mark] we see that

M = M† ⇒ λ = λ∗ (105)

i.e. Hermitian operators have real eigenvalues [1 mark].

(ii)

(a) spin-up along x, probability 1/2 [1 mark], and spin-down along x, probability 1/2 [1 mark].

(b) spin-up along y, probability 1/2 [1 mark], and spin-down along y, probability 1/2 [1 mark].

(c) spin-up along z is the only possibility, with probability 1 [2 marks].

Just stating �spin-up� (etc) without stating the direction can receive at most half marks.

(iii) In quantum mechanics observable quantities are encoded in Hermitian operators; the possible

outcomes of measurements are the eigenvalues of those operators. Here we require that
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Ŝz| ↑z〉 =
~
2
| ↑z〉 (106)

Ŝz| ↓z〉 = −~
2
| ↓z〉 (107)

[1 mark]. Given that

Ŝz =
~
2

 1 0

0 −1

 (108)

we therefore require

| ↑z〉 ∝

 1

0

 , | ↓x〉 ∝

 0

1

 (109)

since

~
2

 1 0

0 −1

 1

0

 =
~
2

 1

0

 (110)

~
2

 1 0

0 −1

 0

1

 = −~
2

 0

1

 (111)

[1 mark]. We also require the states to be normalised, as the total probability to obtain some

outcome from a measurement is 1. Therefore the proportionality signs in Eq. 109 become equalities

[1 mark].

(iv)

| ↑x〉 =
1√
2

 1

1

 , | ↓x〉 =
1√
2

 1

−1

 (112)

[1 mark] for vectors, [1 mark] for normalisation. These can be found by the usual method of

�nding eigenvectors, or simply by trying some obvious cases. In either case, show that they work

as planned:
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~
2

 0 1

1 0

 1

1

 =
~
2

 1

1

 (113)

~
2

 0 1

1 0

 1

−1

 = −~
2

 1

−1

 (114)

[1 mark].

(v)

[
Ŝx, Ŝz

]
=

~2

4

 0 1

1 0

 ,

 1 0

0 −1

 (115)

[1 mark] and

[
Ŝx, Ŝz

]
=

~2

4

 0 1

1 0

 ,

 1 0

0 −1

 (116)

=
~2

4

 0 1

1 0

 1 0

0 −1

− ~2

4

 1 0

0 −1

 0 1

1 0

 (117)

=
~2

4

 0 −1

1 0

− ~2

4

 0 1

−1 0

 (118)

=
~2

2

 0 −1

1 0

 (119)

which is not zero [1 mark].

(vi) The previous result tells us that the observables corresponding to the operators cannot be

known simultaneously [1 mark]. Therefore, measuring spin along x, a subequent measurement

of spin along z must return an indeterminate answer (a �nite probability for either outcome).

Similarly for any measurement along z followed by a measurement along x; [1 mark] for any

statement to this e�ect.
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5.2 Question

(i) Assuming the eigenvalues of a Hermitian matrix are non-degenerate, prove that the correspond-

ing eigenvectors are orthogonal.

[4 marks]

(ii) Consider the spin matrices

Ŝx =
~
2

 0 1

1 0

 , Ŝy =
~
2

 0 −i

i 0

 , Ŝz =
~
2

 1 0

0 −1

 . (120)

State three properties which make them appropriate as a choice of operators to encode spin-1/2.

[3 marks]

(iii) In this basis, explain why the states corresponding to spin-up and spin-down along y must

then take the form

| ↑y〉 =
1√
2

 1

i

 , | ↓y〉 =
1√
2

 1

−i

 . (121)

[2 marks]

(iv) State the equivalent forms for | ↑z〉 and | ↓z〉.

[1 mark]

(v) Hence express | ↑z〉 as a linear combination of | ↑y〉 and | ↓y〉.

[3 marks]

(vi) A Stern Gerlach apparatus is used to establish that a spin-1/2 silver atom has spin up along z.

The same atom then passes through a second Stern Gerlach apparatus oriented so as to perform

a measurement of the spin along y. Using your previous result, calculate the probability that the

outcome is spin up along y.

[3 marks]

(vii) Rather than record the outcome of the second measurement, the two possible routes are

redirected so as to rejoin one another, and the resulting route passes through a second Stern

Gerlach apparatus so as to measure the spin along z. Calculate the probability that the outcome

is spin up along z, and comment on any implications this may have regarding the nature of reality.

[4 marks]
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6 Operators and observables

Please hand in answers via turnitin no later than 2pm Monday week 5 (31st October). [Note:

same deadline as problem set 5]

6.0 Videos

Please watch videos: V6.1, V6.2, V6.3, V6.4.

6.1 Worked Example

(i) Explain what is meant by a good quantum number.

[2 marks, A]

(ii) Explain what is meant by the Heisenberg and Schrodinger pictures.

[2 marks, A]

(iii) Write an expression for an operator ÂH (t) in the Heisenberg picture, in terms of the equivalent

operator ÂS in the Schroedinger picture.

[1 mark, A]

(iv) Write an expression for a state |ψH〉 in the Heisenberg picture, in terms of the equivalent state

|ψS (t)〉 in the Schroedinger picture.

[1 mark, A]

(v) Using (iii) and (iv) show that

〈ϕH |ÂH (t) |ψH〉 = 〈ϕS (t) |ÂS |ψS (t)〉 (122)

and hence that the two pictures are equivalent.

[2 marks, C]

(vi) Derive the Heisenberg equation of motion:

i~
dÂH (t)

dt
=
[
ÂH (t) , Ĥ

]
. (123)

[4 marks, C]

(vii) Use the previous results to prove Ehrenfest's theorem:

i~
d〈Â〉
dt

= 〈
[
Â, Ĥ

]
〉. (124)

[2 marks, C]
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(viii) Explain why, if the operator describing an observable commutes with the Hamiltonian, then

the observable corresponds to a good quantum number.

[2 marks, D]

(ix) Hence explain why energy is always a good quantum number.

[2 marks, D]

(x) Explain why it is always possible to have simultaneous knowledge of a quantum number and

of the energy of the system.

[2 marks, F]
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Answers to 6.1

(i) A good quantum number is an expectation value of an operator which is time independent. [1

mark]

For the observable represented by operator Q̂ to be a good quantum number for a state |ψ〉, its

expectation value must be conserved:

d〈ψ|Q̂|ψ〉
dt

= 0 (125)

[1 mark].

(ii) In the Heisenberg picture states are time-independent, but operators are time dependent [1

mark].

In the Schroedinger picture states are time-dependent but operators are time independent [1

mark].

(iii)

ÂH (t) = exp
(
iĤt/~

)
ÂS exp

(
−iĤt/~

)
. (126)

(iv)

|ψH〉 = exp
(
iĤt/~

)
|ψS (t)〉 (127)

(up to a constant phase).

(v)

〈ϕH |ÂH (t) |ψH〉 = 〈ϕS (t) | exp
(
−iĤt/~

)
ÂH (t) exp

(
iĤt/~

)
|ψS (t)〉 (128)

[1 mark] and

exp
(
−iĤt/~

)
ÂH (t) exp

(
iĤt/~

)
= ÂS (129)

so

〈ϕH |ÂH (t) |ψH〉 = 〈ϕS (t) |ÂS |ψS (t)〉 (130)

[1 mark]. Hence the two pictures are equivalent, and we can write
〈
ϕ|Â|ψ

〉
unambiguously.

(vi) Starting from
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ÂH (t) = exp
(
iĤt/~

)
ÂS exp

(
−iĤt/~

)
(131)

take the partial derivative with respect to time:

∂ÂH (t)

∂t
=

∂

∂t

(
exp

(
iĤt/~

)
ÂS exp

(
−iĤt/~

))
(132)

=
iĤ

~
exp

(
iĤt/~

)
ÂS exp

(
−iĤt/~

)
− exp

(
iĤt/~

)
ÂS

iĤ

~
exp

(
−iĤt/~

)
(133)

[1 mark]. NB ÂH and Ĥ need not commute, so be careful to get the order right in both terms.

However, Ĥ and exp
(
−iĤt/~

)
do always commute, as they're both just functions of Ĥ. Therefore

∂ÂH (t)

∂t
=
iĤ

~
exp

(
iĤt/~

)
ÂS exp

(
−iĤt/~

)
− i

~
exp

(
iĤt/~

)
ÂS exp

(
−iĤt/~

)
Ĥ (134)

=
i

~
ĤÂH (t)− i

~
ÂH (t) Ĥ

[1 mark]

=
i

~

[
Ĥ,ÂH (t)

]
(135)

[1 mark]. Finally note that since ÂH is only a function of time,

∂ÂH (t)

∂t
=

dÂH (t)

dt
(136)

[1 mark] and so

dÂH (t)

dt
=
i

~

[
Ĥ,ÂH (t)

]
. (137)

(vii)

i~
dÂH (t)

dt
=
[
ÂH (t) , Ĥ

]
(138)
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therefore

i~〈ψH |
dÂH (t)

dt
|ψH〉 = 〈ψH |

[
ÂH (t) , Ĥ

]
|ψH〉. (139)

Since |ψH〉 is independent of time we can pull it inside the derivative:

i~
d〈ψH |ÂH (t) |ψH〉

dt
= 〈ψH |

[
ÂH (t) , Ĥ

]
|ψH〉. (140)

[1 mark] Finally, recall that expectation values are independent of picture, so we can write

i~
d〈ψ|Â|ψ〉

dt
= 〈ψ|

[
Â, Ĥ

]
|ψ〉 (141)

or in the usual abbreviation

i~
d〈Â〉
dt

= 〈
[
Â, Ĥ

]
〉 (142)

[1 mark].

(viii) If an operator Q̂ corresponds to a good quantum number then

d〈Q̂〉
dt

= 0 (143)

[1 mark].

From Ehrenfest's theorem this means that

〈
[
Q̂, Ĥ

]
〉 = 0. (144)

Therefore if Q̂ commutes with Ĥ then d〈Q̂〉
dt = 0, and hence it is a good quantum number. [1

mark]

(ix) The operator corresponding to energy is the Hamiltonian [1 mark].

Clearly, Ĥ commutes with itself. Therefore

d〈Ĥ〉
dt

= 0. (145)

[1 mark].

(x) The logic now works in reverse. If an observable is a good quantum number, its operator
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commutes with the Hamiltonian. But if two operators commute, they share a set of eigenvectors,

and their eigenvalues can be known simultaneously. [1 mark] Hence, the quantum number and

the energy (observable corresponding to the Hamiltonian operator) can be known simultaneously.

[1 mark]

Problem Set 6 OPERATORS AND OBSERVABLES



43 PX2132: Introductory Quantum Mechanics � problems

6.2 Question

(i) State the (generalised) Heisenberg uncertainty principle, explaining all terms.

[2 marks]

(ii) State the canonical commutation relation between position and momentum, explaining all

terms.

[2 marks]

(iii) Use this to �nd the Heisenberg uncertainty relation between the position and momentum of a

particle.

[3 marks]

(iv) Ehrenfest's theorem states that

i~
d〈Â〉
dt

= 〈
[
Â, Ĥ

]
〉 (146)

where Ĥ is the Hamiltonian. Find an expression for the product of the uncertainties between an

observable A and the energy.

[1 mark]

(v) Using the de�nition of uncertainty you provided in (i), show that the uncertainty of an operator

evaluated for an eigenvector of that operator is always zero.

[2 marks]

(vi) An operator Â commutes with the Hamiltonian. State the minimum value of the product of

the uncertainties in Â and Ĥ, and give an example of a state which gives this minimum value.

[4 marks]

(vii) Explain why the position operator can never commute with the Hamiltonian.

[2 marks]

(viii) Find the minimum value of the product of the uncertainties in x̂ and Ĥ, in terms of p̂.

[4 marks]
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7 Quantum mechanics

Please hand in answers via turnitin no later than 2pm Monday week 7 (14th November).

7.0 Videos

Please watch videos: V7.1, V7.2, V7.3, V7.4, V7.5.

7.1 Worked Example

(i) Give a mathematical expression for the normalisation of the wavefunction ψ (x) and explain its

physical meaning.

[2 marks, A]

(ii) The resolution of the identity can be written

Î =

∫ ∞
−∞
|x〉〈x|dx (147)

where |x〉 is an eigenstate of the position operator x̂:

x̂|x〉 = x|x̂〉. (148)

De�ning the wavefunction ψ (x) = 〈x|ψ〉, use the normalisation of the wavefunction to derive the

norm of the state |ψ〉.

[3 marks, C]

(iii) Working in the position basis, state the condition for a di�erential operator Â to be Hermitian.

[2 marks, A]

(iv) State whether each of the following operators, written in the position basis, is Hermitian. If

it is not, state its Hermitian conjugate.

(a) x

[1 mark, E]

(b) −i~∂x

[1 mark, E]

(c) ∂x

[1 mark, E]

(d) ∂2x

[1 mark, E]
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(e) ∇

[1 mark, E]

(v) Show that the expectation value of an operator Â in state |ψ〉, 〈ψ|Â|ψ〉, can be written in the

position basis as

〈ψ|Â|ψ〉 =

∫ ∞
−∞

∫ ∞
−∞

ψ∗ (x)A (x, y)ψ (y) dxdy (149)

and give an expression for A (x, y).

[4 marks, G]

(vi) Explain physically why we might expect

A (x, y) = A (x) δ (x− y) (150)

where δ (x− y) is the Dirac delta function.

[2 marks, G]

(vii) Hence, when Eq 150 is obeyed, show that

〈ψ|Â|ψ〉 =

∫ ∞
−∞

ψ∗ (x)A (x)ψ (x)dx. (151)

[2 marks, F]
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Answers to 7.1

(i) The particle must exist somewhere in space, and so the integral of the probability density across

all of space must equal one [1 mark].

Mathematically,

∫ ∞
−∞
|ψ (x)|2 dx = 1 (152)

[1 mark].

(ii)

Since

∫ ∞
−∞
|ψ (x)|2 dx = 1 (153)

we have

1 =

∫ ∞
−∞

ψ∗ (x)ψ (x) dx (154)

=

∫ ∞
−∞
〈ψ|x〉〈x|ψ〉dx (155)

[1 mark]. The eigenstate |ψ〉 is independent of position, so

1 = 〈ψ|
(∫ ∞
−∞
|x〉〈x|dx

)
|ψ〉 (156)

[1 mark] and

1 = 〈ψ|̂I|ψ〉

= 〈ψ|ψ〉

[1 mark].

(iii)

∫ ∞
−∞

ϕ (x)
∗
(
Âψ (x)

)
dx =

∫ ∞
−∞

(
Âϕ (x)

)∗
ψ (x) dx (157)
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[1 mark]

where ϕ (x), ψ (x) are normalisable, requiring them to vanish at x = ±∞ [1 mark].

(iv) (a) Hermitian � it's observable (the position). You can also check explicitly using the equation

just stated.

(b) Hermitian � it's observable (the momentum). You can also check explicitly using the equation

just stated.

(c) Not hermitian. To see this, note that the previous result was Hermitian, meaning

(−i~∂x)
†

= −i~∂x (158)

and therefore for that to be true it must be the case that

(∂x)
†

= −∂x. (159)

Explicitly we can use the expression for the Hermitian conjugate:

∫ ∞
−∞

ϕ (x)
∗

(∂xψ (x)) dx = −
∫ ∞
−∞

∂x
(
ϕ (x)

∗)
ψ (x) dx (160)

=

∫ ∞
−∞

(
−∂xϕ (x)

∗)
ψ (x) dx (161)

where the �rst line uses integration by parts and the fact that the wavefunctions must vanish at

in�nity for them to be normalisable (so there is no boundary term in the integration by parts).

(d) Hermitian, because p̂2 is Hermitian (as it's a power of a Hermitian operator) and so

(
(−i~∂x)

2
)†

= (−i~∂x)
2 (162)

and

(
∂2x
)†

= ∂2x. (163)

Alternatively, use (c) and square both sides.

(e) Not Hermitian. As in (c), ∇† = −∇.

(v) This question is not something which has been seen in the lectures or notes, but the maths

isn't too hard.

Insert two copies of the identity:
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〈ψ|Â|ψ〉 = 〈ψ|̂I|Â|̂I|ψ〉 (164)

[1 mark]

〈ψ|Â|ψ〉 = 〈ψ|
∫ ∞
−∞
|x〉〈x|dx|Â|

∫ ∞
−∞
|y〉〈y|dy|ψ〉 (165)

[1 mark] where we have used di�erent position labels to avoid confusion. Since |ψ〉 is not a

function of position, we can pull the integrals outside:

〈ψ|Â|ψ〉 =

∫ ∞
−∞

∫ ∞
−∞
〈ψ|x〉〈x|Â|y〉〈y|ψ〉dxdy (166)

=

∫ ∞
−∞

∫ ∞
−∞

ψ∗ (x) 〈x|Â|y〉ψ (y) dxdy (167)

[1 mark] to give the desired result

〈ψ|Â|ψ〉 =

∫ ∞
−∞

∫ ∞
−∞

ψ∗ (x)A (x, y)ψ (y) dxdy (168)

provided that

A (x, y) = 〈x|Â|y〉. (169)

[1 mark].

(vi) This is a tricky question to di�erentiate the top students. It is not relied upon in the last

part of the question, which helps justify its presence here. The answer is that physical operators

act locally : they act at a point in space, not across all of space simultaneously [1 mark]. We can

deduce the properties of a particle by measuring the particle at a given location. Therefore an

operator cannot really be an independent function of two separate position co-ordinates, as that

would mean it depended not only on what is happening here, but also there, for all possible theres.

And that would be very strange.

The Dirac delta function encodes this, as it is zero unless x = y [1 mark].

(vii) Using the expression provided in the previous part,
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〈ψ|Â|ψ〉 =

∫ ∞
−∞

∫ ∞
−∞

ψ∗ (x)A (x) δ (x− y)ψ (y) dxdy (170)

[1 mark]

and use the de�nition of the Dirac delta function

∫ ∞
−∞

f (x) δ (x− y)dx = f (y) (171)

[1 mark]

to give

〈ψ|Â|ψ〉 =

∫ ∞
−∞

ψ∗ (x)A (x)ψ (x)dx. (172)
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7.2 Question

(i) It is an axiom of quantum mechanics that states of a system are represented by normalized kets

|ψ〉 in a complex Hilbert space H. Explain physically why the states must be normalized, and give

an expression for this mathematically.

[2 marks]

(ii) Write the normalization condition for a wavefunction ψ (x) written in the position basis.

[1 mark]

(iii) Below are the ten axioms de�ning a linear vector space for vectors |u〉 (written formally,

but with translations into English where unclear). Show that each axiom is obeyed by complex

functions f (x).

∀ {|u〉, |v〉, |w〉} ∈ V ; α, β ∈ C :

[for all vectors |u〉, |v〉, |w〉 in the linear vector space V , with α and β complex numbers]

1. |u〉+ |v〉 ∈ V [If |u〉 and |v〉 are in the vector space, then so is |u〉+ |v〉]

2. (|u〉+ |v〉) + |w〉 = |u〉+ (|v〉+ |w〉) [associativity]

3. ∃|0〉 ∈ V : |u〉+ |0〉 = |0〉+ |u〉 = |u〉 [there exists a zero vector |0〉 such that adding this to any

vector leaves that vector unchanged]

4. ∃ (−|u〉) ∈ V : |u〉 + (−|u〉) = |0〉 [for all vectors in the space there exists an additive inverse

which, when added to the vector, gives the zero vector]

5. |u〉+ |v〉 = |v〉+ |u〉 [commutativity]

6. α|u〉 ∈ V [α times a vector in V is also in V ]

7. α (|u〉+ |v〉) = α|u〉+ α|v〉 [distributivity]

8. (α+ β) |u〉 = α|u〉+ β|u〉

9. α (β|u〉) = (αβ) |u〉

10. 1|u〉 = |u〉.

[3 marks]

(iv) Using the fact that 〈x|ψ〉 = ψ (x), and (i) and (ii), deduce the resolution of the identity

Î =

∫ ∞
−∞
|x〉〈x|dx. (173)

[3 marks]

(v) Hence show that

〈f |g〉 ,
∫ ∞
−∞

f (x)
∗
g (x) dx. (174)

[2 marks]
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(vi) Below are the three axioms de�ning an inner product space. For each, show that it is obeyed

by complex functions.

1. 〈u|v〉 = (〈v|u〉)∗

2. 〈u|u〉 ≥ 0; 〈u|u〉 = 0 i� |u〉 = |0〉

3. 〈w| (α|u〉+ β|v〉) = α〈w|u〉+ β〈w|v〉.

[3 marks]

(vii) In quantum mechanics observable quantities are represented by Hermitian operators Â. It is

assumed these possess a complete set of orthogonal eigenstates |an〉:

Â|an〉 = an|an〉. (175)

State the possible results of a measurement of the observable Â, and the probabilities to �nd each

outcome.

[2 marks]

(viii) The position of a particle is an observable quantity. Assuming there is a discrete set of

possible positions, state the equivalent form of Eq 175 for position, explaining the meaning of any

terms.

[2 marks]

(ix) By reference to your answer to (vii), state the possible results of a measurement of position,

and the probabilities to �nd each outcome. Explain any subtleties which arise when space becomes

continuous.

[2 marks]
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8 The quantum harmonic oscillator

Please hand in answers via turnitin no later than 2pm Monday week 8 (21st November).

8.0 Videos

Please watch videos: V8.1, V8.2, V8.3, V8.4.

8.1 Worked Example

(i) The Hamiltonian for the quantum harmonic oscillator is

Ĥ =
p̂2

2m
+

1

2
mω2x̂2. (176)

Write the corresponding TISE in the position basis, denoting the nth energy eigenstate φn (x) and

the corresponding energy eigenvalue En.

[2 marks, A]

(ii) De�ning the lowering operator

â =

√
mω

2~

(
x+

~
mω

∂x

)
(177)

and the raising operator

â† =

√
mω

2~

(
x− ~

mω
∂x

)
(178)

Show that the TISE can be rewritten as

~ω
(
â†â+

1

2

)
φn (x) = Enφn (x) . (179)

[4 marks, C]

(iii) Show that

[
â, â†

]
f (x) = f (x) (180)

for any function f (x).

[3 marks, C]

(iv) Hence, by acting on both sides of the TISE with â†,show that

~ω
(
â†â+

1

2

)(
â†φn (x)

)
= (En + ~ω)

(
â†φn (x)

)
. (181)

[3 marks, C]

Problem Set 8 THE QUANTUM HARMONIC OSCILLATOR



55 PX2132: Introductory Quantum Mechanics � problems

(v) Solve

âφ0 (x) = 0. (182)

[3 marks, C]

(vi) Explain what (iv) and (v) tell us about the energy eigenvalues of the harmonic oscillator.

[2 marks, C]

(vii) Without worrying about normalization, calculate φ1 (x) and φ2 (x) and sketch the results.

[3 marks, E]

Problem Set 8 THE QUANTUM HARMONIC OSCILLATOR



56 PX2132: Introductory Quantum Mechanics � problems

Answers to 8.1

(i)

− ~2

2m

∂2φn (x)

∂x2
+

1

2
mω2x2φn (x) = Enφn (x) . (183)

[1 mark] for writing out operators in the position basis correctly.

[1 mark] for getting the right answer.

(ii) It's probably easiest to work backwards.

~ω
(
â†â+

1

2

)
φn (x) = ~ω

(
mω

2~

(
x− ~

mω
∂x

)(
x+

~
mω

∂x

)
+

1

2

)
φn (x) (184)

=
mω2

2

(
x− ~

mω
∂x

)(
x+

~
mω

∂x

)
φn (x) +

~ω
2
φn (x) (185)

[1 mark]

=
mω2

2

(
x2φn (x)−

(
~
mω

)2

∂2xφn (x) + x
~
mω

∂xφn (x)− ~
mω

∂x (xφn (x))

)
+

~ω
2
φn (x) (186)

[1 mark]

=
mω2

2

(
x2φn (x)−

(
~
mω

)2

∂2xφn (x) +���
���

�
x

~
mω

∂xφn (x)−
HH

HHH

~
mω

φn (x)−���
��

��~
mω

x∂xφn (x)

)
+
HH

HHH

~ω
2
φn (x)

(187)

where strikethroughs match in pairs of the same angle [1 mark].

This gives

~ω
(
â†â+

1

2

)
φn (x) = − ~2

2m
∂2xφn (x) +

1

2
mω2x2φn (x) (188)

as required [1 mark].

(iii)

[
â, â†

]
f = ââ†f − â†âf

=
mω

2~

(
x+

~
mω

∂x

)(
x− ~

mω
∂x

)
f − mω

2~

(
x− ~

mω
∂x

)(
x+

~
mω

∂x

)
f
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[1 mark]

=
mω

2~

(
x2f −

(
~
mω

)2

∂2xf − x
~
mω

∂xf +
~
mω

∂x (xf)

)

− mω

2~

(
x2f −

(
~
mω

)2

∂2xf + x
~
mω

∂xf −
~
mω

∂x (xf)

)
= −x∂xf + ∂x (xf)

= −x∂xf + f + x∂xf

= f

[2 marks] for reasonable working.

(iv) It's much easier to work with

~ω
(
â†â+

1

2

)
φn (x) = Enφn (x) . (189)

Then we have

~ω
(
â†â†âφn (x) +

1

2
â†φn (x)

)
= Enâ

†φn (x) (190)

[1 mark]. Use the commutation relation just found:

â†âφn (x) = ââ†φn (x)− φn (x) (191)

[1 mark] to give

~ω
(
â†ââ†φn (x)− â†φn (x) +

1

2
â†φn (x)

)
= Enâ

†φn (x) (192)

[1 mark]. Therefore

~ω
(
â†â+

1

2

)(
â†φn (x)

)
= (En + ~ω)

(
â†φn (x)

)
(193)

as required.

(v)
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âφ0 (x) = 0 (194)(
x+

~
mω

∂x

)
φ0 (x) = 0 (195)

xφ0 (x) +
~
mω

∂φ0 (x)

∂x
= 0 (196)

xφ0 (x) +
~
mω

dφ0 (x)

dx
= 0 (197)

[1 mark] for realising that the partial derivative becomes a total derivative (the key step).

∫
dφ0 (x)

φ0 (x)
= −mω

~

∫
xdx (198)

[1 mark] giving

ln (φ0 (x)) = −mω
2~

x2 + C (199)

and

φ0 (x) = A exp
(
−mω

2~
x2
)

(200)

[1 mark]. There is no need to normalise.

(vi)

Part (iv) tells us that there is an in�nite ladder of energies separated by ~ω [1 mark].

Part (v) tells us that there is a lowest rung to the ladder, i.e. a ground state [1 mark].

(vii) This requires us to recall that

â†φ0 (x) ∝ φ1 (x) (201)(
â†
)2
φ0 (x) ∝ φ2 (x) (202)

[1 mark]. Therefore

φ1 (x) ∝
(
x− ~

mω
∂x

)
exp

(
−mω

2~
x2
)

(203)

= 2x exp
(
−mω

2~
x2
)

(204)
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and

φ2 (x) ∝
(
x− ~

mω
∂x

)(
x exp

(
−mω

2~
x2
))

(205)

= x2 exp
(
−mω

2~
x2
)
− ~
mω

exp
(
−mω

2~
x2
)

+ x2 exp
(
−mω

2~
x2
)

(206)

=

(
2x2 − ~

mω

)
exp

(
−mω

2~
x2
)

(207)

[1 mark].

Sketches for [1 mark] total:

0 x

(no need to o�set vertically; can be plotted on di�erent axes).
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8.2 Question

(i) The Hamiltonian for the quantum harmonic oscillator is

Ĥ =
p̂2

2m
+

1

2
mω2x̂2. (208)

Write the corresponding TISE in a basis independent way, denoting the nth energy eigenstate |n〉

and the corresponding energy eigenvalue En.

[2 marks]

(ii) De�ning the lowering operator

â =

√
mω

2~

(
x̂+

i

mω
p̂

)
(209)

and the raising operator

â† =

√
mω

2~

(
x̂− i

mω
p̂

)
(210)

Show that the Hamiltonian can be rewritten as

Ĥ = ~ω
(
â†â+

1

2
Î
)
. (211)

[4 marks]

(iii) Using the canonical commutation relation, show that

[
â, â†

]
= Î. (212)

[3 marks]

(iv) Hence, by acting on both sides of the TISE with â†,show that

~ω
(
â†â+

1

2
Î
)(

â†|n〉
)

= (En + ~ω)
(
â†|n〉

)
. (213)

[3 marks]

(v) Hence explain why â† is called the raising operator.

[2 marks]

(vi) Explain why |n〉 must be an eigenstate of â†â.

[2 marks]

(vii) The corresponding eigenvalues are

â†â|n〉 = n|n〉. (214)

Find a lower bound on the ground state energy of the quantum harmonic oscillator.
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[4 marks]
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9 The Schrödinger equation in three dimensions

Please hand in answers via turnitin no later than 2pm Monday week 9 (30th November).

9.0 Videos

Please watch videos: V9.1, V9.2, V9.3, V9.4.

9.1 Worked Example

The three-dimensional in�nite-potential (cubic) well is de�ned by the potential

V (r) =

0, 0 ≤ ri ≤ L

∞, otherwise
(215)

where r = (x, y, z) and ri is element i of r.

(i) Sketch the potential.

[2 marks, C]

(ii) Write down the time-independent Schrödinger equation for this potential, explaining any terms

you introduce.

[1 mark, A]

(iii) Using separation of variables, show that this reduces to three independent copies of the TISE

for the 1D in�nite potential well.

[5 marks, C]

(iv) The energies are therefore given by

En =
~2π2

2mL2

(
n2x + n2y + n2z

)
(216)

with ni integers greater than zero. Find the degeneracy of the lowest four energy levels of the 3D

in�nite potential well.

[4 marks, E]

(v) The 3D angular momentum operators L̂i, where i ∈ [x, y, z], obey the commutation relation

[
L̂i, L̂j

]
= i~εijkLk (217)

where εijk is the Levi-Civita symbol, which is +1 for ijk = xyz and cyclic permutations, −1 for

ijk = zxy and cyclic permutations, and 0 otherwise.

De�ning

L̂± = L̂x ± iL̂y (218)
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show that

[
L̂±, L̂z

]
= ∓~L̂±. (219)

(Recall that the ± symbol indicates two separate equations, one for the top symbol and one for

the bottom.)

[3 marks, C]

(vi) Show that

[
L̂2, L̂z

]
= 0. (220)

[Hint]: you may need to use the fact that

[
A2, B

]
= A [A,B] + [A,B]A. (221)

[3 marks, C]

(vii) Explain what the result of (vi) means in terms of what can be known about the angular

momentum.

[2 marks, F]
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Answers to 9.1

(i) [a cubic box with V = 0 inside, and V = ∞ outside.] [1 mark] for a cube with the right

potentials indicated, [1 mark] for the correct axis labels.

(ii)

− ~2

2m
∇2Φn (r) = EnΦn (r) (222)

where n = (nx, ny, nz) is a set of integers with ni > 0, and ∇2 = ∂2x + ∂2y + ∂2z .

(iii)

Try the ansatz

Φn (r) = φxnx
(x)φyny

(y)φznz
(z) (223)

with

En , Enx
+ Eny

+ Enz
(224)

[1 mark]. This gives

~2

2m

(
∂2x + ∂2y + ∂2z

)
φxnx

(x)φyny
(y)φznz

(z) =
(
Enx

+ Eny
+ Enz

)
φxnx

(x)φyny
(y)φznz

(z) (225)

[1 mark] and

~2

2m

(
φyny

(y)φznz
(z) ∂2xφ

x
nx

(x) + c.p.
)

=
(
Enx

+ Eny
+ Enz

)
φxnx

(x)φyny
(y)φznz

(z) (226)

~2

2m

(
φyny

(y)φznz
(z)

d2φxnx
(x)

dx2
+ c.p.

)
=
(
Enx

+ Eny
+ Enz

)
φxnx

(x)φyny
(y)φznz

(z) (227)

where c.p. indicates all cyclic permutations of x, y, z. The partial derivative becomes a total

derivative as it acts on a function which depends on no other variables [1 mark]. This is the key

to the separation of variables method.

Now divide through by Φn (x):

~2

2m

((
φxnx

)−1
d2xφ

x
nx

(x) +
(
φyny

)−1
d2yφ

y
ny

(y) +
(
φznz

)−1
d2zφ

z
nz

(z)

)
= Enx

+ Eny
+ Enz

(228)
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[1 mark]. Finally, note that

(
~2

2m

(
φxnx

)−1
d2xφ

x
nx

(x)− Enx

)
+ (x→ y) + (x→ z) = 0. (229)

Therefore a solution is provided if φxnx
solves

~2

2m
∂2xφ

x
nx

(x) = Enx
φxnx

(x) (230)

and similarly for φyny
and φznz

[1 mark].

This is nothing other than three independent copies of the 1D TISE for the in�nite potential well,

as required.

(iv) The easiest way to do this is to tabulate the energies.

(nx, ny, nz) En · 2mL2/
(
~2π2

)
degeneracy

(1, 1, 1) 3 1

(1, 1, 2) 6 3

(1, 2, 2) 9 3

(1, 1, 3) 11 3

(2, 2, 2) 12 1

[1 mark] for each of the �rst 4 rows; the 5th is just there because I had to check which of the last

two was lower in energy (may as well leave it there in case of error!). The degeneracy is found in

each case by working out the possible re-arrangements of the numbers in the �rst column which

would give the same number in the second column.

(v)

[
L̂±, L̂z

]
=
[
L̂x ± iL̂y, L̂z

]
(231)

=
[
L̂x, L̂z

]
± i
[
L̂y, L̂z

]
(232)

= −i~L̂y ± i
(
i~L̂x

)
(233)

= ∓~
(
L̂x ± iL̂y

)
(234)

= ∓~L̂±. (235)

[1 mark] for lines 1, 3, 4.

(vi)
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[
L̂2, L̂z

]
=
[
L̂2
x + L̂2

y + L̂2
z, L̂z

]
(236)

=
[
L̂2
x + L̂2

y, L̂z

]
(237)

=
[
L̂2
x, L̂z

]
+
[
L̂2
y, L̂z

]
(238)

[1 mark]. Using the relation provided,

[
L̂2, L̂z

]
= L̂x

[
L̂x, L̂z

]
+
[
L̂x, L̂z

]
L̂x + L̂y

[
L̂y, L̂z

]
+
[
L̂y, L̂z

]
L̂y (239)

= −i~L̂xL̂y − i~L̂yL̂x + i~L̂yL̂x + i~L̂xL̂y (240)

= 0 (241)

[1 mark] for each of the �rst 2 lines.

(vii) Since the operators commute, we can have simultaneous knowledge of the corresponding

observables [1 mark].

In this case, the corresponding observables are the square of the total angular momentum, and the

z−projection of the angular momentum. [1 mark].
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9.2 Question

The three-dimensional harmonic oscillator is de�ned by the potential

V (r) =
1

2
mω2r2 (242)

where r = (x, y, z).

(i) Write down the time-independent Schrödinger equation for this potential, explaining any terms

you introduce.

[1 mark]

(ii) Using separation of variables, show that this reduces to three independent copies of the TISE

for the 1D harmonic oscillator.

[5 marks]

(iii) The energies are therefore given by

En = ~ω
(
nx + ny + nz +

3

2

)
(243)

with ni integers greater than or equal to zero. Find the degeneracy of the lowest four energy levels

of the 3D harmonic oscillator.

[4 marks]

(iv) What would be the degeneracy of the lowest three energy levels if the potential were instead

V (r) =
1

2
mω2

1x
2 +

1

2
mω2

1y
2 +

1

2
mω2

2z
2 (244)

with ω2 > ω1?

[4 marks]

(v) Denote the eigenstates of the operator L̂z, which represents the z−projection of the angular

momentum,

L̂z|m〉 = ~m|m〉. (245)

The operators L̂± obey the commutation relation

[
L̂±, L̂z

]
= ∓~L̂±. (246)

By showing the e�ect of L̂± on |m〉, explain why L̂± are called ladder operators.

[6 marks]
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10 The Hydrogen Atom

Please hand in answers via turnitin no later than 2pm Monday week 10 (7th December).

10.0 Videos

Please watch videos: V10.1, V10.2, V10.3.

10.1 Worked example

(i) State the assumptions going into Bohr's (incorrect) model of the electronic states in the atom.

[3 marks, A]

(ii) Write a mathematical expression encoding Bohr's statement regarding the quantization of

angular momentum.

[2 marks, A]

(iii) The energy levels of the atom in the Bohr model are:

En =
mee

4

2 (4πε0)
2 ~2n2

. (247)

Use this formula to calculate the ionization energy of hydrogen.

[3 marks, C]

(iv) What would be the equivalent formula for positronium (an electron-positron bound state)?

[1 mark, G]

(v) A more accurate model is provided by quantum mechanics. For a particle of mass me, in polar

co-ordinates

r = (r, θ, φ) (248)

the TISE reads

(
− ~2

2mer2
∂r
(
r2∂r

)
− ~2

2mer2

(
1

sin (θ)
∂θ (sin (θ) ∂θ) +

1

sin2 (θ)
∂2φ

)
+ V (r)

)
ψ (r, t) = Eψ (r, t) .

(249)

State the condition on V (r) for it to be spherically symmetrical.

[1 mark, A]

(vi) Explain why, if the potential is spherically symmetrical, the TISE is separable using the ansatz

ψ (r, t) = T (t)R (r)Y (θ, φ) . (250)
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[2 marks, C]

(vii) Carry out the separation into two ODEs, the radial and angular equations. Setting each equal

to the same constant ~2k2 you should �nd the radial equation

~2
d
dr

(
r2

d
dr

)
R+ 2mr2 (E − V )R = ~2k2R

and angular equation

L̂2Y = ~2k2Y.

[4 marks, D]

(viii) Explain why the TISE of the electron in the hydrogen atom takes the form

(
− ~2

2µr2
∂r
(
r2∂r

)
+

~2l (l + 1)

2µr2
− e2

4πε0r

)
ϕn,l,m (r) = Enϕn,l,m (r) (251)

explaining the meaning of µ.

[4 marks, D]
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Answers to 10.1

(i)

� Electrons travel along circular orbits [1 mark].

� The angular momentum of the electron along these orbits is an integer multiple of ~ [1

mark].

� The electron can only gain or lose energy via transitions from one orbit to another [1 mark].

(ii)

L = mvr = n~ (252)

[1 mark] where m is the mass of the electron, v is its velocity, r is the radius of the orbit, n is an

integer and ~ is Planck's constant [1 mark].

(iii)

The ionization energy is the energy to excite the electron from state n = 1 to n = ∞ (unbound)

[1 mark].

Therefore

Eionization =
mee

4

2 (4πε0)
2 ~2

[1mark]

= 13.6 eV. [1mark]

(iii)

In this case use the reduced mass µ =
(
m−1e +m−1p

)−1 ≈ me/2 to give

Epositronium
n =

1

2
EHn . [1mark]

We should really have used the reduced mass in the hydrogen case as well, but for hydrogen the

di�erence from the electron mass is smaller than the stated precision.

(iv)

V (r) = V (r).

(v)

in the case that V = V (r) the Hamiltonian is just a sum of operators acting on either r or (θ, φ).

[1 mark]

This is a su�cient condition for separability. [1 mark]
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(Or the student may show the result explicitly by beginning the separation process.)

(vi)

Substitute the ansatz:

(
− ~2

2mr2
∂r
(
r2∂r

)
+ V (r)

)
R (r)Y (θ, φ) +

1

2mr2
L̂2R (r)Y (θ, φ) = ER (r)Y (θ, φ) (253)

↓

L̂2R (r)Y (θ, φ) =
(
~2∂r

(
r2∂r

)
+ 2mr2 (E − V (r))

)
R (r)Y (θ, φ)

(254)

↓ divide by ψ
1

Y
L̂2Y (θ, φ) =

1

R
~2∂r

(
r2∂r

)
R (r) + 2mr2 (E − V (r)) .

(255)

Since both sides are always equal, while the left is a function only of r and the right is a function

only of θ and φ, they must both equal the same constant. Call this ~2k2 as requested:

1

R
~2∂r

(
r2∂r

)
R+

2mr2

R
(E − V )R , ~2k2 [1mark] (256)

1

Y
L̂2Y , ~2k2 [1mark]. (257)

Finally, multiply the top equation through by R, noting that the resulting radial equation is now

an ODE:

~2
d
dr

(
r2

d
dr

)
R+ 2mr2 (E − V )R = ~2k2R [1mark].

And multiply the bottom equation by Y giving the angular equation, which at this stage is still a

PDE:

L̂2Y = ~2k2Y. [1mark]

(vii)

Since

L̂2|l〉 = ~2l (l + 1) |l〉

the eigenstates of the angular equation are
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L̂2|l〉 = ~2l (l + 1) |l〉 = ~2k2|l〉

so k2 = l (l + 1). [1 mark]

Substituting the same result into the radial equation gives

~2
d
dr

(
r2

d
dr

)
Rl + 2mr2 (E − V )Rl = ~2l (l + 1)Rl [1mark]

where R (r) is now labelled by l, as this appears in its de�ning equation here.

(viii)

The Coulomb potential energy of the electron in the presence of the nucleus is

V (r) = − e2

4πε0r

[1 mark]. This is spherically symmetrical [1 mark]. The labels n, l, and m are all good quantum

numbers [1 mark]; µ is the reduced mass of the electron [1 mark].
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10.2 Question

(i) State the assumptions going into Bohr's (incorrect) model of the electronic states in the atom.

[3 marks]

(ii) Write a mathematical expression encoding Bohr's statement regarding the quantization of

angular momentum.

[2 marks]

(iii) Assuming (incorrectly) that the electron orbits the nucleus classically, equate the centripetal

force to the electrostatic force to obtain an expression for the electron's velocity in terms of the

radius of its orbit.

[3 marks]

(iv) Hence, using (ii) and (iii), derive Bohr's formula for the kinetic energy of the electron in the

nth orbit

En =
mee

4

2 (4πε0)
2 ~2n2

. (258)

[3 marks]

(v) A more accurate model is provided by quantum mechanics. The TISE describing an electron

in the electrostatic potential of a proton is

(
− ~2

2µr2
∂r
(
r2∂r

)
+

~2l (l + 1)

2µr2
− e2

4πε0r

)
ϕn,l,m (r) = Enϕn,l,m (r) (259)

where r = (r, θ, φ) is the position in spherical polar co-ordinates, µ is the reduced mass of the

electron, e is the charge of the electron, ε0 is the permittivity of free space, and ~ is the reduced

Planck's constant. Explain the meaning of the quantum numbers n, l, and m.

[3 marks]

(vi) Using the ansatz

ϕn,l,m (r) =
χn,l (r)

r
Y ml (θ, φ) (260)

show that χn,l (r) solves the radial equation

− ~2

2µ

d2χn,l (r)
dr2

− e2

4πε0r
χn,l (r) +

~2l (l + 1)

2µr2
χn,l (r) = Enχn,l (r) . (261)

[4 marks]

(vii) Find an approximate solution in the limit r →∞, stating any assumptions.

[2 marks]
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