
Lagrangian Classical Mechanics: Summer Recap

1. The (classical) simple harmonic oscillator in 1D describes a particle in a potential

V (x) =
1

2
mω2x2. (1)

Explain why the action for a particle in a simple harmonic oscillator, between times t = 0 and t = T ,
is given by

SSHO [x] =
m

2

∫ T

0

dt′
(
ẋ2 − ω2x2

)
. (2)

[3 marks]

S =

∫
dtL

[1 mark]
and

L = T − V

[1 mark]
so

S =

∫ T

0

dt
(
1

2
mẋ2 − 1

2
mω2x2

)
=

m

2

∫ T

0

dt
(
ẋ2 − ω2x2

)
as required.
[1 mark]

2. Derive the Euler Lagrange equations for a general action.

[5 marks]

We must extremise the action: (
∂S [qi + λϵi]

∂λ

)
qi,ϵi

∣∣∣∣∣
λ=0

= 0. (3)

The vector function ϵi (t) parameterises a variation away from the classical path qi (t). We require that
the variation is zero at the start and end points of the trajectory:

ϵi (t0) = ϵi (tf ) = 0. (4)

1



Specifically:

S [qi + λϵi] =

∫ tf

t0

L (qi + λϵi, q̇i + λϵ̇i, t)dt (5)

⇓ chain rule(
∂S [qi + λϵi]

∂λ

)
qi,ϵi

=

∫ tf

t0

{(
∂L

∂qi

)
q̇i,t

(
∂ (qi + λϵi)

∂λ

)
qi,ϵi

(6)

+

(
∂L

∂q̇i

)
qi,t

(
∂ (q̇i + λϵ̇i)

∂λ

)
qi,ϵi

+
����������(
∂L

∂t

)
qi,q̇i

(
∂t

∂λ

)
qi,ϵi

}
dt (7)

=

∫ tf

t0

{(
∂L

∂qi

)
q̇i,t

ϵi +

(
∂L

∂q̇i

)
qi,t

ϵ̇i

}
dt (8)

Now integrate the ϵ̇ term by parts in Eq 8:(
∂S [qi + λϵi]

∂λ

)
qi,ϵi

=

∫ tf

t0

{(
∂L

∂qi

)
q̇i,t

− d
dt

(
∂L

∂q̇i

)
qi,t

}
ϵidt+

[(
∂L

∂q̇i

)
qi,t

ϵi

]tf

t0

(9)

but the boundary term vanishes by assumption. Applying the principle of least action, Eq 3, we require(
∂S [qi + λϵi]

∂λ

)
qi,ϵi

∣∣∣∣∣
λ=0

= 0 =

∫ tf

t0

{(
∂L

∂qi

)
q̇i,t

− d
dt

(
∂L

∂q̇i

)
qi,t

}
ϵidt. (10)

This is true for all ϵi (t) (since this arbitrary function has not been specified). This gives(
∂L

∂qi

)
q̇i,t

− d
dt

(
∂L

∂q̇i

)
qi,t

= 0. (11)

3. Show that classical trajectories of the Harmonic oscillator xc (t) obey

ẍc = −ω2xc. (12)

[3 marks]

Classical trajectories obey the Euler Lagrange equations:

d
dt

(
∂L

∂ẋ

)
− ∂L

∂x
= 0

[1 mark]
giving

d
dt

(mẋ)−
(
−mω2x

)
= 0

[2 marks], one for each part, or

mẍ+mω2x = 0

which simplifies to the stated expression.

4. Solve for the classical trajectory x (t) assuming x (t = 0) = 0 and x (t = T ) = X.



[3 marks]

The general solution is

xc = A sin (ωt) +B cos (ωt)

[1 mark]
and substituting the boundary conditions gives

x = X
sin (ωt)

sin (ωT )

[2 marks].

5. Hence evaluate the action between times 0 and T , subject to these same boundary conditions.
Check that your answer has the correct dimensions.

[3 marks]

Insert the expression into the action:

SSHO [x] =
m

2

∫ T

0

dt′
(
ẋ2 − ω2x2

)
=

mX2ω2

2 sin2 (ωT )

∫ T

0

dt′
(
cos2 (ωt)− sin2 (ωt)

)
=

mX2ω2

2 sin2 (ωT )

∫ T

0

dt′ (cos (2ωt))

=
mX2ω

4 sin2 (ωT )
[sin (2ωt)]

T
0

=
mX2ω sin (2ωT )

4 sin2 (ωT )

=
1

2
mωX2 cot (ωT ) .

[2 marks]
To check the dimensions, note that

[S] = ET

and since [
1

2
mωX2

]
=

[
1

2
mω2X2

] [
ω−1

]
= ET

this works out. Strictly there are some dimensionless radians in there, but they actually make sense if
thought about systematically (e.g. E = hf = ℏω, and h and ℏ have the same units).
[1 mark]

6. Find the momentum p conjugate to the position x for the classical harmonic oscillator.

[2 marks]

p ≜
∂L

∂ẋ



[1 mark]
giving

p = mẋ

[1 mark]

7. By performing a Legendre transform on the Lagrangian L (ẋ, x), derive the Hamiltonian of the
simple harmonic oscillator H (p, x).

[3 marks]

To calculate the Hamiltonian from the Lagrangian:

H (x, p) = pẋ− L (x, ẋ)

[1 mark]
giving

H (x, p) = pẋ−
(
1

2
mẋ2 − 1

2
mω2x2

)

[1 mark]
and we now need to eliminate ẋ in favour of p:

H (x, p) = p2/m−
(
1

2
p2/m− 1

2
mω2x2

)
=

p2

2m
+

1

2
mω2x2.

[1 mark]
8. Sketch the phase space trajectories for the classical harmonic oscillator.

[3 marks]

The trajectories are clockwise [1 mark] circles [1 mark] centred on the origin [1 mark].


