Lagrangian Classical Mechanics: Summer Recap

1. The (classical) simple harmonic oscillator in 1D describes a particle in a potential

V(x) = %mw2z2. (1)

Explain why the action for a particle in a simple harmonic oscillator, between times t =0 and ¢t =T,
is given by

Ssno [z] = %/0 dt’ (9'52 — w2x2) ) (2)
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as required.
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2. Derive the Euler Lagrange equations for a general action.

[5 marks]

We must extremise the action:

(W> =0 (3)

The vector function ¢; (¢) parameterises a variation away from the classical path ¢; (t). We require that
the variation is zero at the start and end points of the trajectory:
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Specifically:
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Now integrate the ¢ term by parts in Eq 8:
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but the boundary term vanishes by assumption. Applying the principle of least action, Eq 3, we require
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This is true for all ¢; (¢) (since this arbitrary function has not been specified). This gives

oL d [ OL
- — - =0. 11
(aqi>¢?i7t dt (a(h)qut ( )

3. Show that classical trajectories of the Harmonic oscillator x. (¢) obey
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to

i, = —wiz,. (12)
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Classical trajectories obey the Euler Lagrange equations:
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giving

[2 marks], one for each part, or

mi 4+ mw?z =0

which simplifies to the stated expression.

4. Solve for the classical trajectory z (t) assuming  (t =0) =0and z (t =T) = X.



[3 marks]

The general solution is

x. = Asin (wt) + B cos (wt)
[1 mark]
and substituting the boundary conditions gives

sin (wt)
sin (wT)

[2 marks].

5. Hence evaluate the action between times 0 and 7', subject to these same boundary conditions.
Check that your answer has the correct dimensions.

[3 marks]

Insert the expression into the action:

Ssmo [z] = 5 dt (i* — w?2?)
0
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= imwX2 cot (wT) .

[2 marks]
To check the dimensions, note that

[S] = ET

and since
1m(,uX2 = }mw2X2 [wil] =ET
2 2

this works out. Strictly there are some dimensionless radians in there, but they actually make sense if
thought about systematically (e.g. E' = hf = hw, and h and /i have the same units).
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6. Find the momentum p conjugate to the position = for the classical harmonic oscillator.
[2 marks]
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giving
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7. By performing a Legendre transform on the Lagrangian L (&,x), derive the Hamiltonian of the

simple harmonic oscillator H (p, ).

To calculate the Hamiltonian from the Lagrangian:

H(l‘,p) =pi— L (z,2)
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and we now need to eliminate & in favour of p:

1 1
H (x,p) = p*/m — (2p2/m - 2mw2x2>

2
1
= g + g
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8. Sketch the phase space trajectories for the classical harmonic oscillator.

The trajectories are clockwise [1 mark]| circles [1 mark] centred on the origin [1 mark].
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[3 marks]



