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List of Definitions assumed from Quantum Mechanics

The canonical commutation relation [&,p] = Al

Dirac notation the notation |¢) for complex vectors. Also called bra-ket notation, with (¢| the ‘bra’,
|1} the ‘ket’; and (@|y)) a bracket.

Expectation value (A) = (1)|Al¢). The mean value of an operator measured by a given state.
First quantization a wave-like description of quantum objects: ¥ ().

The Hamiltonian the energy operator (assumed time independent in this course). H=p? /2m + v,
or Hy (x) = —h%Y" /2m + V (x) 1.

The Heisenberg picture the description of quantum states as time independent, and operators as
time dependent.

The Heisenberg uncertainty principle o0, > % ‘<[A, B] >‘ where o 4 denotes the standard de-
viation of operator A.

Hilbert space a linear vector space with an inner product and square-normalisable vectors
Hermiticity A = A" where AT = A*T. For differential operators: ffooogo(x)* (/11/} (m)) dr =
I (Ae @) v (@) da.

Ladder operators an operator which raises or lowers the quantum number of a state it acts on. Also
called creation/annihilation operators or raising and lowering operators.

Normalisation the prefactor on a wavefunction ensuring that the total probability to find the particle
is one.

The number operator in the harmonic oscillator, the operator whose eigenstates are the energy
eigenstates and whose eigenvalues are the level of the state.

Operators objects which act on states to give states (either the same state, or a different one). In
fininte dimensional Hilbert spaces these are simply matrices acting on vectors to give vectors.
In infinite dimensional Hilbert spaces these are differential operators acting on functions to give
functions.

Orthonormality orthogonal and normalised. If a set of states is orthonormal the inner product of
any state with itself is 1 and the inner product between any two different states is zero.

The probability density p integrated over a region of space, this gives the probability to find the
particle in that region. p(z,t)dz = [ (z,t)|° dz is the probability to find the particle between
z and x + dz at time t.

The probability current density j the current density associated with a flow of probability: j (z,t)
o (WVUT =9 V).

The probability amplitude the complex number associated to each point in space by the wave-
function .

Quantum numbers eigenvalues of operators which commute with the Hamiltonian; expectation val-
ues which do not change in time.

The Schrodinger picture the description of quantum states as time dependent, and operators as
time independent.

Second quantisation a particle-like description of quantum objects in terms of ladder operators.

Stationary states energy eigenstates. So called as their probability densities are time independent.



Superposition summing solutions to the TDSE to get a new solution to the TDSE

The time dependent schroedinger equation i0;|v) = ﬁ|z/)>, or in the position basis i) = Hip.
Abbreviated TDSE.

The time independent schroedinger equation f]\i/}) = E|¢), or in the position basis Hy (z) =
Ev (z). Abbreviated TISE.

The wavefunction v a function which assigns a complex number to each point in space. The mod-
ulus square is the probability density p.



Conventions on the Fourier transform

You will recall there are various conventions adopted with regard to factors of 27 in Fourier transforms.
To my mind the simplest to remember is

f (k) :/dDac exp (—2wik - x) f (x) (1)
(@) = / APk exp (2rik - @) f (k). 2)
From here you can rescale variables as you like, for example:
k— k/2n (3)
gives
Fo = [ @Pwep (i) f @ (4)
dPk _ .
F@)= [ e k@) 0 (5)

(where f (k) has a rescaled argument).
Since I will use the (+ — ——) signature, spacetime Fourier transforms in D + 1 dimensions must have
the opposite signs in the exponents:

fk) = / APz exp (2mik,a”) f (z) (6)
f(x)= / APk exp (—2mik,zt) f (k). (7)

For the discrete Fourier transform I will use

N
fe= Z exp (—2wikn/N) fn (8)
n;1 N )
fn= i Zexp (2mikn/N) fi. 9)
k=1



Units and Dimensions

These notes will adopt the common practice of using ‘natural units’ with 4 = ¢ = 1. This sets
energy/angular frequency (F = hw = pc) and space/time (ct = x) on equal footing,.



1 Introduction & Background

1.1 Lagrangian Classical Mechanics

In Lagrangian mechanics we work with generalised co-ordinates’

T, (t) = Tt (10)

and generalised velocities

T (1) & By

where n € [1, N]. T will typically neglect to write the explicit time dependence of x,, and &, when it
is clear. For example, a ball moving in 3D would require N = 3 components of position, and three of
velocity, to specify its state.

Define the Lagrangian

L=T-V (11)

where T is the kinetic energy and V the potential energy. Specifically, in the absence of magnetic
fields,

N
1 .
L=Y" immi — V(). (12)
n=1

It will be convenient to define the function which is being summed over:

N
L= L(xn in,t). (13)
n=1

When we move to fields, L is called the Lagrangian density. It can include an explicit dependence on
time (via a time-varying potential). We will typically not consider such cases, just as we typically don’t
include an explicit time dependence in Hamiltonians in quantum mechanics. Hence, time dependence
will typically enter only implicitly via z,, ; and @y, ;.

Define the time integral of the Lagrangian to be

the action S:

ty ty N
to o p=1

where

[x], = zp. (15)
In Lagrangian mechanics, we speciy the problem by writing down the action, then we find the dynamics
using

the principle of least action:

classical paths @ (t) extremise the action S.

Of course, in classical mechanics, all paths are classical, so these are simply the solutions to the problem
you’d like to solve. When we move to quantum mechanics, there will be amplitudes associated with
non-classical paths.

To extremise the action we use:

=0. (16)
A=0

(65 [:g;r Ae])m

11t is common in classical mechanics to use the symbol g; instead of x,, but I will avoid this as it is much more
common to use T, in quantum mechanics.




Here, the subscripts to the parentheses indicate what is held constant in the partial derivative (always
good practice!). Then A is set to 0 after the differentiation. € (¢) parameterises a variation away from
the classical path « (t). We require the variation to be zero at the start and end points of the trajectory
in order for the boundary conditions to be obeyed:

€ (o) = €(ty) = 0. (7)
In the general case we find
ty
S [z + e :/ D L (@0 + Nep,ydn + Aén) di (18)
to n

|} chain rule

S (), () (), (2 o
[ {(#) o (3), e

Now integrate the ¢, term by parts in Eq 20:

(8S[m+)\6> / Z{(ax) ) ;(;i)%}endw ;(88;)6]? (21)

but the boundary term vanishes by assumption (Eq 17). Applying the principle of least action, Eq 16,

we require
0S [z + A€ d /oL
(™% > =0= / 2 { (ax> ~ai (a3,) } ot 22

A=0 n
This is true for all €, (t) (since this arbitrary function has not been specified). Therefore we have the

Euler Lagrange equations:
oL oL
dad - = =0. 2
(ax) (m) 0 (23)

You will more commonly see this written in terms of the Lagrangian as

(3,5,

where the derivative with respect to a vector is understoof component-wise as in Eq 23. With the
general Lagrangian of Eq 12 we arrive at Newton’s 2nd law:

(83 [ag;r Ae])m

V' (z) = mi. (25)

1.2 Functionals

The action is a functional. In general, a function takes in a number and returns a number. A functional
instead takes in a function and returns a number.

Specifically, the action takes as its argument the entire path z,:. To see this, note that the action
involves an integral over ¢t and a sum over n. Hence, it cannot itself depend on ¢ or n. It returns a
number S.

In contrast, the Lagrangian density is a function. It takes in a specific instance of z,; and &, ; and
returns a number L.

A functional is written using square brackets S [x] as opposed to the parentheses of a function
L (-rn,ta jjn,t)-



We can derive the Euler Lagrange equations more succinctly by defining
the functional derivative

65 [x] A <8S[w+Ae}>M (26)

oxr o\
A=0

This is easiest to understand with an example. Consider the action

N
Slx] = / dat' %ma’cfmt, —V (@) (27)

m=1

where T have used alternative dummy integration and summation variables ¢ and m; & = dz/d¢’ here.
Now we have

58 [x] 5 Sen 1,
= dt - r =V (T 28
0Tpt 0%y / = g M Em.t (@m.vr) (28)
N 2
1 o0&,y OV ()
= [dt' )y —m— ™ 29
/ n;l 2m drnt (an,t ( )
The chain rule gives

5 [a] al 5 AV (2mer) 0
_ dt, . _— m,t’ B m,t’ m,t’ 30
5xn,t / ng:l M.t 5-rn,t dxm,t’ 6xn,t ( )

and integration by parts on the first term, using the boundary conditions, gives

N
S [11] _ /dt/ Z —mﬁfm}t/ (Sl‘m)t/ _ dv (xm}t’) (Sl‘m,t' (31)
m=1

5xn,t 5;&1,,5 dxmt/ 51’th

N
. dVv (-Tm t’) 6$m t’
=— [ dt E .t/ ’ . 32
/ 2 (mm Ry dr 0 5o (32)

Finally, we need the relation

ox t
T = G b (t— 1 33
o (t—t) (3)

to eliminate the sum and integral, giving
58 [x] S AV (2, ) :

=— [ dt mt + ———") O (t — 1 34
5 / m; R (t=1) (34)

. dVv
= — (mxmt + da(;vnt)) (35)

n,t

where the dots now mean derivatives with respect to t. Setting the result equal to zero, according to
the principal of least action, again gives

dV (l'»mt)

d{En’t (36)

min,t = -
as we found in Eq 25.
In general it is typically simpler to write functional derivatives out in full, as in the previous section,
but the notation is convenient.
Note that the action is not directly a function of z,,;, as n and ¢ are summed/integrated over. Nev-
ertheless, we take a functional derivative with respect to x, ;. The effect is to eliminate the sum and
integral, which promotes the respective n and t variables from dummy variables to free variables.

10



1.3 Hamiltonian Classical Mechanics

The Hamiltonian density is defined to be the Legendre tranform of the Lagrangian density:

H (x7zapn) = Dndn — L (xvu xn) (37)
where the Hamiltonian is:
N
H=> H(xnpn). (38)
n=1

In classical mechanics this is simply a function. The ‘momentum conjugate to &,,’ is defined to be

. 0L

Ot

pn,t (39)

where again I will typically neglect to write the time label explicitly. In Hamiltonian mechanics, the
time evolution (dynamics) are found using

Hamilton’s equations of motion:
OH OH
.TL = ; .n - - . 40
=) o =) (10)

1.4 Relativistic conventions

I will use the the (+ — ——) signature for the Minkowski metric:
1 0 0 0
y 0 -1 0 0
77“ = Nuv = 0 0 1 0 (41)
0 O 0 -1

1.4.1 Covariant and Contravariant indices

Lorentz contra-variant 4-vectors are denoted with non-bold symbols with upper Greek indices

v=(t) s w=(0) (42)

and Lorentz co-variant 4-vectors? such as

s 0
B e
are denoted with lower Greek indices. Covectors can be created from contravectors by lowering the
index with the Minkowski metric:

(43)

x, = N’ (44)
and vice versa:
ot ="z,
Under Lorentz transformations A, contravectors transform as
ot — () = AF 2 (45)

and covectors transform as

2A helpful mnemonic: “co is low”.

11



o
where
AV =(ATH" (47)
E.g. a Lorentz boost in the x-direction is
AN AN v (t—Bz) \*
/ J—
; . z/ _ v(xy pt) (48)
z b4 z
vy =By 0 0\" [t
By v 00 x
= 49
0 0 1 0 Y (49)
0 0 01 L\ Z
= A¥ z". (50)

Spacelike 3-vectors are typically denoted with bold symbols, although their individual components n
(Latin indices) are non-bold:

[x], = Tp. (51)

Similarly, 1D spacelike vectors are non-bold, as in Eq 48. This will be important in Section 2 where
we primarily consider a non-relativistic 1D chain.

1.4.2 Lorentz invariant quantities

The following integration measures are Lorentz invariant:

/d% == /dt/d3a: (52)
/ dip & / dE / d®p. (53)

To see this, note that a Lorentz transformation simply enacts a change of integration variables; hence,
we need the Jacobian

!
/d4x—>/d4 ’:/‘det@if)‘d%:/met (A",)|d*z (54)

|det (A*,)| =1 (55)

but

for any Lorentz transformation (they conserve spacetime volumes).
Einstein’s equation

E? =m? 4 p? (56)

is of course also Lorentz invariant, and therefore so is any function of E? —m? — p2. In particular, the
quantity

5 (B2 —m? - p?) (57)

is Lorentz invariant, where we have defined

12



the Dirac delta function
5(x)éi/ooe (ipzx)d (58)
=~ o - Xp (tp p.
Heuristically,
0
5(3:)%{ 7Y (59)
00, T=1y
normalised such that
o0
/ dz6 () = 1. (60)
—o0
As a result,
/d4p5 (E* —m® — p?) (61)
must also be Lorentz invariant. Carrying out the E integral in Eq 61 reveals that
d’p . . . .
BV is also a Lorentz invariant integration measure (62)
P
(the factor of 2 proves convenient later) where?
Ep & /m?2 + p? (63)
=m (64)
= Wp. (65)
We can similarly define a
D-dimensional Dirac delta function:
3 (@) 2 2n) " [ dPpexp(ip-a) (66)
0
~ { ;X FY (67)
00, T=y
with / dPxsP (z) = 1. (68)
Using this, we have that
d3p
—2E,6% (p) =1 69
| 5525 ) (69)
and hence
2F,0° (p) is a Lorentz invariant 3D delta function. (70)

onal:

(plg) =6°(p—q)

hence it is natural to define

In non-relativistic quantum mechanics we know that two different momentum eigenstates are orthog-

(71)

4-momentum eigenstates |p) £ \/2Ep|p)

(72)

3Technically this also requires that choosing the positive energy branch is Lorentz invariant, which it is.

13




(where p is understood to be a 4-vector and p a 3-vector) so that

(pla) = \/2Ep2Eq(plq) (73)

=2E,6° (p— q) (74)

which is the Lorentz invariant 3D delta function defined above. Note that while p* is contravariant,
|p) does not carry an index: p is just a convenient label, and quantum states are neither covariant nor
contravariant.

14
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Figure 1: The quantum harmonic oscillator potential V (z) = %mw%Q and first few eigenstates.

2 Canonical Quantization of Fields

In this chapter we will see in full detail how to build a quantum field. We will focus on the simplest
case of a real, scalar, non-relativistic field. As we will see, this will turn out to be a quantum
theory of sound propagating through a crystal. This is the phonon field, whose particle excitations are
called phonons.

References
e N. W. Ashcroft and N. D. Mermin, Solid State Physics (Harcourt 1976), Appendix L
e R. P. Feynman, Statistical Mechanics (Advanced Book Classics, 1972) Chapter 6

e A. Altland and B. Simons, Condensed Matter Field Theory (Cambridge University Press, 2010),
Chapter 1

e T. Lancaster and S. J. Blundell, Quantum Field Theory for the Gifted Amateur (Oxford Uni-
versity Press, 2014), Section I

e S. M. Girvin and K. Yang, Modern Condensed Matter Physics (Cambridge University Press,
2019), Section 6.2

2.1 Recap: Quantum Harmonic Oscillators

Recall the Time Independent Schroedinger Equation (TISE) for the quantum harmonic oscillator:

Hn) = <pm + 1mw2562) In) = Epn). (75)

The potential is shown in the position basis in Fig. 1.

An elegant way to find all eigenstates and eigenvalues is to use creation and annihilation operators
(aka ladder operators, aka raising and lowering operators). The intuition developed in this simple QM
problem forms the entire basis of QFT.

2.1.1 Creation and Annihilation Operators

at & ﬁ (:c — n;};a) : (76)

It is non-Hermitian. Its hermitian conjugate is the lowering operator

o [ (a4 s). ™

15

The raising operator is




This gives

mw

2 m2w?  mw

The term in nested parentheses is just the commutator

[#,p] =il
where I is the identity operator. Hence,
)
ata mw .o p 1~
a'a =—— — I
2 2mw 2

and so

1- ~
w (a*a + 211) =H.

Therefore the TISE can be written

A2 .
R 7
d*d:(x2+ b + — (Zp — p2)

).

Hln) =w (eﬁa + ;}1) In) = E,|n).

2.1.2 Commutation relations

The commutator of the creation and annihilation operators is

[a,a'] = == [@Jr meﬁ,ﬁ:—
= —i[2,p]
and 5o
[a,a'] =T

1

—p
mw

|

The commutator of the operators with the Hamiltonian is therefore:

{H,a*} - [w (afa + ;1) ,a*}

=w (a'aa" —a'a'a)

=wa' [a,a']
giving

[I:I, dq =wal
Similarly,

[Ha} = —wa

16
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2.1.3 Energy eigenstates and eigenvalues

Using Eq. 88 we can see the effect of a' on the TISE of Eq. 81:

Hln) = Ey|n) (90)

!
a'H\n) = E,a'|n) (91)

!
(ﬁa* - [H aTD In) = Enat|n) (92)

!
(HCLT - waT) In) = Enaf|n) (93)

and the final result

H (a'|n)) = (B, +w) (a'|n)). (94)

That is, if |n) is an eigenstate of the harmonic oscillator with eigenvalue E,,, then af|n) is an eigenstate
with eigenvalue F,, + w. Repeating the process [ times we find

Y N
i ((aT) |n>) = (B + ) ((aT) |n>) . (95)
This tells us that the energy levels are evenly spaced, and that
(@' n) o [n+1). (96)
Similarly, we find
H (a|n)) = (B, —w) (|n)) . (97)

The creation and annihilation operators move the state up or down the rungs of an energy ladder with
evenly spaced rungs. While there exist an infinite number of rungs, the energies do not stretch down
to negative energies. To see this, first note that

lan)|* > 0 (98)

because the thing on the left, whatever it is, is the square modulus of something, and that is always
> 0. Expanding it out we have

(nlafaln) >0 (99)
m%ﬁ - %|n> >0 (100)
2By~ glm) 20 (101)
E, > % (102)

Therefore there is a lowest-energy state, a lowest rung to the ladder. This is the ground state which
we denote |0). This is just a convenient label for a ket. It is not the number zero! You can think of it
as shorthand for |1,,—o). The ground state has the property that

a0y =0 (103)

17



where the right hand side really is the number 0, so that any further action of lowering operators
continues to return 0. To find the energy of the ground state we can work in the position basis using

the definition of the lowering operator from Eq. 77:

mw [ . T
1
1 d
($+de>¢o($)0

This is a first order linear ODE which has the solution
¢o (z) < exp (—%xz) .
Inserting this back into the TISE gives

This is the ground state energy, also called the zero-point energy.

Combining the results, we see that

i) = o (aa+ 3 ) In) = (n+

for integer n. Defining the ‘number operator’

>
(1>

we see that

2.1.4 Normalization

We have that

1

(nla’aln) =n
1

laln)|* = n
1

Therefore, since
aln) o< |n — 1)
and
n—1n-1)=1

we have

aln) = v/nln — 1).
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Similarly,

lat|n)|* = (nfaal|n) = (nlf + [a,af] [n) = n +1 (116)

and so

a'ln) =vVn+1ln+1) | (117)

By induction we can also see that

(@")"10) = [n). (118)

1
N

2.2 Second quantization

e Equation 118 tells us we can create the n*" excited state of the harmonic oscillator by acting n
raising operators on the ground state.

e Since all rungs of the ladder are evenly spaced with spacing w, we can also interpret the n'®
excited state as the presence of n identical particles each of energy w.

e This is the origin of the name ‘creation and annihilation operators’: they create and annihilate
particles in a second-quantised description.

e ‘First quantization’ is the realisation that classical particles exhibit wave-like properties in QM.
We call the process of rewriting a problem in terms of creation and annihilation operators ‘second
quantization’. It is the realisation that classical waves gain particle-like properties in QM. The
descriptions are equivalent.

e The fact that we can fit multiple particles into the same state identifies a' as the creation operator
of a boson.

2.3 N Isolated Quantum Harmonic Oscillators

Now consider N independent QHOs evenly spaced with spacing a along a chain. Assume periodic
boundary conditions, so that site N + 1 is equivalent to site 1 (i.e. the chain is really a ring). The
Hamiltonian is

Y2
Z Doy + gme’dl. (119)
We can rewrite this using creation and annihilation operators, each with a site label:
al 1
H= ala, + =1 . 120

Here, G, creates an excitation of energy w at site n. We can also take advantage of periodicity
(translational symmetry) to Fourier transform, using

a, =

é (zm)ak (121)
al = i: (2mkn> (122)

a\~

ﬂ\
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Figure 2: A classical chain of balls and springs.

to give

H:Z wal &n+w2HN (123)
1 1.
=5 w exp 27m akaq + wiﬂN
n,k,q
o i
= Zw(Skqakaq + wi]IN (124)
k.q
At i
= Z wayay + W§HN (125)

k

where we used the useful expression

i (2771— (k — q)) = kg (126)

which follows since the sum is over equally distributed points around the unit circle. In fact we can
also use this expression to rewrite as

N

N 1A

H=>Y w (a;ak + 2]1) . (127)
k

In this case, dL creates an excitation of energy w with wavevector k,, = wk/N, where 1 < k < N.

The Hamiltonian in Eq 119 is overly simplified: the QHOs are uncoupled, and so it is hard to imagine
how one might physically create an excitation across multiple oscillators. It is a remarkable result,
which we will derive shortly, that when interactions are turned on between the oscillators, provided
translational invariance is preserved, the effect is merely to add a wavevector dependence to the angular
frequency w — wy. That is:

N
~ E 1-
Hinteracting = ;wk <a2ak + 2]I> . (128)

Before seeing how this works, let us first build intuition by looking at the classical problem.

2.4 N Coupled Classical Harmonic Oscillators

Consider a classical chain of balls connected by springs of stiffness K (Fig. 2) along an N-site chain.
This is a chain of coupled classical harmonic oscillators. The balls oscillate about equilibrium positions
an (where a is a lattice constant and n € [1,N]). Let the position of ball n at time ¢ be u,, and
define the displacement from the equilibrium position to be z,; = an + u, ;. From now on we will
only care about the small displacements wuy, ;.

2.4.1 Recap: forces on balls and springs

Wobbling one of the balls will lead to a vibration propagating through the chain. To find the dispersion
relation of this propagating mode, consider the force on the n'" ball (using Newton’s 2nd law):

min,t =K (9Cn+1,t - xn,t) - K (xn,t - mnfl,t) . (129)

We need the normal modes of oscillation. To find them, first take advantage of the translational
symmetry by applying a Fourier transform:
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1 & ( kn
Tpy = i ];/dw exp <2m (N — wt>> Qk,w (130)

(note that the sum is over integer ka, so that k now has units of inverse length) to give

m al . 2 - K al . .
Wi ;/dw exp (27i (kn/N — wt)) (—w?) Qrw = i ;/dw exp (2mi (kn/N — wt)) (Qkw (exp 2mik/N) — 1) — (1 —

(131)
We can inverse Fourier transform to find a separate solution for each pair of k£ and w:
—Mwi Q= 2K (cos (21k/N) — 1) Q. (132)
where the notation wy emphasises that this is a specific solution w (k). Hence
2K
wi = \/ (1 —cos (2wk/N)) (133)
m

= 2\/5 sin (7\’:)‘ (134)

(noting that only the positive root is physical). Around k = 0 (long wavelengths) the mode is linearly

dispersing:
K
~— |k 135
N (135)

which defines the speed of sound 4/ % along the chain.

2.4.2 The classical Lagrangian

Thanks to work carried out in Bristol by Aharonov and Bohm, we know that in quantum mechanics
we must deal with potentials rather than forces. To set up the quantum problem we must rephrase the
classical problem construct the Lagrangian, and from there the Hamiltonian, of the classical system.
We will then quantize this in Section 2.5.

The classical balls and springs model is governed by the Lagrangian density

1 1 1
L= émmi - imoﬂ (Tn1 — an)® — §mw2 (Zn — Tn_1)”. (136)
To check this is equivalent to Eq. 129, we can derive the classical equations of motion using the Euler
Lagrange equations:
oL d /oL
_ (== =0 137
(), i (). 137

along with the identities

O0xp, 0T, B
( o ) _ ( e ) — S (138)

where we have introduced the
Kronecker delta:

(139)

We find
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oL al
(833 ) ] Z _mWQ (merl - mm) (6m+1,n - 5m,n) - mWQ (xm - xmfl) (5m,n - 5m71,n) (140)

m=1

—2mw? (2T, — Tp—1 — Tpt1) (141)

and

oL .
<85€n ) N =mdn, (142)

so that the Euler Lagrange equations read

—2mw? (22, — Tp_1 — Tpy1) — M, =0 (143)
! (144)
mi, = 2mw? (Tnp1 — o) — 2mw? (Tn — Tp_1) (145)

which, as expected, is Eq. 129 (with force constant K = 2mw?).

2.4.3 The Classical Hamiltonian

To find the Hamiltonian, we need the momentum canonically conjugate to the position. This is defined

to be:
s [ OC
Pn = ((%n ) . (146)

which in this case gives

Pn = MLy (147)

The Hamiltonian is then the Legendre transform of the Lagrangian:

H2Y pp-in— L. (148)
n

In this case we find

1 1 , 1 )
H= Z %p% + gmw2 (Tpg1 —n)" + imw2 (Xn —Tp—1)". (149)

This is the classical Hamiltonian for the balls and springs model. It is a constant of motion corre-
sponding to the total energy of the system.

2.5 N Coupled Quantum Harmonic Oscillators

Now let’s combine these ideas, with a chain of coupled quantum harmonic oscillators. Our aim will be
to confirm the intuition that we can decompose the problem into one of N independent QHOs, one
for each wavevector k.

To create the quantum problem we can ‘canonically quantize’ the classical Hamiltonian in Eq. 149.
This simply means promoting observables to operators:

N
N 1 R R R R
H= E Pr 4 2 n? E (Zns1 — &n)* + (En — Bny)’ (150)
which obey the ‘canonical commutation relations’:
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[T, Prm] = iﬁ(snm (151)
[jjna i'm] =0 (152)

Note that operators on different sites always commute. We can again take advantage of translational
invariance to define

N
Tp = \/% kZ:lexp (2mikn/N) Qg (154)
1 N
i 7% kz::lexp (—2mikn/N) I}, (155)
and
1 N
Qr = \/—N;e){p(—%ﬂkn/N) Zn (156)
1 N
I, = 7% ; exp (2mikn/N) pr, (157)

where I have reverted to summing over integer k (rather than integer ka). Note that these tranformed
co-ordinates also obey canonical commutation relations:

(@1t ] = 5 3 exp (2mi (am — k) /N) o] (158)
= % Z exp (2mi (qm — kn) /N) ill6,,, (159)
= %Zexp (2i (¢ — k) n/N)ihl (160)
= iﬁékq (161)

using Eq 126 in the last line. Similarly,
[Qka@q} = {ﬁk,ﬁq} =0. (162)

However, Qk and fIk are no longer Hermitian. Rather,

Q= Q- (163)

In these new variables the Hamiltonian reads

H= ﬁ g:q exp (=2mi (k + q) n/N) T, 11, (164)
+ TZX; > QrQqexp (2mi (k + q) n/N) (exp (2mi (k + q) /N) + 2 + exp (=2 (k + q) /N) — 2exp (2mik/N) — 2exp (—2

n,k,q

(165)

where I have expanded the potential terms. Hence
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- 1 SN E\ ~ -
H = o ZH_ka + 4mw? Zsinz <7;V> Q_1Qx (166)
k k
or
~ 1 -~ N 1 9 A o
H = Z %H,kﬂk + §mka,ka (167)
k
Uit + Lnw2oto
where
N . [Tk
Wi 2 V8w [sin ~ )| (169)

Unfortunately Eq. 167 makes it clear that states at k£ and —k are coupled, which is not quite what we
want. If we can decouple the modes, we can find the eigenstates and eigenvalues using creation and
annihilation operators as for the single harmonic oscillator. A clever definition of creation operator
allows us to do this while simultaneously decoupling k from —k (the two steps can also be done
separately, with more algebra). We define a different creation operator for each mode k:

ata [k (4 Lﬁ 170
a, 5 (Q—k o k) (170)
giving
N mweg At 1 ot
=4/ — 1I 171
o= (@ + i) )
= Ik (Qk + Zﬂk> . (172)
2 mwp,

[, af] = m;uk [Qk n mikﬁ—’“Q—q - mik ﬂq] (173)
_ % ({Qm—miukﬂq] + [mikﬂk,QQD (174)
(0] - foon) s
= gl (176)
and
[k, dg] = [ag,a;} = 0. (177)

We can now re-arrange to get

Qr = 27;(% (dk + &ik) (178)
I, =i m;"’“ (a; - &,k) (179)

and so
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N

: oo 1 o

H=>"—Tj1I + -mwiQLQx (180)
k=

2m 2
1
N w,
R (R ICE RCREI I RN ) S
k=1
N w,
= 3= (anaf +al oo+ afan +aal ) (182)
k=1
N
1 1 1.
_ T s
= ;Wk (QCLL% + §Ctkafk + 2]1) (183)

where I have used the commutators. The modes are now nicely decoupled (k and —k terms appear
separately). As a result, noting that k is periodic (as is n), we can label states in such a manner that

N
N 1A
= wi (a;ak + 211) : (184)
k=1

Hence, using the Fourier transform we have written the coupled QHOs in terms of independent creation
and annihilation operators.
The number operator

g 2 alag (185)

counts the number of particles in mode k, i.e. with wavevector wk/N.

2.5.1 Excitations of a Quantum Chain: Fock Space

Each operator &L works exactly like a creation operator acts on a single QHO. Acting it on the ground

state creates an excitation with a well defined wavevector. The ground state, or vacuum state, |{2) is
a product of N independent modes:

|Q> = |0k:1> &® ‘Ok:2> ® |0k:3> & |0k:4> ®... (186)
which can be written compactly as
|Q2) =10000...). (187)
Acting a creation operator with wavevector k raises mode k, at a cost of w. E.g.

al_4|Q) = 100100.. ) (188)

or

(agzs)g(&222)4(ak 1) Q) = [24300....) (189)

and so on. There’s no problem with exciting any given mode multiple times, just as there’s no problem
with exciting a single QHO to its n'® energy level. Note that [24300...) is just shorthand for a tensor
product of N separate kets:

124300...) = |25=1) @ |4g=2)|3r=3)|0k=4) - .. (190)

Hence, it is not a ket living in a Hilbert space, as in single-particle QM. Rather, we say that this object
lives in a Fock Space. This is the space of all Hilbert spaces, each of which has a fixed particle number.
You can equally well create an excitation at a specific position an by acting the creation operator

N
Zexp (2mikn/N) al, (191)
k=1

%\H
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Figure 3: Coarse graining positions into a continuum field.

on the vacuum state:

N
al Q) = > "exp (2mikn/N) af|Q) (192)
k=1

HE‘H

= —— exp (2min/N) al._,]000...) + exp (4min/N)al_,]000...) + ... (193)

-5

— ﬁ exp (2min/N)|[100...) + ﬁ

You can think by analogy of plucking a guitar string at a given position along its length. The effect is
to excite all the harmonics of the string with different amplitudes.

exp (4min/N)|[010...) + ... (194)

2.6 Classical Field Theory

So far we have worked with discrete positions n. A field is a continuum, so to proceed we must
smooth out our description. Our motivation is that we are typically only interested in lengthscales /
wavelengths significantly larger than a lattice spacing, and so we can ‘coarse grain’ or smooth over the
lattice details.

2.6.1 Classical Lagrangian Field Theory

In the classical balls and springs model we can make a conceptual leap by approximating our discrete
positions by a continuum field. This amounts to making the change

Tnt — Pax,t- (195)

have introduced bold x to emphasise that this works in any spatial dimension, and because we will
shortly need to differentiate between 3-vectors @ and 4-vectors z# = (¢, x)".
Formula 195 is the defining expression of field theory. While conceptually simple, the consequences are
profound. Rather than individual balls oscillating about discrete sites n with displacements x, ;, we
instead have a continuous field defined at all positions  and times ¢t. You can think of it as a flexible
membrane, like the surface of a drum. See Fig 3. In crystals the result leads to simplified mathematics.
In the standard model, however, there are no individual sites: only the smooth field exists, and it
does so across all of spacetime. It is worth taking the time to think about Eq. 195 conceptually before
proceeding.

The following might help (or it might do the opposite!). In classical mechanics it is common to
denote generalised co-ordinates as gy ; rather than z,, ;. In this alternative notation, when we coarse
grain and smooth out, we simply switch ¢,; — ¢z, interpolating the discrete variable n with
continuous positions . Then we just relabel g5+ — ¢, : as a matter of convention.

The Lagrangian density coarse-grains as follows:

1 1 1
L= mei - Emw2 (Zpp1 —2n)” — imw2 (2n — 2p_1)’ (196)
| coarse-grain (197)
1
L= §m¢§ —mw? (Vg)?. (198)

Let us write things in a general spatial dimension D, as it is no more difficult that using D = 1 and
it will allow us to use bold & (which will be helpful when we go relativistic). As before, neglect the t
label since everything is evaluated at the same time. The Lagrangian is

L= /dDa:E (Yo, D) (199)
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and action

S = / dtL = / dPHeL. (200)

This notation already emphasises that the action is a Lorentz invariant scalar. We can find the Euler
Lagrange equations using the principle of least action:

S+ Ae] = /dt / dPx { m (G + Ng) 2 — mw? (Vg + /\Vew)Q} (201)

(202)

(W) = / dt / APz {mpués — 2mw? Vi, Vey ) (203)
©:€{x=0

= /dt/dDaUegc {—mgﬁw + 2mw2V2<pm} (204)

using integration by parts with respect to time in the first term, and space in the second. Setting this
equal to zero for all € requires that

o = V20 (205)

where ¢ = /2w. This is the classical wave equation. As hoped, we still have our classical sound mode
propagating in our coarse-grained theory.

2.6.2 Classical Hamiltonian Field Theory

As before, we need the momentum conjugate to the field. This is given by

[ O
Moy 2 ( a%i)%t (206)

where we will continue to neglect the ¢ label. In our case we find

T = MPg. (207)
The Hamiltonian is again the Legendre transform of the Lagrangian:
H#: / dPamypy — L (208)

and in our case this gives
H= /dD —Ts +mw2/dDw(Vg0w)2. (209)

2.7 Quantum Field Theory of the Harmonic Chain
2.7.1 Canonical Field Quantization

Finally we are ready to create our first quantum field. To do so, we simply promote our classical fields
to non-commuting quantum operators:

Pz = o (210)

I (211)

We are now explicitly justified in neglecting the ¢ label since, in the Schroedinger picture, operators
are time-independent. The quantum fields obey the canonical commutation relations

[P, Pyl = o, ty] = 0 (212)
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and

[pa, Ty] = 67 (& —y) L

(213)

Note that in this description, unlike in single-particle quantum mechanics, positions are not themselves
operators. Rather, positions should be thought of as like the fixed discrete lattice sites n, while the

field is like z,,, the displacement of the ball from that site.

Our potential term has translational symmetry (as it only cares about the gradient of the field). We

can again take advantage of this by working in the Fourier basis:

Pz = /deeXp (2rmik - x) By, (214)
fp = /deexp(—Qm'k ) T, (215)
and the inverse transforms
Py, = /dDa:eXp (—27ik - &) P (216)
I, = /dDaz exp (2mik - @) . (217)
The new fields obey the canonical commutation relations
] = [1o11,] =0
and
butly] = [ [aPyesp @rita-y - k@) [pa. ) (21)
:/dch/dDyexp(27ri(q~y—kz~m))i§D(m—y)ﬁ (219)
= / dPxexp (2mi (q — k) - ) il (220)
=i6P (k—q)1 (221)
using the useful relation
/dD:c exp (2mi (g — k) -x) =67 (k — q). (222)
As before, the quantum fields are not Hermitian:
df =d_,, (223)
f[;fc =Tl_4 (224)
2.7.2 The Hamiltonian of the Quantum Field
We canonically quantize our field Hamiltonian as
1
H = /dDw—Wi +mw2/dDm (Ve (225)
2m
J canonically quantize
- 1
H= /dDmTﬁi +mw2/d%(v¢m)2 (226)
m
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and Fourier transforming using Eqs. 214 gives

N 1 ~ - ~ A
H= /dD:c/de:/qu {exp (—27i(k+q) - x) %Hkﬂq + mw?V (exp (2mik - x) CI>k> -V (exp (27miq - x) <I>q)}

(227)
D D D . 1 - - . 9 A
=[d"z [d"k [ d"g exp(—27i(k+q) x) %Hkﬂq —exp (2mi (k+ q) - ) (27w)” mk - g0k P4
(228)
1 ~ - A A
= /de/quaD (k+q) {21'1qu — (27w)* mk - q@k@q} (229)
m
1 - A A A
= /de {znknk + (27w)? mk:2<1>k©k} (230)
m
ppd Lt o1 a6t
= [ d"k %Hkﬂk + imwkfbk@k (231)
where we have defined
wi 2 V87w |k (232)
in the last line.
2.7.3 Creation and Annihilation Operators
The procedure now follows Section 2.5 exactly.
Defining the field creation operator
N mw A N
al 2 Tk (cp_k e Hk) (233)
we find
lak,al] =6 (k—q)1 (234)
and
[, ag) = [a,t,&g} =0. (235)

We can now re-arrange to get

Op =/ zn;wk (ak + &Ek) (236)
Tl = iy / m;"’“ (aL - a,k) (237)

and so the Hamiltonian is

=3 oM + bl (238)
- % (ak - afk) (dL - d,k) + % (aL + ch) (ak + dik) (239)

k
= Z % (d;rcdk + dkaTk + CAlT_kd—k + CAL—de_k> (240)

k
= > (afan + (afan + [an,af] ) +alpaon+ (analy + [analy])) @)

k
= % (aLak +ala g +6(0) TI) . (242)

k
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Unfortunately, by going to the continuum, the zero point energy has now become ), wgd (0) /2. This
is a countably infinite sum over an uncountably infinite quantity! However, there is a standard method
for dealing with this infinity, which we turn to now.

2.7.4 Normal Ordering

The infinity in Eq 242 is only the first of many infinities one will encounter in QFT. This one is
perfectly harmless, since the absolute energy is meaningless: it is only differences in energies that have
meaning. This infinity is also quite natural: we have placed a separate QHO at every position in space.
Each QHO has a finite ground state energy. There are an uncountably infinite number of positions,
and so the ground state energy must also be uncountably infinite.

We can remove this infinity by redefining our zero point energy (by an infinite amount).

There is a more systematic way to do this, however. Note that the infinity came about because we had

to use the commutator [dk, dH . If we had written all creation operators to the left of all annihilation

operators, we would not have needed to do this.

In fact, this infinity comes from an ambiguity introduced in canonical quantization: classical commut-
ing observables become quantum non-commuting operators. Hence, the order can switch classically
without causing a change, but quantum mechanically this changes the total energy. For example, if you
look back at Eq 229, you will see that we did the k integral first, setting k to —q, then we relabelled
k to q. You can instead do the q integral first, but this switches the order of the raising and lowering
operators! Either choice should give the same physical results, and it is this ambiguity which is causing
an apparent issue.

We define the normal ordering of a chain of operators to be such that all creation operators are to the
left of all annihilation operators. We denote the normal ordering of an operator O tobe:O:. Inour
case

~ w N n N “ N “ “ "
H = Z Zk (a,tak + aka;c + aika_k + a_kaik) (243)
K

and so its normal ordering, placing all creation operators to the left (without worrying about the
resulting commutators) is

A w N " " "
cH = Z 7k (aLak + alf_ka_k) . (244)
k

This means that using normal ordered operators instead of the operators themselves, we subtract
exactly the infinite term we had trouble with:

H ::H—Z%a(()) I (245)
k

In general, normal ordering will remove this particular type of infinity, introduced from the ordering
ambiguity of quantum operators under canonical quantization. It is an infinite shift of the zero point
energy, placing the ground state at zero energy.

Eq 244 is now a totally reasonable (normal-ordered) Hamiltonian, in which the k and —k modes are
decoupled. As before, by noting the periodicity in k both terms now contribute an equal amount.
Hence,

cH = Zwkd;;&k. (246)
k

2.7.5 Excitations of a Quantum Field: Particles

Now let’s take a step back and inspect our handywork, as we did for the quantum chain in Section
2.5.1 (you might like to re-read that section quickly).

Each operator d,t works exactly like a creation operator acts on a single QHO. Acting it on the ground
state creates an excitation with a well defined wavevector. The ground state, or vacuum state, |{2) is

a product of N — oo independent modes. In 1D:
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|2) = |0k=1) ® |Op=2) @ |0k=3) @ |0p=4) & ... (247)

Note that, while positions have become continuous variables (forming an uncountably infinite set), the
possible wavevectors remain countable. Our boundary conditions quantize the possible wavevectors.
This is quite natural: a guitar string exists at an uncountably infinite number of positions between its
two ends, yet its harmonics are standing waves which fit along the string. Hence the notation in Eq.
247 is acceptable.

Let’s look at what happens when we act the field creation operator on the vacuum:

810 = /5o (ah + o) 9 (248)

1

:\/7Ekdk|9> (249)
=3 \FE V2EL|k) (250)
N (251)

2 /mE

In the last line we have adopted the standard notation

k) = /2B k) (252)

which guarantees the Lorentz invariance of objects such as (k|q) = 2Ex0 (k — q) (a fact we established
in Section 1.4). We are currently looking at a non-relativistic theory, but since QFT is so frequently
applied in relativistic settings, notation such as Eq 252 has been established with this in mind.

What is |k) physically? It is nothing other than a particle! We call this particle a phonon. It has
crystal-momentum k, and energy Fp = wg.

Note that Eq 249 means we can create a particle with momentum k using either &}; or @L The latter
is more natural in a relativistic setting. In textbooks you are more likely to see particles created with
the field operator than with the creation operator itself, although the reason is not always discussed.
At this point you might well ask why we would expect our theory to be relativistic, given that we
started from balls and springs with absolute positions an and absolute times ¢. Essentially, the coarse-
grained theory is relativistic even though the microscopic theory is not. We will return to this point
in the next chapter.

We can denote multi-particle states as

k1, ka) = Of @1 Q) (253)

and so on. You can equally well create a particle at a specific position x by acting the real-space field
creation operator on the vacuum:

@t = / APk exp (—2mik - @) &1 |Q) (254)

D
_ % dE’“ exp (—2rik - @) /Fr|k) (255)

dt 1k5 —m? — k%) exp (—27ik - x) |k 256
which we conventionally denote

PLIQ) = |z). (257)

Hence, acting the field creation operator at position « creates a particle at spacetime position x. Again,
you can think by analogy of plucking a guitar string at a given position. The effect is to excite all the
harmonics of the string, with different weights. In this case, ‘plucking’ means creating a particle from
the vacuum, and the guitar string is the universe itself (here, a quantum crystal).
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All of this intuition will carry across when you come to creating photons rather than phonons. However,
photons are particles that do not require a medium through which to travel. This should again be
natural, since photons are quantized particles of light, which requires no medium through which to
propagate, while phonons are quantized particles of sound (lattice vibrations in a crystal) and sound
does require a medium.
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3 Path Integral Quantization

Until now you will mainly have seen quantum mechanics in terms of non-commuting operators and
states. An alternative, equivalent approach, based on path integrals, was proposed by Dirac and
formulated by Feynman. Dirac’s observation was that the more familiar approach to QM puts space
(an operator) and time (a variable) on different footing, so is hard to reconcile with relativity. Path
integrals instead rely on the action .S, which is a Lorentz scalar. Hence, it is the more natural approach
to quantum mechanics in relativistic settings.

We will first quickly see path integral quantum mechanics, before generalising to quantum fields. This
provides an alternative route to building quantum fields, equivalent to the canonical quantization
method in Chapter 1.

3.1 Path Integral Quantum Mechanics
3.1.1 Motivation: Young’s Slits

Consider a particle departing from position zo at time tg, passing through one of two slits located
at positions A and B at time ¢, and continuing onto a screen. The amplitude to find the particle at
position x on the screen at time T', which we can denote ¢ (x,T), is the sum of the amplitudes to take
each of the two paths. That is:

Y (z,T) = Amp (z, T|A,t) Amp (A, t|xo, to)
+ Amp (z,T|B,t) Amp (B, t|xo, to) (258)

where Amp (x,T|A, t) denotes the amplitude to find the particle at position = at time T given that it
was certainly at position A at time t. Eq 258 shows that amplitudes in quantum mechanics play the
role that probabilities play in classical systems. We then find quantum probabilities using
the Born rule:

Probability = |Amplitude|” . (259)
What if there are not two slits to pass through at time ¢, but an infinite number of slits with nothing
between them? In that case, the sum must be replaced by an integral:

Y (x,T) = /dyAmp (z,T|y,t) Amp (y, t|xg, to) (260)

But this should be true at all times between tg and 7. Imagine ‘slicing’ time into N discrete segments.
Then the amplitude to find a particle at position z at time T, given it started at xo at time ¢y, must
be:

Y (x,T) Z/dnyl/dnyz---/dmAmp (@, Tlyn—1,tn—1) Amp (yn—1,tN—1|yn—2,tN—2) ... Amp (y1, t1]x0, to) -

(261)
Eq 261 encodes the idea that a quantum particle can be thought of as taking every possible path
between two points. This is the basic idea behind path integral quantum mechanics. The object

/ oy L f[ / dyn (262)

which, in the limit N — oo contains an infinite number of independent integrals, is called a ‘functional
integral’ or ‘path integral’ (not to be confused with the 1D ‘line integrals’ seen in first year).
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The posulates of path integral QM (Feynman, 1948)
(i) The Born rule: probability = ||
(ii) ¢ is given by a weighted sum over all possible classical trajectories x (¢).

(iii) in this sum, each path is weighted by exp (iS5 [z]).

3.1.2 The Propagator approach to QM
Single-particle non-relativistic QM amounts to solving the TDSE:

dly) o
imqr = HIY). (263)

Assuming the Hamiltonian is time-independent we have the general solution

[ (¢) = exp (=il (¢ = 1)) [ (1)) (264)

which you can confirm by acting iid/dt’ on both sides. That is, if we have the solution at one time
(which we obtain by solvign the TISE), we automatically have the solution at all subsequent times. It
is convenient to define

the time evolution operator:

Ut —t) 2 exp (—if{ (t' — t)) (265)

where U is a unitary operator. We can project into the positon basis

(@'l (1)) = {10 (¢ =) [ () (266)

and use a
resolution of the identity (position basis):

i= / da|z)(z] (267)

to find

@'y (') = /dw<w'IU (' —t) [z} (@] (1)) (268)
or, in wavefunction notation,

(@, 1) = / dzK (2 ¢ 2,1) 1 (2, 1) (269)

where we have defined
the propagator:

K (2t 2,t) 2 (& |U# —t)|z). (270)
That is, given a wavefunction at one point in space and time, the propagator ‘propagates’ the solution
to any other point in space and time according to Eq 269.
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3.1.3 The Propagator: free space

In free space we can calculate the propagator exactly.

K (2, t; 20, to) = (a| exp (ﬂﬁ (t— to)) |z0). (271)

In free space the potential V' =0 and so

H=". 272
5 (272)
Therefore
K (z,t;20,t0) = (x| exp (—iﬁ2 (t—to)/ (Zm)) |zo). (273)
Inserting a
resolution of the identity (momentum basis):
i- [ wlnw (274)
gives
K (e tizosto) = [ dplolexp (=i (¢ = to) / (2m) Ip)ploo) (275)

By definition, |p) is an eigenstate of p with eigenvalue p:

plp) = plp) (276)

and so
K (ot to) = [ " dpla]exp (—ip? (t — to) / (2m)) Ip){plo) (277)
= [ dpesn (i (6= t0) / (20) () o) (278)

(where the momentum operator has become simply a variable). Recalling that momentum eigenstates
are plane waves:

(z|p) = \/%—W exp (ipz) (279)
We find
1 [ ‘ )
K (x,t;z0,t9) = %/_ dpexp (z (p (x — o) —p~ (t —to) / (Zm))) . (280)

This is a Gaussian integral. It can be solved to give
the propagator in free space:

K (x,t;zq,tp) = ,/%\/tl_itoexp (Zﬂ;((j:ti(;) > . (281)

In free space, a particle can be thought as either taking a straight line between two points, or taking
arbitrarily jagged paths between the same points. To see this, note that (for a free propagator only):

K (x3,t3;21,t1) = /dSCQK (z3,t35 2, t2) K (22,t2;71,11) - (282)

Proof:
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/d,TQK (.fl?g,tg;l’g,tz)K (:1?2,252;.’131,751) = /dl’2<$3|U(t3 — tg) |$2><$2|U(t2 — t1> |.’171> (283)

remove the identity:

/dng (w3, t3; T2, b2) K (23, ba; 1, 11) = (w3|U (t3 — t2) U (t2 — 1) |21) (284)
= (23] exp (—iT (t; — tg)) exp (_iT (ts — tl)) lz1)  (285)
= (w3|exp (—iT (ts — tl)) |z1) (286)
:K(l'g,tg;lﬂl,tl). (287)

In this simplest case, we can break the propagator between two points into propagators between any
intermediate number of points without introducing any approximation. The particle can either be
thought of as following a straight line, or a sum over jagged lines.

When a potential V is introduced, we will be forced to sum over jagged lines. The free space calculation
is simple because the only operator appearing in Eq 285 and Eq 286 is the kinetic operator T: if a

potential is present, [T, V} # 0 and the exponentials cannot combine.

3.1.4 The propagator in a general potential: Deriving Feynman (iii)

In general,
)
b D )
H=T =— 2
+V 2m+V(ac) (288)
and so
K (2.t 0,t0) = {2l exp (=i (T+ V) (t = to)) |zo). (289)

The problem with evaluating this is that T and V do not commute, and

exp (A + B) # exp (A) exp (B) (290)

unless [A, B] = 0. Hence we cannot just insert an identity as in the case of a free particle.
The solution is to use time slicing. Break the path into tiny slices 6t = t/N with N large. Then,

N . N
exp (—th) - (exp (—z‘Hat)) (291)
and
exp (—i (T + V) 6t) ~ exp (—iTét) exp (—iV(St) (292)
which becomes exact in the limit 6t — 0 (equivalently N — oo). Using time slicing we have:
K (zn,t;20,t = 0) = (xn|exp (—iﬁét) X ... |zo) (293)
where ‘. .." signifies there are N identical copies within the bracket. Now we can insert N —1 resolutions

of the identity into the position basis:

K (zn,t;20,t =0) = /da:N,l . ../dwl(xN| exp (—z’fi&f) |en—1) ... (x1]exp (—zf[ét) |zo). (294)

We must evaluate IV integrals of the form

K, = K (Ty41,0t;7,,0) = (T,41| exp (—if{&) |Tn) = (Xni1]exp (—i (T + V) (575) |Zn). (295)

We use the fact that the exponent is small to approximate
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K, =~ (x,1|exp (—iTét) exp (—iVét) | (296)

and we can now treat this slice like a free particle. That is, we insert a resolution of the identity into
the momentum basis:

K, ~ /dp(mn_,_l\ exp (71-7?&) |p){(p| exp (71"7515) N (297)
— % /dp exp (—z‘pzét/ (2m)) (@n41|p) exp (—iV (xy,) 6t) (p|xy) (298)
= exp (—iV (z,) 6t) K,flree (299)

:emﬂfN%LJ&)M2;%ﬁmme(Lwl—zm2/@&0. (300)

Putting it all together gives

N-1

) s m \N/2 . m ((Tpi1 — Ty 2
K (xn,t;20,0) = A}gnoo (27ri6t) /de,l.../dxl exp <z§t Z (2 (&) =V (zn) .

n=1
(301)

The exponent in this limit simply becomes an integral:

ngloodtNi:l (7; <x"+1&x”>2 - V(:z:n)> - /Ot at’ (%ﬁ —v (x)) (302)

:/Hw; (303)
0
= S [a] (304)

where S [z] is the action of the classical trajectory x. Therefore we have derived

K (z,t;x0,t0) = /@x exp (iS [z]) (305)

where we have defined the
the functional integral (aka path integral)

N

/@xéj\}im H/dxn
— 00

=1

Note that the functional integral is a product of an infinite number of normal integrals(!). Eq. 305 is
Feynman’s postulate (iii): all classical paths, no matter how crazy, appear in the quantum sum over
trajectories (‘histories’) with equal magnitude. All that changes is the complex phase assigned to each
path.

3.1.5 Wick Rotation to Imaginary Time

Now that we have the basics of path integral QM, it is possible to see an otherwise unexpected
connection to classical statistical mechanics (which will immediately become important). Note a
resemblance between the time dependent Schroedinger equation of a free particle:
.0 1 92
019 (306)
ot 2m Ox?

and the diffusion equation describing the classical evolution heat density p (x, 7) in position = and time
T
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2
9 _pop

— 307
or 0x? (307)
where D is the diffusion coefficient. Formally, we can get from one to the other using a
Wick rotation to imaginary time:
t— —ir. (308)

If you ever read A Brief History of Time, and wondered what Hawking was on about when he kept
referring to imaginary time, now you know!

The connection goes further. In QM we now know that the amplitude for a particle to start at x; and
end at xy is

(sl exp (—ifi) fa:) = / D exp (iS [2]) (309)

where

Sla] = /t Y at {;mi:Z vy (x)} . (310)

In statistical mechanics, we have a similar relation: the probability for a system to evolve from initial
state x; to final state z, at inverse temperature § = 1/T, is

(aplexp (~61) lai) = [ Fwexp(~Sp(a) (311)

SE[:U]/OBdT{Z(f;;>2+V(z)}. (312)

Here, Sg is called the ‘Euclidean action’. This name derives from the fact that applying a Wick
rotation to the Lorentz metric returns a Euclidean metric:

where

Lorentz metric: a2 — 2 (313)
t=—ir] (314)
Euclidean metric: 2% + 72, (315)

A major use of Wick rotation is in making functional integrals converge. Whether a given path integral
is well defined depends on the action. In quantum calculations, trajectories are weighted by complex
phases exp (iS): convergence of the functional integrals requires the cancellation of rapidly varying
phases for paths away from the paths of extremal action. In classical statistical mechanics, trajec-
tories away from the extremal paths still contribute, but only with exponentially small probabilities
exp (—Sg). These integrals are much more likely to converge. Hence, it is frequently a useful trick to
Wick rotate to obtain convergence, then to analytically continue the solution back to real time.

3.1.6 Commutation Relations in Path Integral QM

Note that path integral QM uses the time slicing relation

Jim exp (—i (T n V) 5t) — lim exp (—z’f’dt) exp (—chSt) (316)
suggesting
[T, f/] -0 (317)
and therefore
[p, 2] = 0. (318)



Clearly, this cannot be the case if we are to reproduce quantum mechanics. In Lagrangian mechanics
we deal with positions and velocities, rather than positions and momenta. Hence our question is
whether x and & commute. We have:

x (t+0t) —x (t) x (t+ o0t) —z (¢)

[, = @ (t + 6t) ———o——— — (1) 5 (319)
= (W) 5t (320)
= 26t (321)

In the first line we used the fact that

Operator ordering becomes time ordering in path integral QM.
At first glance this looks like it ought to be zero in the limit 0¢ — 0. But that might not be the case
if 2 is infinite. Since all paths z (¢) are included in the functional integral, many (in fact, almost all)
will be nowhere differentiable: they will have divergent & at all instants in time. So we have an infinity
multiplying a zero.
To see what Eq 321 evaluates to, it is easiest to use Wick rotation. Consider the classical statistical
mechanics problem of Brownian motion. Here, a pollen grain (say) receives random kicks from water
molecules. Its change in velocity at each instant is random. But this does not mean its position at
each instant is random, as its position at one instant must be close to where it was the instant before.
Specifically, we know that for Brownian motion we have

5z o ot (322)

(as the pollen grain undergoes a random walk). This is formalised mathematically as Itd’s lemma.
Carrying this intuition back, we have that

2 2
[z, &) = @26t = (Z) 5t = % (323)
and so, invoking Eq 322, we have
[z,2] = 1. (324)

That is, z and © do not commute, after alll Wick rotating back, and transforming from velocity to
conjugate momentum, you obtain the usual canonical commutation relation

[, p] = i. (325)

The key point is this:
Non-commutation of operators arises in path integral QM from the jaggedness of the paths being
summed over in the functional integral.

This will be important when we go to quantum fields, because it will allow us to sum over classical,
commuting fields, but to arrive at non-commuting field operators.

3.2 Relativistic single-particle quantum mechanics
3.2.1 The Klein Gordon Equation

The Schroedinger equation you have seen in previous years is a single-particle non-relativistic equation.
To make a relativistic quantum mechanics, we might try to simply canonically quantize the relativistic
dispersion relation

E*—p*—m?=0 (326)

using
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E— H2ip,

p—pE—iV.
The result is the
Klein Gordon Equation:
(07 = V*+m?) p(z) = 0. (327)
which can be written compactly using
9* 20919, =07 —V? (328)
to give:
(0*+m*) ¢ =0. (329)

Interestingly, Schroedinger devised the Klein Gordon equation before he devised the Schroedinger
equation. He rejected it as an equation for the electron for various legitimate reasons. It is, however,
a perfectly good quantum relativistic single-particle equation for spin-0 particles.

However, there are necessarily fundamental issues with any single-particle relativistic quantum theories,
as we will now see.

3.2.2 The Failure of single-particle relativistic quantum theories

A question many students ask around this point is: can’t we just upgrade the time evolution operator
to a relativistic version, and create a single-particle relativistic quantum mechanics? Unfortunately
this turns out not to work. Let’s see why.

Consider the probability amplitude* A for a particle to propagate from position  at time ¢ to position
x’ at time ¢

A s, 1) = (| exp (—iﬁ (t' - t)) |z). (330)

We will use the relativistic Klein Gordon equation for the Hamiltonian. Inserting a complete set of
momentum states as before,

i= / &plp)(p] (331)

but this time using

H|p) = \/p? + m?|p) (332)
sives
A it = [ dplalexp (<M (¢ - 0) 1) (plo) (333)
— [ @plelexp (<ivp 2 (¢~ 1) ) exp (~ip- ) (334)
~ [@pte |p>exp( WP (1)) exp (~ip - @) (335)
/ dPpesp (~iv/p2 Em? (1 1) [h+ip - (2 — ). (336)

A convenient co-ordinate choice is spherical polars with p - (' — ) = p |z’ — x| cos (0), where p = |p|.
This gives

4Note that this has dimensions of L.=3, so the modulus square must be integrated over the start and end volumes to
get a probability.
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oo 1
Azt x,t) = 277/ dpr/ d (cos §) exp (—i\/p2 +m2(t' —t)+ip|x’ — x| cos 9)
0 -1
4 & . b 2 (4 . /
= o= dpp exp (fzx/p +m?2(t ft)) sin (p |z’ — x|).
- 0

To proceed from here you can either do a contour integral®, or do it the old-fashioned way: look it up
in Gradshtein & Ryzhik. There you will find (7th edition equation 3.914.6):

[ e (<57 ) snmdp = 7 K (/) (337)

where K5 is a modified Bessel function of the second kind. This gives

Ari (¢ — 2
Ata o0 = ij(ItQ - 2”1 e (m\/|:c’ —a— (- t)Q) (338)
or
4 (t — t)m?
Atz t) = m(A#)sz (mAs) (339)
where
As:\/|.’1)’7w‘2*(t'*t)2 (340)

is the Lorentz-invariant proper distance between the events. In the case where As is very large, i.e.
well outside the light cone, we can look up the asymptotic expression for the Bessel function:

Ilgl;o Ky (x) ~ \/Zexp (—x) (341)

’ 3/2
lim A(z',t';z,t) = i(t H <27rm> exp (—mAs). (342)

which gives

As—00 As As

OK, so now say that the particle sets off from some volume V = d*z centred on (z,t), which is, for
example, a box somewhere near Andromeda three seconds ago in your reference frame (therefore very
much spacelike separated from you). The probability for you to find the particle in front of you now,
within a volume V' = d3a/, is

As? As
The probability might be exponentially small... but it is non-zero!
This is the problem with single-particle relativistic quantum mechanics: there is always a finite prob-
ability to detect particles released from spacelike separations — that is, a finite probability to signal
backwards in time. Since we’ve never seen anything signal backwards in time, we must reject any
theory which says it is routine.
While this might seem like a problem which couldn’t have come about before 1905, it was really known
much earlier. For example, Michael Faraday took exception to the fact that waggling a magnet here
can seemingly affect a magnet over there. Newton took exception to the fact that a planet here can
seemingly affect an apple over there. The solution, in both cases, was to posit the existence of an
invisible field which connects the observable objects and which is defined to act locally. Waggling the
magnet here only affects the electromagnetic field here; a signal propagates through the field to the
magnet over there.
Faced with action at a distance (particle propagation over spacelike separation), our solution is the
same. We introduce quantum fields, which are defined to act locally.

r 2 3
Prob — v =1 (27””> exp (—2mAs) . (343)

5Most QFT textbooks seem to start the contour integral, but take some questionable steps and then only present the
answer in a limit anyway.
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3.3 Path Integral Field Quantization

The switch from single particles to fields is now carried out as follows:

xz(t) = ¢(x,t) =@ (z"). (344)
That is, rather than x specifying the location of a single particle at time ¢, we instead have a field ¢
which can host any number of particles at any points in spacetime x*.
It is interesting to note that one can think of the position in the single-particle QM as a field in its
own right (simply relabel @ to ). In this sense, QM is simply 0+1D QFT!
It is both interesting and important to note that the fields in Eq 344 are classical, commuting fields!
Nevertheless, the functional integral over these fields yields a quantum field theory. This work precisely
as it did in single-particle path integral quantum mechanics in Section 3.1.6. The non-commutation
of observables appears via the fractal nature of the fields being integrated over: a typical field in the
integral is nowhere-differentiable.
We formulate a particular QFT by writing down its action, which is a functional of its (classical,
commuting) fields. The action, as before, is the time integral of the Lagrangian:

Slg 2 / dtL [, ") (345)

or the spacetime integral of the Lagrange density:

S el = /d4x$ (p, 0" ). (346)

Here, ¢ is a scalar field. This means it maps a number (well, 4-vector) z* to a scalar ¢ (x*). Standard
notation you may see in textbooks denotes the space of z# as the ‘base manifold’ (recalling that
Minkowski space is a manifold since it is locally RY), and the space of ¢ (z#) to be the ‘target
manifold’.

The particle excitations of scalar fields are spin-0 bosons. In the standard model the only example
is the Higgs boson. But pions are composite spin-0 objects, and many particles in condensed matter
physics (e.g. phonons) are spin-0.

We can also consider complex scalar fields with little extra work. The standard notation is to consider
o and * to be independent fields. Then the action is a functional of both these fields:

complex scalar field theory: S [p, ©]. (347)

We will see that the particle excitations of ¢* can be interpreted as the antiparticles to those of ¢.
The QFT governing scalar fields is called Klein Gordon (KG) theory. For real fields its Lagrange
density is defined to be

1 1
Zia (9, 0"p) £ 50"00up — 5m*¢". (348)

Einstein summation notation is assumed, so there is an implicit sum over pu. For complex fields it is
L (0, 0", 0, O ") & OF0* Dp — mP ™. (349)

3.4 Euler Lagrange Equations

In classical mechanics (using fields or otherwise) one constructs the action, considers all possible
trajectories through phase space, and finds the trajectory that extremises the action subject to the
initial and final boundary conditions.

In path integral quantum mechanics, one does the same, except non-extremal trajectories now con-
tribute. The system evolves by taking all possible trajectories through phase space with each trajectory
weighted by exp (iS). Still, the extremal trajectories are typically expected to give the biggest overall
contribution, since the phase winding is slowest when S is near an extremum.

When we shift to QFT, trajectories (single-particle paths) become field configurations which can con-
tain any number of particles. Otherwise the method is unchanged.

The sequences of field configurations which extremise the action again play a special role. In this case,
they obey the single-particle quantum wave equation. Let’s see how this works for the Klein Gordon
field.
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3.4.1 Example: the Klein Gordon field

The action defining the (real) Klein Gordon quantum field theory is

1 1
Sa [¢] £ / d'z (25“90(%@ - 2m2w2> : (350)

Here, o (z#) is a real scalar field. Recall that, in the path integral formalism, fields are commuting: non-
commutation appears from the fractal nature of typical field configurations in the functional integral.
To find the associated Euler Lagrange equations we must extremise the action:

1 1
Ska [p] = / d*z (26#@“@ — 2m2<p2) (351)
(352)
1 1
Ska [p + e = /d4:v (2 (O + NO"€) (O + ADye€) — imQ (p+ )\e)2> (353)
1 (354)
1 1
w = /d4x (23% (O + NDy€) + 3 (0" + NOM€) Dpe — m? (p + Ae) e> (355)
(356)
1 1
Ska ¢ [8)\+ Ad /d4 (28“68M<p + 56”@(9”6 — m2<pe> . (357)
We set this equal to zero. Integrating the first two terms by parts, using
MO = 0,0Mp = 0*p (358)
gives
0= /d4x (=0%p —mPp) e (359)

where we used the fact that e (z#) is defined to vanish at the limits of the spacetime integral. The only
way Eq 359 can be true for any field e is if the term in parentheses is zero. This term gives the Euler
Lagrange equation corresponding to the Klein Gordon action:

(> +m*) =0 (360)

which is the Klein Gordon equation governing a single spin-0 relativistic particle.

3.5 Propagators & Green’s Functions
3.5.1 Green’s Functions for linear differential equations

Quantum mechanics is linear. In the 17th century George Green devised a general method for solving
linear differential equations, which can all be written in the form

Lo (2) = f () (361)

where L, is some differential operator acting on z, and f (z) is a source (forcing function) which renders
the equation inhomogeneous. Working maximally generally like this, it might seem implausible that
we could hope for a general solution. But looked at another way, in the finite dimensional case Eq
361 is just a matrix equation, and we know how to invert matrices to find solutions. Green’s method
generalises this intuition, providing a general solution to a linear differential equation. The principle
is simple: if you can find the response a delta function source (an ‘impulse’), you can integrate to get
the solution for arbitrary sources.

We therefore begin by seeking to solve the special case
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after which the general solution is given by

¥ () = / 4PyG (2.) f (). (363)

To see this, just act L, from the left:

Lot (z) = /dDyigEG (z,y) f (y)
=/dDy6(x—y)f(y)
= f(z)

which is the original equation including the general forcing term. The trick is that we can create any
source f (x) by linearly superposing delta functions:

/(@) = / 0Py f ()6 (z — ). (364)

In cases of physical interest, symmetries generally constrain and simplify the problem. In particular,
we often care about problems with translational symmetry, in which case

translational symmetry — G (z,y) = G (z —y). (365)

3.5.2 Green’s function for the Klein Gordon equation: momentum space
In practice this works as follows. Adding a delta function source to the Klein Gordon equation gives

(0% +m?) G (z,y) = —id* (z — y) (366)

where we have added a —i in the definition purely for convenience (it neatens things later on). The
Klein Gordon equation has spacetime translational symmetry, so this simplifies to

(0 +m?) G (z—y) =—id* (x—y). (367)
Further, translational symmetry suggests that we will do well to employ the Fourier transform:
d4p ; iz WYe
G-y = 2n) P (—ipu (2" — ")) G (p) (368)

to give

4

@+ m?) [ (;j; oxp (—ip, (o — ) G (p) = —i0" (x)

/ CL (=p? 4+ m?) exp (—ip (2 — 1)) G (p) = —i6" (@)

(2m)*
d'p 2 2 , B i) O [ d'p ; B e
) (—=p* +m?) exp (—ip, (a* — y")) G (p) = —i o exp (—ip, (2" — y*))
where we defined
p° = pup* (369)
and in the last line we used
4
LD exp (—ipy (2 — y) = 84 (- ). (370)
(2m)

Equating the integrands gives
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the momentum-space Klein Gordon Green’s function:

1 T

3.5.3 Klein Gordon Equation Green’s function: real space
Using the Fourier transform in Eq 368 gives the real-space solution
[ d'p exp (—ipy (¢ — y*))
G(zx—y)= z/ (27r)4 p2u— - . (372)
It is simple to check the this indeed obeys the Klein Gordon equation:
. d'p exp (—ip, (=" — y"))
(& +m?) G (e —y) =i (° +m?) / R (373)
Ay gy exp (—ipy (e — y*))
[ d'p .
—i | o P (i (@~ ) (375)
= —id* (x —y). (376)

To find an explicit formula for G (z) (we set y = 0 for notational convenience), the Klein Gordon
Green’s function, we must use contour integration. Expanding the terms in Eq 372 gives

B
G () =i(2m)" / dEdp eXp ! p”_’gl ) (377)
. 3 exp( iEt+ip-x)
—i@n)” /dEd P B L)) (378)

where

Ep £ /p? +m?2. (379)

Inspecting the energy integral, we find that it has simple poles at ' = £E,. Since the integral is along
the entire real axis, both poles are intercepted and cause divergences. To proceed, let us temporarily
promote F to a complex variable

EF—z= 21+ iZQ (380)
with 21 2 € R. Then
. - t)exp (—izit + ip - x)
G(z) =i (2n 4/dd3 exp (22 . 381
W=, (1 Bp) (2~ By) .

If we take the contour C to be the real axis, this is exactly identical to the previous integral. However,
for positive ¢ we can connect z = oo + i0 to z = —oo + i0 by adding an infinite semicircular arc in
the lower half plane: since zst is negative and infinite along this arc, this gives zero contribution to
the integral. In this equivalent integral we now have a closed contour to which we can apply Cauchy’s
theorem. Similarly, if ¢ < 0, we can add a contour which closes in the upper half plane.

We must then either deform the contour to miss the poles, or equivalently shift the poles to miss the
contour. I will use the latter convention. There are four ways to move the poles (either can move
up or down). Any choice gives a legitimate Green’s function, but the forms differ. We will see the
relationship between possible choices shortly.

For now, we will make the so-called ‘Feynman prescription’. It is shown in Fig 4. We shift the pole at
—FE,, up infinitesimally to —E)p + 40" (where 0" means an infinitesimal positive number) and the pole
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Figure 4: The contour integral in Eq. 381, along with the Feynman prescription for handling the poles.

at Ep down to E, —i0". With this choice, only the —E,, 4+ i0" pole is enclosed when ¢ < 0, and only
the E, —i0™" pole is enclosed when ¢ > 0.
Overall, we have

. - —iz1t +ip - )
G(z)=i(@2r) " ¢ ded® exp (~iz1 t 382
(w) =i (2m) %C P, — 0 (2 - By + o) O (382)
where
o— oo clockwise semicircle in LHP, t>0 (383)
] oo anticlockwise semicircle in UHP, t<0

(the contour directions are fixed by the original integral, which runs from —oo to o).
Note that this choice of pole-shifts means that E, — E, — 0" throughout; hence, Eq 382 can be
compactly written as the Fourier transform of

7

G(p) = m (384)

which is a convenient way to remember it. Applying Cauchy’s theorem (remembering that the pole
encircled clockwise gives a negative contribution) gives

G(t>0,a) = (27) /—exp (—iEyt+ip - ) (385)
G(t<0,x)=(2m)" /—exp (iEpt +ip - x) (386)

Returning to the original argument x — y, this can be written as

G(zx—y)= (27‘1’)7 / SEPQ (ac —y ) exp (i p- (x — y)) exp (—iEp |x0 - yOD . (387)

where we have defined
the Heaviside step function

@(z){ L >0 (388)

and where 20 is the time component of z*.

3.5.4 The Feynman Propagator

In Section we saw a formulation of single-particle non-relativistic QM in which the particle propagates
from (z,t) to (2',¢') via the propagator K (x’,t';x,t). It is straightforward to construct a relativistic
single-particle propagator A (z — y) using the Klein Gordon equation. In that case we require

- / iz (z - 1) (y). (389)

Back in the general theory of Green’s functions in Section 3.5.1 we saw that the general solution to a
linear equation

Loy (x) = [ (x) (390)
is given by



Hence, the definition of the propagator tells us that it must be a Green’s function for the Klein Gordon
equation, with a ‘source’ which is the field (wavefunction, in the case of single particles) itself!
Returning to quantum fields, in which particles are created and destroyed, the propagator A (x — y)
gives the amplitude to annihilate a particle at y and to create a particle at x. We are no longer
restricted to the particle travelling from one event to the other. Instead, we integrate over all possible
field configurations compatible with those two events.

Returning to the operator language of Section 2, we might formalise the stated behaviour of the
propagator as follows:

(Qpzpy|) (391)
which annihilates a particle at y and creates one at . However, we need to ensure that the particle is
not created before it is destroyed: we require 2z > y°. A simple nomenclature for this is to define

time ordering T : earlier events are written to the right of later events. ‘
This is not an operator; rather, it is a label indicating a convention that is being followed. Time
ordering can be compared to the normal ordering used elsewhere. Hence, the propagator is really

Az —y) = (UT PPy ). (392)

It is possible to use the formalism of Section 2 to verify directly that the Feynman propagator in Eq
392 is equal to the Klein Gordon propagator in Eq 387.

The Klein Gordon propagator A (z — y), using the Feynman prescription for placing the poles (Section
3.5.3), is termed the Feynman propagator. Feynman’s choice of pole placements precisely produces
the time ordering of the field operators in Eq 392.

3.6 Retarded and Advanced Green’s Functions

Other choices of pole placements lead to alternative Green’s functions for the Klein Gordon theory,
with different physical meanings.
FINISH

3.7 Microcausality
3.7.1 Amplitudes versus signalling

We motivated the need for QFT by observing that relativistic single-particle propagators predict non-
zero amplitudes to signal over spacelike separations. We did this by constructing a propagator using
the single-particle Klein Gordon equation in Section 3.2.2.

We subsequently formulated the multi-particle Klein Gordon QFT, then we found its single-particle
propagator in Eq 387. Has this actually helped? To answer this, we can again do the integral exactly.
From Eq 387 we have

3
G(z) = (2#)_3/;1576 (mo) exp (i p- ) exp (—iEp ‘xOD (393)
= (277)_2/ d/p| d(;;i(ﬁ))p © (2°) exp (i |p| || cos (0)) exp (—iEp ’moy) (394)
= ! dlpl|pl 2%) sin x|)exp (—1 20
= o | TR O ) snlplel) exp (i 1) (395)

on which we can use integration by parts (noting that |p|exp (—iEp |x0|) /Ep happens to be an exact
differential!) to give

G(z) = %)gw/mm@(gﬂ) cos (|p| |@|) exp (—iEp |2°]) - (396)

(
We can again look this up in Gradsteyn and Ryzhik (7th Edition, Eq 3.914.1) where we find
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/OOO dpexp( ﬁm) cos (bp) = \/ﬂﬂ’yTKl (’y 82+ b2) (397)

and so

1
G —1)= 50 1) ¢n—y\ — Ky (mfle o @ -)?) (@08
1

= O (x° —
(27r)2 ( y)

ASK 1 (mAs) (399)

where

As = \/lz — > — (20— wo)* (400)

is the proper length separating the events. As before, let’s take the case y = 0, with x very spacelike
separated. Here we can use the asymptotic expression for Ki:

Tll)rrolo Ky () ~ \/Zexp (—x) (401)

. 1 ymm
AlslglooG(x) ~ ( 2 \fAs?’/Q xp (—mAs) (402)

which, as before, is exponentially small but non-zero outside the light cone! So what has gone wrong?
The problem lies with our interpretation. The single-particle propagator

to find

G (x —y) = (AT Py Pal2) (403)

gives the amplitude to find the particle at x given it was at y, or equivalently to annihilate a particle
at x and create one at y. In single-particle QM this would mean the particle travelled from z to y.
But in QFT this is not true. A particle does not need to travel from x to y to be found at x at one
instant, then y at the next. Rather, all particles are excitations of an underlying quantum field which
existis everywhere and which can create particles anywhere.

The propagator in QFT is simply telling you that there is some correlation between the field amplitudes
at x and y. That is perfectly natural. When I read the headline of my newspaper in the morning, my
observation is perfectly correlated with that of my friend who reads the same newspaper at the same
instant on the other side of the country, even though those events are spacelike separated. Similarly,
the electron field exists across all of spacetime, and so there is a non-zero amplitude for you to find an
electron in a box in front of you right now, and for your friend somewhere in the vicinity of Andromeda
to find an electron in a box in front of them 3 seconds later. That doesn’t allow you to signal between
each other. You might even choose to interpret their electron to be your electron if you so wish,
although since all electrons are identical that would be rather arbitrary.

What we do require is that we cannot signal at spacelike separation. This is encoded in QFT as the
postulate of

microcausality: operators O, and @y corresponding to spacelike-separated (bosonic) observables
(z —y)® < 0 must commute:

[@m Oy} = 0. (404)

Hence, G = (Q|T @yp<|Q?) is simply not the correct object to consider when asking about signalling in
QFT (although it is in single-particle QM). In QFT we instead need to consider

(Qf [Py, Pa] ). (405)

You can expand the field operators in terms of creation and annihilation operators (in the Heisenberg
picture) to show explicitly that this vanishes for spacelike separations.

48



ct

Figure 5: All points outside the lightcone are smoothly connected provided the spatial dimension is
greater than 1.

However, there ought to be some more fundamental argument as to why QFTs disallow signalling.
Peskin & Schroeder give a neat argument for real fields, as follows.
Define

D (x —y) = (Qpapy|) (406)
so that

(O [pa, ¢y 1) = D(z —y) = D (y — ). (407)

In 341D, all spacelike points can be smoothly transformed into one another with an appropriate
Lorentz transformation (see Fig 5). Hence, whenever (z — y)® < 1, we can always find some Lorentz
transformation A*, such that A¥, (¥ —y¥) = y* — 2 (note that this is not possible for timelike
separated events, as the timelike region contains two disconnected regions — past and future). This
means that in some frame of reference D (z — y) = D (y — ), and so (Q| [¢y, ¢ |Q2) = 0. But thisis a
Lorentz invariant quantity, and so must be independent of reference frame. Hence, (Q| [@y, 92| [2) =0
whenever (z — y)2 < 1. This is microcausality, and it is the statement of no signalling in QFT.

3.8 2-point functions

We saw in the previous section that the interpretation of the Green’s function / propagator is a bit
different in QFT compared to single-particle QM, since we no longer have to associate seeing a particle
at = then at y with the particle propagating between the points. An alternative name for the object

G (z —y) = (T3¢l (408)

is the ‘2-point function’. This emphasises that it really just gives the amplitude for particles to be found
at two spacetime points. The nomenclature will prove helpful when we look at interacting quantum
fields in the next section, where we will see general N-point functions (correlation amplitudes for
multiple particles).

Returning to the path integral formalism, in which fields are commuting scalars but where quantum
non-commutation arises from the jaggedness of the functional field integral, the 2-point function is
given by

s | Dpoypeexp (iS [¢])
WPuer) = T g exp (S [g)

There is a neat trick for calculating 2-point functions which we will turn to now.

(409)
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3.8.1 The Partition Function

A key quantity of interest when it comes to practical QFT calculations is

the partition function:

4 /_@cp exp (1S [p]) . (410)

Recall that in statistical mechanics, while the partition function itself is a slightly abstract object, it is
incredibly useful since all functions of state can be obtained from it (typically by taking derivatives).
The same is true in QFT: all physical observables can be obtained from the partition function. This
perhaps makes sense since the QFT is entirely specified by its action.

To proceed, let’s look at a specific example.

3.8.2 The Klein Gordon Partition Function

The partition function for the real Klein Gordon field is

Z = /.@(pexp (; /d4x (aﬂ%au% - mzsﬁi)) . (411)

Integrating by parts we can rewrite this as

7 = /@g@exp <—;/d4asgow (0% +m?) <pz> . (412)

We can Fourier transform to give

i dD+1p
7= [goew | [ Gontien (0 b mt) ey (a13)

2m)
But recall that the Green’s function of the Klein Gordon equation in Fourier space is

- i
G,=——— 414
b= (414)

1 dD-‘rlp -

We can return to real space, at least formally, with

& = /@gpexp <_;/d4$/d4y<sza:1y%0y> (416)

where G! is the inverse® of the differential operator i (82 + m?) (we will neglect the hat on G for
notational ease, and since it will always either be in either th position or momentum basis). This turns
out to be a general rule for QFTs: the action for the free (non-interacting) field is simply two fields
sandwiching the inverse of the Green’s function.

Much of the utility of the partition function comes from the fact it is a Gaussian functional integral,
and these are basically the only types of functional integrals we can do analytically. In fact it is this
reason that we can do QFT at alll Let’s remind ourselves about Gaussian integrals before putting this
idea to use.

and so

6The operator only has an inverse if it has no zero eigenvalues. This operator does have zero eigenvalues — but these
are exactly what we learnt to deal with using the Feynman prescription.
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3.8.3 Gaussian integrals

1D Gaussian integral
Recall the form of a 1D Gaussian integral:

I(a)= / dx exp (—;ax2> , a€C, Re(a)>0. (417)

This can be evaluated using an elegant trick, which is worth remembering:

I(a)® = /_O; /_O; dzdy exp <—;a (z + y2)) (418)
- /:W 6 /OOO drr exp (—;ar2> (419)
== (420)
and so
I(a) = 2;” (421)

1D Gaussian integral with a source
Now consider

I(a,b) = / dx exp <;aa?2 + bz) . (422)

—0o0

This can be done by completing the square:

I(a,b) = /_o; dz exp (—;a (ﬁ - 22:5)) (423)
Lo E(E Q)
~en(£) e (3o (o 2)) (129
e (1) [ dren(~gar?) (426)

= Eew (;’) (427)

where we changed integration variables to 2’ = x — b/a and used the fact that the integral has an
infinite range.
This calculation turns out to be very handy. If we denote the expectation value of ™ to be

(™) = / dzz™ exp <;a1’2 + bx) (428)

then we have

(") = (;})n/_z dz exp (—;a:cQ —i—bx) (429)
_ (;) ﬁ exp (;Z) (430)

which is trivial to evaluate. We will shortly adopt this trick in QFT.
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N-dimensional Gaussian integral
Now consider an N-dimenional Gaussian integral

N N
I(A)= /deeXp —%ZinTAijxj (431)

i=1 j=1

where A is a symmetric positive definite matrix (meaning all its eigenvalues are strictly positive). To
do this integral, note that we can diagonalise A:

A=0DO" (432)
where O is an orthogonal matrix:
ofo=1 (433)
and
D = diag (a1,az,...an). (434)
Therefore, defining
z20Tx (435)
gives
T Ax = 2" Dz (436)
N

= a;i}. (437)

In this diagonal basis the integral reduces to

I(A)= lj__v[l / d#; exp (—;m?) (438)

where the orthogonality condition, Eq 433, ensures that the Jacobian of the transformation (the
equivalent of the r that appeared when switching to plane polar co-ordinates in 1D) is unity. Eq 438
is just a product of 1D Gaussian integrals, and so

I(A) = 2m)N? (aray...an) 2. (439)
Recalling that the determinant of a matrix is the product of its eigenvalues, this gives
(2m)"

1A =\ ot (440)

Gaussian Functional Integral
The limit N — oo can be taken in the previous result without issue. Recalling that functions are
infinite-dimensional vectors, and differential operators can be thought of as infinity-by-infinity matrices,

we have
1 N
/@goexp (—Q/dDHx/dDHy(pIAwapy) (441)

_ | e (442)

det (fl)
where the determinant of an operator is again the product of its eigenvalues. The infinity does not
prove to be a problem in practice, as we end up dividing throught by it later.

1(4)
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Notation: the symbol flxy is intended to show the connection to the N x N matrix A;; above. Operators
that act locally (i.e. not at multiple spacetime events) must take the form

Auy =P (@ —y) A, (443)

so that

I (A) - / Dpexp <—; / dD“z%Ax%) . (444)

It is sometimes convenient to use Azy, sometimes flm We will use both below.
Gaussian Functional Integral with a source
As in 1D, we can introduce a source to our functional integral.

1 R
I[J]= /@(pexp <—2/dD+1m/dD+1y<prwy<py —|—/dD+1xg0wa) . (445)

Taking inspiration from 1D, we can make a change of variables

Oy — O — /dDHzA;zlJZ (446)

to give

1 P - ~ 1
I[J]= /.@apexp (—Q/dDHx/dDHy <npw —/dDHzA;zlJz) Azy ((py —/dDHzA;ZlJz> + E/dDHx/dDHyJ:
(447)
1 .
= exp (2 / dPHig / dDHszA;;Jy) I[0]. (448)
Hence
1 A 1 -
/@apexp <—2/dDHx/dDHygozAzygay+/dD+1x¢sz) = exp (Q/dDHx/dDHnyAmley)

(449)
which proves invaluable for calculating N-point functions.

3.9 2-point functions from the generating functional

The term J (z) can be thought of as a fixed, specified function which acts as a current (source) of ¢
particles. Returning to our generic free field theory, the partition function with a source is now

1 A .
Z[J] = /@goexp (—2/dDHx/dDHyszm}wy+2/dD+1x<p1JI>. (450)
This is called the generating functional. Following the working above gives the exact result
~ 1 o
Z[J) = (271')00/2 det (G) exp (—2 /dDHx/dDHszGmny) . (451)

It is customary to drop the hat on the Green’s function for notational convenience. The importance of
this is that we can readily use it to generate N-point functions. For example, the two-point function
(propagator) is given by

Tonns) =27 (-igy- ) (-ig7-) 2 10

Let’s check this explicitly. I will define

(452)

J=0
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01 £ s, (453)
Gi2 £ Gyyzy = G (21,22) (454)

and so on, to save the notation getting too messy (this notation is used in some textbooks). Then

71 (_z(fj) <—25§) zi=2" [ 20 (—z;]) ( i )exp (— [t [ 4Py, 6ty vi [ 4P,
2 1 2 1

(455)
_ 5—1/@90@1@2 exp (_;/dD+1$/dD+1y(pr;yl<py+i/dD+1xg0me)
(456)
and so
27 (wis) (15 20 [Peoipen (][ ele)
0J> 6.1 J=0 | P exp (—gdefodDHy(/)xG;y ‘Py>
| Pppapr exp (iSo)
= 4
[ Zexp (iSo) (458)

as required. We can now calculate this using the exact solution in Eq 450:

) ) )
-1 _, " i _ g1 00/2 . D+1 D+1
%4 ( 25J2) ( Z5J1> ZJ] . ZF (2m) det (G) ( Z§J2> ( 5J1> exp( /d /d yJy nyJ
459

0 9 1 D+1/D+1
(15 2)( 15J1>exp( 2/d z [ d YJe Gy dy .

(460)

(—255) (;/dDHmeGﬂ + %/dDHxJ G11> exp< /dD+1 /dD+1
2
(461)
1 i\2 \
= (2 (G12 + G21) + (2) (/ dD+1g;Jz (Gm + Gu)) </ dD+1ngC (G;EQ + Ggw)))

(462)
=Gy (463)

noting in the last line that G12 = G21. This confirms that the 2-point function is the Green’s function
(up to a normalisation).

3.10 Wick’s Theorem

Another vital tool in QFT is Wick’s theorem. To understand it, let’s calculate some higher N-point
functions from the generating functional. First, we can see that any 2N 4+ 1-point function must vanish,
since this involves an infinite integral over a product of an odd and even functional. This is simply the
functional generalisation of the result

lo——e2 o\
30——e4 + I I + A
/ dzx®" T exp (—;Ax2> =0. (464)
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Figure 6: The 4-point function of a Gaussian field decomposes into all possible pairings of 2-point
functions.

Let’s look at the 4-point function, which corresponds (for example) to 2-particle scattering. Then

0 6 0 6

— Qp*l 1 4 777730
(T o1p20304) (=) §J1 8Js 8J5 8J4 ] J=0

5 6 1
= (—1)® == ( Gas + 2 / APz, G / AP e .Gy ) ) exp [ —2 / APy / dPty1,.G .y,
8J1 0y 2

(466)
= G12G34 + G13G21 + G14Ga3. (467)

(465)

That is, the 4-point function is simply the sum of all possible products of pairs of 2-point functions!
In general, we have

Wick’s Theorem: the N-point function of a Gaussian theory is given by all possible products of
pairings of 2-point functions.

Wick’s theorem follows from the fact that the action is quadratic in the fields, and so our partition
function is Gaussian. In statistics, you may have heard of this result as the fact that Normal (Gaussian)
distributions are entirely characterised by their mean and variance. In the end, this is why QFT
describes reality as harmonic oscillators at every point in spacetime: if it were anything other than a
harmonic oscillator at each point, we would not be able to apply Wick’s theorem.
A convenient representation of this pairing is shown in Fig 6. These are examples of Feynman diagrams,
of which we will see much more in the next section.
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4 Interacting quantum fields

The theories we have looked at so far are described by Gaussian partition functions or, equivalently,
actions that are quadratic in the fields. These theories are trivial, in the sense that all N-point functions
(which collectively describe everything there is to know) decompose identically into 2-point functions.
To do useful calculations we need to consider interacting theories. The particles can either interact
with themselves, or we can have multiple types of particle which can interact with one another.

4.1 ¢* theory

We will focus on the first case: a scalar field with self-interactions, called ¢* theory. The action is

S =S+ /dD“x%Jw + Sint (468)

where
So £ Ske (469)
Sint = % / dP*zg]. (470)

You may hazard a guess as to where the name comes from! This action does not describe any particles
in the standard model (nor does Klein Gordon), but it does describe other physical theories. For
example, phonons emerging from balls and springs with an anharmonic potential between atoms, or
the Ising model of interacting spins. The normalisation 1/4! turns out to be convenient later.

4.2 Perturbation Theory

To calculate the N-point functions for a non-Gaussian theory we can use perturbation theory. The
basic idea is pretty simple. The generating functional is now given by

A
(] = /@gpexp <i50 + ZI dP gt +i/dD+1x¢1Jz> (471)

= /.@g&exp <iSo—|—i/dD+1xg01.Jx> exp (iél\'/dDJrlx(pi) (472)

and we can expand the exponential of the interaction term as a Taylor series to give

o0 1 n
AT = /@goz ] (zi‘ /dDHJc@i) exp (iS’o +i/dD+1m<pme> . (473)
) !

At each order in A this is simply the expectation value of a polynomial of the fields, and any such
object can be calculated using Wick’s theorem. Let’s take a look at some specific examples.

4.2.1 The interacting vacuum

The non-interacting field theory had an empty vacuum. But when interactions are present, the vacuum
changes its form. To see this, we can calculate the 0-point function 7, which is simply 23 [J] itself. To
O (A?) we have:

A 1/ 2\
(] = /.@(p (1 Jriﬂ /dDHzgoi + 3 <z4') /dD+1z/dD+1y¢igp§> exp (iSO +i/dD+1x<szm> .

(474)
We work order-by-order in A, and find

"I’ve not seen it called this, but it seems a sensible name to me!
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AU = 2] +ig [Vt + 3 (i3 ) [arre [aPoyateno so ) )

where we have introduced the convenient notation

A\ & [ P00 exp(iSo)
<O>0_ [ D exp (iSo)

i.e. the familiar expectation value without the interaction term. We proceed using Wick’s theorem,

(476)

which says that any such <(§> expectation value is equal to the sum of all possible products of 2-point
0

functions. This gives

LU= %10+ iy [ a7 asielaleds (477)
P2 () e [0 (3 x3tlotealeuti +3 8 x Apaeoleariloleoledlo}

(478)

+0(\%). (479)

The counting is as follows. In the O (\) term, there are three ways for the first ¢, to pick a partner,
and then the other pair is fixed. Similarly for the first O ()\2) term (for x and y separately). For the
second O ()\2) term it is the same again for the zx and yy pairs, then there are two ways to choose
the first zy pair and the second is fixed.

We now use the fact that the non-interacting 2-point function is the Green’s function (multiplied by
1/2) to give

F ) = 2 [ 7] + A / dD“legz (480)
/ dPHy / dPHly {82G2 Gy, +3 GmG2 G, +Giy} (481)
(482)

4.2.2 Interacting 2-point function

Next we can redo the calculation of the 2-point function from Section 3.9. The O ()\0) term is again
the non-interacting expression. The O ()\1) expression is

gt (L (Lh
(Toirp2) = TZ, ( Z§J1 ZéJg A [JT] L (483)
= Tffl/@ iﬁ/dDHx 4 —ii —zi exp [ .5 +i/dD+1x J.
A ' 4! P 5J1 (5J2 p 0 Pz o
484)
=TZ /.@gﬁ( /dD"’1 T, > (¢1) (p2) exp <iSO +i/dD+1xcpIJx> (485)
J=0
A
=iy AP (Teseipa), - (486)

All possible contractions are shown schematically in Fig 7.
The result, counting all possibilities, is

(Teoip2) = z/dD“x{?»(m (02), (0102)0 +4 X 3(@ap1)g (0atpa)e (¥2),}  (487)

1 1
= i)\/dD+l.’L‘ {8GizG12 + 2G11Gw2wa} . (488)
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Figure 7: The possible pairs of terms when applying Wick’s theorem to p? theory to O (\).

The counting of terms is as follows. For the G2, G5 term, the first x has 3 ways to choose the second
x with which it contracts. The remaining two xs are then forced. Hence, 3. For the G,1G2G e
term, there are 4 choices of x for the 1 to pair with, leaving 3 choices for the 2 to pair with, then the
remaining pair of xs must go together. Hence 4 x 3.

4.2.3 Interacting 4-point function

Since the 3-point function vanishes, the next simplest term is the 4-point function. At order A° this is
again the same as the unperturbed case. At order ! it is given by

A
(T¢1wzw3w4>1::ZZ;/[dD+1w<77piw1wa3w4>0 (489)
A
=ig /dDHx {41G1,G2:G3, Gy + 3G, (G12G3a + Gr13Gaa + G1aGag) (490)
+ 4 X 3Gz (G12G2:G34 + G12G3:G24 + G12GarGa3 + G2:G3,Gra + G20 Gaa G + G3,Gu:Gr2) }
(491)

1 1
=\ / dD-‘rlx {GlmGQIG3IG4$ + gGix (G12G34 +2 perms) + iGmm (GlmGgmG34 +5 perms)
(492)

At higher orders of A things quickly grow in combinatorial difficulty. There is a neat bookkeeping trick
for dealing with this, to which we turn now.

4.3 Feynman Diagrams
4.3.1 Diagrams

Feynman invented his eponymous notation to simplify the rapidly growing complexity of the combi-
natorics just discussed.

The Feynman diagrams for the expansions in the previous sections appear in Fig 8 (the vacuum), Fig
9 (2-point function), and Fig 10 (4-point function).

Take the 2-point function. You start by drawing a vertex for each external field position (anything not
integrated over, or equivalently anything explicitly labelled on the left): in our case, #1 and x5. Then
draw a single point for each internal field position, in our case x. Now find all the ways to draw lines
connecting these points, so that each external point meets precisely one line, and each internal point
meets precisely 4 lines.

The reason each internal point has 4 lines meeting is that this is ¢* theory. When you Taylor expand
the action, every power of A brings with it a product 2, so there is no other possibility for lines to
meet. E.g. you can’t have 2 lines meet at an internal point.
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Figure 8: The Feynman diagrams for the vacuum of ¢?* theory to O (A

o0 X

(TTXTT)X12) (T1Xx2)TT)

Figure 9: The Feynman diagrams for the 2-point functions in ¢* theory to O (\).

4.3.2 Symmetry factors

A remarkable result of the Feynman diagrams is that they instantly yield the difficult combinatorial pre-
factors. We term the ‘symmetry factor’ of a Feynman diagram the number the number of symmetry-
equivalent diagrams it has. The prefactor of each term in the perturbative expansion is then given
by the reciprocal of the diagram’s symmetry factor. To see why this is, it’s easiest to look at some
examples.

In Eq 488 for the 2-point functions to order A, the first term is %GixGlg. Looking at the corresponding
diagram in Fig 9 we see that the G2 line is fixed (z1 and 5 are fixed), but the G2, has some freedom.
It has two lobes. We can flip the left lobe (x2), the right lobe (x2), and we can interchange the lobes
(x2). The symmetry factor is 2 x 2 x 2 = 8, and so the prefactor is 1/8.

The second term is %GﬂGme. The corresponding diagram has one internal loop, which can be
flipped (x2). Hence the diagram has a symmetry factor of 2, and the prefactor is 1/2.

Now look at the 4-point functions in Eq 492, and the corresponding Feynman diagrams in Fig 10. The
term G1,G2,:G3,Gy, has a prefactor of 1. This is actually by construction: it is why we included the
1/4! factor in the definition of Sj,;. There are 4 ways for 1 to choose an x, 3 ways for the 2, 2 ways
for the 3, and one way for the 4, giving 4! terms, cancelling the prefactor. Looking at the diagram, all
legs connect to external events, so there is no freedom.

Other symmetry factors can be worked out using similar reasoning. Often it is quite tricky, in the
general case; but practical QFTs such as QED are more restricted and typically have simpler symmetry
factors.

4.3.3 Physical interpretation of Feynman diagrams

Feynman diagrams suggest a natural physical interpretation. Initially, it can be helpful to draw space
and time axes (e.g. time heading up, space horizontal). Then you can interpret the lines (propagators)
as worldlines of particles. Heading up, if lines meet (which must happen at a vertex), the particles
annihilate. If lines emerge from a vertex, particles are created.

w00, AL A
4 30—y 30—04 (TrXTT)12) (T1IXT2)XTT)

Figure 10: The Feynman diagrams for the 4-point functions in ¢? theory to O ()).
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In * theory each vertex must be the meeting point of 4 lines, so if two head in, then two head out,
and this is like two particles annihilating and another two being created at the same event.

The spacetime points of internal vertices are always integrated over: this means we create a quantum
superposition of that event happening at any spacetime location.

Consider the 2-point function connecting events x; and o, which gives the probability amplitude to
detect a particle at z; and at xo (recalling that this doesn’t necessarily mean the same particle travels
between those events — as the amplitude is non-zero for spacelike separation). In non-interacting ¢*
theory, there is an amplitude for the particle to propagate from x; to z3. In the interacting theory,
this is also possible. But inspecting Fig 9 (rightmost diagram), we see there is also an amplitude for
the particle to start propagating from x1, then to emit a particle at x, to catch that same particle also
at x, then to propagate to .

Giving a causal interpretation to intermediate events in Feynman diagrams is therefore tricky. Closed
loops appear, and along any closed loop any spacetime axes must suggest a particle propagating
forwards and backwards in time. That’s how the intermediate particle can depart from x then arrive
at .

The spacetime axes are arbitrary: you could have drawn space heading up, time horizontal, and
you would have found a different physical interpretation. This is a helpful reminder that the only
measurable things occur at spacetime events corresponding to external vertices.

4.3.4 Feynman Rules

The Feynman diagrams are in one-to-one correspondence with the terms in the perturbation expansion
of an interacting QFT. They are typically easy to draw, and it’s fairly easy to check they’ve all been
included at a given order. Hence, QFT typically amounts to drawing Feynman diagrams first, then
converting them into their analytic expressions. This conversion is carried out by applying ‘Feynman
rules’.

For the case above, we have:

The Feynman rules for ¢* theory (position space):

e To cach propagator (line) assign Gy

e To each vertex assign i\ deHx

e Divide by the symmetry factor.
In high-energy physics it is more common to work with the Fourier transformed propagators, since
the boundary conditions typically take the form of specifying the momentum of a particle before and
after a collision (recalling that the position and momentum cannot be simultaenously specified). In
this case we have
The Feynman rules for ¢* theory (momentum space):

e To each propagator (line) assign ép
e To each vertex assign iA (27)* 6% (p1 + p2 + ps — p4) (4-momentum conservation)
e integrate over internal momenta

e Divide by the symmetry factor.

4.3.5 The Connected Generating Functional

Inspecting and interpreting the Feynman diagrams, we see that many of them are rather trivial. For
example, take the 2-point function Gi3. At zeroth order this is the usual propagator. The first
first-order correction G12G2, is just this same propagator along with a ‘bubble diagram’, an event
occuring elsewhere in spacetime (at x). Since fields were introduced to act locally, it would seem odd
if we needed to include such unrelated spacetime events. And indeed we do not. What we are really
interested in is connected diagrams: those in which the whole diagram is one connected piece.

To find the connected diagrams, we need to subtract off all the bubble diagrams. Note that every
bubble appears in the vacuum: in fact, the vacuum is precisely the sum of all bubbles.
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There is a very elegant trick for calculating only connected diagrams. Motivated by the observation
that

d L df
Linf=1 1@ (493)

and the desire to divide out the vacuum, we replace our generating functional 2 [J] with

The connected generating functional:

ANESIEN] (194)
We use it precisely as we used %, [J], but now we find only connected diagrams!
For example, consider the 2-point function to O (A).

We have
W [J] = 1n/@<pz I (i@/dDHmpi) exp (iSQ +i/dD+1I<prx> (495)
— nl !

which to O (A) is

#51J] =In [9,% [J] —i—i% / Do ( / dD“w;f,) exp (iSO +i / dD“mem)] (496)
A
=In(2[J]) +1n {1 +i53’}fl [J]/@gp (/ dD“wi) exp (iSo —i—i/dDngoIJm)] (497)
which can itself be Taylor expanded in A, using

In (14 Xe) = Ae + O (A?) (498)

to give

Wi ] = In (2 [J]) +z‘%%‘1 7] / P4 ( / dD“x@i) exp <i50+i / dD“m%JE). (499)

After a reasonable bit of algebra (make sure to drop any terms you can spot will be zero along the
way, e.g. {(p1p})o) you will find for the connected 2-point function

(500)

) .0
<T¢1@2>Connected - (_ZM) (_ZM) W)\ [J] J:()

(Ter1p2)0 + Z% /dDHJC (Terp20m)0 — (Tere2)0(T®3)0) - (501)

The second term in parentheses subtracts off every bubble. The connected generating functional
similarly leads to connected diagrams at all orders, and for all correlation functions.

4.4 Regularisation and Renormalisation

The point of all this perturbation theory is to find how interactions alter the ‘bare’, non-interacting
N-point functions. Broadly, the answer is that the bare functions become renormalised. There are
unfortunately two essentially totally unrelated meanings of the word ‘renormalised’, both introduced
in QFT, and both of which are relevant here! Let’s look at them in turn.

4.4.1 Renormalisation (Meaning I)

One of the main things we’d like to know about is the interacting 2-point function. The non-interacting
2-point function is the bare propagator for our theory. Adding interactions ‘dresses’ the propagator,
changing its form. Often we will be interested to see what happens to one type of particle when we
introduce a second type of particle with which it can interact. Typically we will expect that interactions
will ‘renormalise’ the properties of both particles, meaning for example that their effective masses or
charges change.
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Figure 11:

A simple picture to hold in mind is to imagine trying to measure the mass of a tennis ball: you can
do this by trying to accelerate the ball with a tennis racket, and measuring how much force it takes
to impart a given acceleration. Now try the same experiment under water. It will take more force
to impart that same acceleration, since the tennis ball is now interacting with the water molecules.
Hence, your experiment tells you that the tennis ball’s mass has been renormalised. This analogy also
captures the fact that the renormalisation is accompanied by a change in the nature of the ‘vacuum’
itself, from air to water.

This idea applies wherever QFT is used. For example, the bare electron propagator in the standard
model corresponds to a particle whose mass does not match the measured mass of the electron, because
the electrons you can measure have already been renormalised by interactions with other fields (notably
photons, but also W bosons, Higgs bosons, and anything that couples to electromagnetism or mass).
Often in condensed matter physics we are interested in precisely this type of scenario: two fields, with
their associated particle types, where the particles of one field are much lighter than those of the other.
In such cases, we typically carry out the functional integral of the lighter particles using perturbation
theory, leading to a renormalised effective free (non-interacting) theory of the heavier particles. We
call this process ‘integrating out’ a field, and it’s a vital procedure in QFT. Let’s look at a real example
now.

4.4.2 The random phase approximation (Renormalisation I)

Consider the interaction of fast electrons with slow phonons in a crystal. Here, we have the QFT

S = So + Sint (502)
So = /d4qSDqu_190*q + leilfﬁk (503)
Sint =9 / d* g0t} Vrtq (504)

where k = (k,w) (with Euclidean metric),

—20)
D, = g (505)

w2 — Q2
is the bare phonon propagator for phonons with energy 2, at wavevector g, and
1
Gy =
w—<&k
is the bare electron propagator, where & is the energy of an electron with crystal momentum k. The

energy of a particle is given by the locations of the poles in its Green’s function. The positive energy
pole of the bare phonon is therefore

(506)

w =0, (507)

We can look at how the interactions with the electron field change this. If you try drawing connected
Feynman diagrams to correct the phonon propagator, you will find that the lowest order diagram
appears at order ¢g2. It is shown in Fig 11. However, there is a neat trick by which we can include
an infinite number of Feynman diagrams of a similar form, also shown in that figure. We call this the
random phase approximation or RPA (the name is for historical, and rather unconvincing, reasons).
It is important to note that the set of diagrams in the RPA is not all possible diagrams renormalising
the phonon propagator. Rather, it is a mathematically convenient subset to consider, but there is no
physical justification for discarding the other connected diagrams (the first of which appears at order
g%). RPA is an example of what is called an uncontrolled approzimation: no effort is made to check it
captures everything, and indeed it does not! This caveat in mind, let’s proceed to calculate the RPA
corrected phonon energy.
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The loop which appears inside the propagator is called the polarisation bubble, or Lindhard function.
It is

Xq = / d*kGGlyq. (508)
The frequency integral can be carried out using complex analysis, with the result
Z f (Sk+q) — f (Sk) (509)
W+ &ktq — &k
where
1
&) =—F~— (510)
exp ( ) +1

is the Fermi Dirac distribution. The k integral has been replaced by a discrete sum (since this is
a crystal). The sum requires & to be specified in order to be evaluated, and this is generally done
numerically. The interacting phonon propagator is then

D§PA = Dy+Dq (9°Xq) Da+Dq (9°Xa) Dy (9°Xa) Da+Dy (9°Xa) Dy (9°Xq) Dy (9°Xq) Dg+- .- (511)
This general form is called a Dyson series. It is simply a geometric series of Feynman diagrams. As

such, the infinite sum can be carried out exactly, by noticing that

DA = Dy + Dy (9°Xq) (Dg + Dy (9°Xa) Dg + Dy (9°Xq) Dq (9°Xq) Dy + - ) (512)
= Dy + Dy (9°xq) DA (513)

and so, subtracting the second term and gathering things together:

(1 - DqQQXq) D(?PA =D, (514)
giving the final result
DRPA (1 _DqQQXII)_l D, (515)
—2Q4
=— . (516)

— Q(QI +29%Qq x4

The positive pole of this renormalised propagator occurs at

w=4/02 —29?Qgx,- (517)

That is, by interacting with the electrons, the energy w of the phonon at a given wavevector has
decreased.

4.4.3 1PI Diagrams and Self-Energies

The Dyson series used in the RPA diagram summation is so useful that it has become a standard
method of organising Feynman diagrams in QFT. We define a ‘1-Particle Irreducible’ (1PI) diagram
to be:

1PI diagram: any Feynman diagram which remains fully connected after cutting any one internal
line.

With this definition, we can always decompose the infinite set of Feynman diagrams into a Dyson
series, as in Fig 12. How do we know this is always possible? It is by definition! The Dyson series
is defined to be the individual 1PI parts connected together with single edges (cutting any one of
which will disconnect the diagram). So the Dyson series captures everything that is not 1PI, and since
we’re summing everything, the bits in the 1PI blobs have to be all the bits of diagrams which remain
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Figure 12: Any infinite set of Feynman diagrams can be decomposed into a Dyson series of 1PI
diagrams.

connected after a single cut. You can think of 1PI diagrams as a bit like the prime numbers of Feynman
diagrams: just as any integer can be factored into a product of primes, any Feynman diagram can be
factored into a product of 1PI diagrams.

As in the RPA, we can now deduce the renormalisation of our propagator (or any other N-point
function) by an infinite Dyson series of 1PI diagrams. When renormalising a propagator we define the
1PI blob to be a ‘self energy’ ¥. Then, as in RPA, we can argue that

G™" = G + GRG™" (518)
!
Gt =(1-Gy) ' G (519)

Example: non-relativistic electron propagator
The clearest example of this effect is with the (spinless, non-relativistic) electron propagator which is
sometimes used in condensed matter physics. Here we have

B 1

W&+ e
where ¢ is an infinitesimal positive real number (specifying how the pole shifts off the real axis in
contour integrals). Ignoring €, the Green’s function has a pole at w = &, showing that the energy w

of the electron with crystal momentum k is &g.
The probability to find the electron with wavevector k and energy w is given by the ‘spectral function’

(520)

Ak,w) 2 —%ij(k,w) (521)
1 €
S — 522

Noting that this is simply a Lorentzian of width € we see that

lim A(k,w) =0 (w— &) (523)

e—0t

which says that the electron has 100% probability to be found with energy w = £. As a quick check
that this makes sense, we can confirm that the electron must exist at some energy, and so

/de (k,w)=1 (524)

which you can confirm by doing the Lorentzian integral. (This is called a ‘sum rule’).
What happens when the electron propagator is renormalised by an infinite Dyson series? We find

G =(1-Gx) '@ (525)

. ! (526)
Cw—&p — X +ie

Writing
»E Y 4y (527)

for real ¥/, the spectral function becomes
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Ak, w) = —%fimG (k, w) (528)
B l Z//+E
TG D (T (529

where we can now drop the e < X" to give

1 3
Akyw) = S— (530)

T ((.d _ fk _ Z') 402
Two things have happened. First, the real part of the self energy X’ has shifted the peak of A to
w = & + ¥, renormalising the energy. Second, the imaginary part ¥’ has given a finite width to the
spectral function Lorentzian. The electron of wavevector k is no longer certain to be at the peak in A;
rather, it can now have any energy (with the probability for it to have energy between w and w + dw
given by Adw).
Note that the sum rule is still obeyed: the total probability to find the electron with some energy is
still 1.

4.4.4 Renormalisation II

In p? theory, the field interacts with itself. This self-interaction will renormalise (I) the N-point
functions. To order A, with connected diagrams, the propagator is renormalised as

A
G2 = Gi2 + z—/d 2G12GreGa (531)
This time, however, there is a problem. The term

Guo = G (z — ) = G(0) x 6% (0) (532)

is infinite. We saw similar infinities before, which we eliminated by requiring operators to be normal
ordered. This new type of infinity is sometimes called an ‘ultraviolet divergence’, since it has occured
in the high energy / high momentum / small distance limit  —x = 0. (Ultraviolet is used by analogy
to light, where UV is high energy compared to the visible spectrum; similarly Infrared, or IR, is used
to describe long wavelength / low momentum / low energy properties).

To deal with UV divergences, we use a method called... renormalisation! But despite appearing
at the same time in these notes, the two uses are essentially unrelated. Let’s look at what I’ll call
Renormalisation II.

First, let’s write out the problematic integral explicitly using the expression for the Green’s function

Gy = / At L exp (~2mip- (¢~ y) (533)

to give

/d 2G13G20Gro = —i— (/d4p 5 )/d4 q —m2)72 exp (2miq - (x1 —x2)).  (534)

To get an idea of how these integrals behave, we can use a simple dimensional analysis. Roughly, we
expect an integral of the form

o0
0

to be convergent for n < —D — 1 and divergent for n > —D — 1. For n = —D — 1 we expect to get a
logarithm, which will diverge with infinite limits (log-divergent: the slowest type of divergence).

The first step to dealing with it is regularisation. The integrals diverge because of the infinite limts.
But in reality, momenta cannot be inifinitely large, and distances cannot be infinitely small. In an
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extreme limit, distances cannot be smaller than the Planck length Ip = VG (where G is Newton’s
constant, in natural units). But we don’t need to go to such extremes: our field theory is a coarse-
graining, and will only be valid down to some distance / up to some momentum. Call the upper
momentum cutoff A, which is vastly larger than any momentum we care about but is not infinite (and
is much smaller than the ultimate limit set by Planckian units).

Returning to our divergent integral

/ d%% (536)

2 _ 2

it is convenient to Wick rotate to Euclidean space:

giving

— / d4p# (538)

p2+m2

and use 4D spherical polar co-ordinates to give

A 3

—27 / dpﬁ = —7% [A* = m®In (m?® + A?)] (539)
0

~ - [A* = 2m” In (A)] (540)

which contains a quadratic divergence and a log divergence.
From here, we simply renormalise (IT) by subtracting off this infinite amount. We do this by introducing
a ‘counterterm’ in the Lagrange density:

1 1 A
L = 58“@8#90 -3 (m?+62,) ¢* — 5904 (541)

so that when the integral is redone, we find m? — m? + §2, and

g 4 i
/dpp2m2_>/dpp2m25,2n (542)
=-—m?[A*—2(m*+62)In(A)]. (543)

We'd like this to be finite; let’s chose it to be —m?u? for some . This requires

p? =A% =2 (m*+62)In(A) (544)
or
2 2
o _ p A,
=t ™ (545)

Putting it all together, we find that the corrected Lagrange density in Eq 541 gives the first-order
correction to the 2-point function to be

Z% /d4xGlzGa:xG12 = 7;%71'2'u2/d4q (q2 o m2) -2 exp (27”'(1 . (371 _ -752)) . (546)

By construction, the UV divergence has been subtracted off, by renormalising the mass (through an
infinite amount!).

In general, there is a process for identifying p self-consistently by looking at how it changes the pa-
rameters of the theory (specifically the coupling A). In the particular case above, the 1-loop correction
to the 2-point function in ¢* theory, we can actually choose i = 0. That is, the propagator does not
renormalise at 1st order. The reason is that G, is special, as it has no momentum. Its Feynman
diagram is called a ‘tadpole’ (when drawn correctly). In general, tadpoles can be renormalised away
for free.
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If we look at the philosophy of Renormalisation II, we see that it is secretly quite similar to Renormal-
isation I. The idea is that the bare parameters we started with — in this case m? — are not the physical
parameters. The things we measure have already been renormalised, and so it is m? + ém? which is
physical. Still, the mathematical process and reasoning behind Renormalisation I and II are appear
rather different.
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5 Types of Field and their particles

So far we have focussed on the QFT of a real scalar field ¢ with quartic interactions. The aim was
to go into detail about the calculational techniques of QFT, which are largely the same for all QFTs,
without being distracted by nuances of particular field types. In this chapter we will look at some of
the features that vary between different field types.

5.1 Complex scalar fields
5.1.1 Recap: complex conjugates in quantum mechanics

Consider the single-particle Schroedinger equation

oY ~
|— = H41. 547
90 = fry (547)
Assume the Hamiltonian is real: this is always possible in the absence of a magnetic field. We can
take the complex conjugate to give

OY*

—ig = Hvy (548)
or equivalently

. 8¢* _TT

Zc')(—t) = Hy". (549)

This tells us a general property of quantum theories: complex conjugation is equivalent to time reversal.
If 1) evolves according to the TDSE, then ¢* evolves according to the same equation with time reversed.
Now consider the current density associated with a particle of charge ¢

i (@) = 5 {0 i —vpy) (550)

which obeys the continuity equation

p=-V-j (551)

which says that if the charge density p changes in a region it must be due to a flow of current into or
out of the region. Under complex conjugation j switches sign. Hence, a flow of ¢ particles into the
region is equivalent to a flow of * particles out of the region, and vice versa. Equivalently, we can
force j to keep the same sign under time reversal by also switching charge ¢ — —q.

This reasoning reveals that * is the antiparticle to v: it has the opposite charge but same mass. A
flow of particles forwards in time is completely equivalent to a flow of antiparticles backwards in time.
Let’s see how this works in QFT.

5.1.2 Complex Klein Gordon action

We can define a Klein Gordon theory over complex scalar fields. Now ¢ and ¢* are treated as
independent fields. The action is

S%G [", ] = /d4x (8“(,0*8H<p — m2<p*<p) ) (552)

Note that it is conventional to multiply by two relative to Eq 350. Now we can find two Euler Lagrange
equations, by taking functional derivatives with respect to our two different fields ¢ and ¢*. We start
by extremising the action with respect to ¢*.

We can do this explicitly, as in Section 3.4.1. But for the sake of variety let’s instead use the functional
differentiation method.
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C *
08kalenol _ 0 / d*z (9" (x) Oup (1) — mPp* () ¢ () (553)

dp* (y) dp* (y)
— 5o [ 4t (e @ 0% (@)~ ()¢ (@) (554)
g (0@ 00 @)
- [« ( S ()0 ¢ @ oty )> (555)
So(x) S (@)
o) sy 0 @Y (556)
b () bp(r)
Soly) b (y) " (557)
to give
§SR [, @] _ 2 2
WL / dadt (2 — y) (0% (2) — mPp (2) (558)
=—0%p (y) —m*¢ (y) (559)

where 0, now means 0/dy". Setting both sides equal to zero and relabelling y — z gives the Klein
Gordon equation, as before:

(0% +m?) ¢ =0. (560)

Instead taking the functional derivative with respect to ¢ shows that the complex conjugate field also
obeys the Klein Gordon equation:

Ske l¢*, ¢l
g (x)
The fact that the same mass enters the the equation for the particle and antiparticle is a general
feature of QFTs. It is not generally true that the antiparticles obey the same equation of motion as
the particles: in general, the equations are complex conjugates.

=0 = (*+m?) ¢*=0. (561)

5.1.3 Complex Klein Gordon Propagator
The propagator for complex Klein Gordon theory is given by

Goy = (AT PLGLIQ). (562)

Here, @L creates a particle, or equivalently annihilates an antiparticle, at y. Similarly, ¢, annihilates
a particle/creates an antiparticle at z. In general in QFT we have that

‘ the particle creation operator is an antiparticle annihilation operator, and vice versa. ‘

5.1.4 Microcausality in complex field theories

The previous statement gives a neat interpretation to microcausality (Section ) in complex field theo-
ries. We now require

(€ [}, 5] 12) =0 (563)

whenever x and y are spacelike separated. Equivalently, we need
(UL p.12) = (2@, 2519). (564)

69



But we see that this requirement is

ngrtwle _ G;gtlpartlcle. (565)
Hence, while there is a non-zero amplitude for a particle to propagate across the spacelike region z —y,
as there was in single-particle QM, in QFT there is always an identical amplitude for the antiparticle
to propagate across y — x which perfectly cancels this effect. In this way, antiparticles can be seen as
a necessary feature of QFTs which ensure causality.
Note that in the real field theories we considered until now, the particle is its own antiparticle. There-
fore, it had to be charge-neutral.

5.1.5 Wick’s Theorem in complex field theories
Since ¢ and ¢* are independent fields, it follows that

QT @y x12) =0 (566)
(QITe} LI = 0. (567)

The first line follows because ¢,|Q2) = 0 by definition of the vacuum; the second line follows similarly
from (Q|¢], = 0. Combined with Eq 562 for the Green’s function, we see that Wick’s theorem works
the same way in complex field theories, except that the only non-zero contractions involve creation-
annihilation pairs.

5.1.6 U (1) charge conservation

The previous equations can be interpreted another way. They say that pairs of particles or antiparticles
cannot be created from the vacuum (since the expectation value of a pair of creation or annihilation
operators is zero). Similarly we can interpret the Green’s function as a finite amplitude to create a
particle-antiparticle pair from the vacuum.

Together, this tells us that we have a conservation law: the number of particles minus the number
of antiparticles is constant in any process. But recall that an antiparticle has opposite charge to a
particle. So this conservation law is simply the conservation of electric charge! Of course, our scalar
field is not exactly the field of an electron, so you might ask whether it is really the electric charge we
are familiar with. In general it is what we call a U (1) charge, of which electric charge is an example.
To see where the name comes from, note that charge conservation here follows from the fact that only
©*¢ terms appear in the action, rather than ¢? or ¢*2. Hence, the field can be rescaled by an arbitrary
position-dependent complex phase without changing the action:

©r = @z exp (ia (2)) (568)
P = Py exp (—ia (7)) (569)
Sto — Stq (570)

(check this yourself: the kinetic terms seem to change, but only by a total derivative which therefore
vanishes under integration). The terms exp (i) for real « describe the set of points on the unit circle;
under multiplication this describes the group U (1).

5.1.7 Feynman diagrams and U (1) charge conservation

To keep track of conserved U (1) charge in Feynman diagrams, we add an arrow on the propagator indi-
cating the forwards-in-time propagation of a particle (equivalently, the backwards-in-time propagation
of an antiparticle).
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Figure 13:

5.1.8 Complex ¢* theory

We can add interactions as with the real scalar field theory. For example, complex ? theory is
described by the interaction term

A A
Sint = Z/“Pzrl APty = Z/(‘P;%cf Pt (571)

Note that the prefactor is A\/4, not A/4! as it was in the real scalar field theory. The reason is that the
symmetry factor of the diagrams is different, owing to the U (1) conservation arrows, or equivalently
owing to the fact that we only contract particle-antiparticle pairs in Wick’s theorem. For the real field
we had

A .
(T p1p203pa)5ommected = O /dDH% <T¢i¢1@2<ﬂ3¢4>0 = Z)\/dDHfUGuG%Gsmsz (572)

where the 1/4! prefactor was introduced to deal with the fact that there are 4 ways to pair ¢; with a
gz, three ways to pair @9, and so on. Now we have

connecte ‘)\ .
(Tolehose,)T w=ig /dD“:v <Ts012s0is0§s0$<p3w4>0 = M/dD“xGuszGgmG% (573)

Here, (p} only has a choice of two ¢, and 3 has a choice of two ¢f. The remaining terms are fixed.
The corresponding Feynman diagram is shown in Fig 13. With this normalisation it has symmetry
factor 1, as required (since all 4 legs are external).

5.2 Bosons and Fermions

Recall the general argument for the possible behaviours of particles under exchange. Define the ex-
change operator

P[1,2) £12,1). (574)
Since
P2|1,2) = |1,2) (575)
it follows that
P =+l (576)

Hence, particles are either symmetric or antisymmetric under exchange. We call the former bosons,
and the latter fermions.

5.2.1 Bosons

The particles we have considered until now are all bosons, excitations of bosonic fields. To see this,
recall that we started from the harmonic oscillator, whose nt® excited state we interpreted in second
quantized language as n particles. Similarly, we considered it acceptable to raise a given mode in
our Fock space as many times as we liked, giving e.g. |24300...). Only bosons have the property
that multiple particles can exist in the same quantum state (with the same set of quantum numbers).
Implicit in this statement is the relation that

bosonic ladder operators obey:

[a},af] = lar, @) =0 (577)

|y ]| = o (578)




For example, Fock states like [24300...) can only be meaningful if it doesn’t matter in which order we
applied the creation operators:

1243) = (&221)2 (a;:2)4 (a;:3)3 Q) = (azz3)3 @:1)2 (a;:2)4 Q) = ete. (579)

This is the same argument behind quantum numbers in single particle QM. For example, you can’t
label a ket with both position and momentum, since the operators don’t commute so they cannot be
simultaneously well defined.

5.2.2 Fermions

For fermions we must instead define a new operator called
the anticommutator:

{A,B} £ AB + BA. (580)

Using this, we have that

fermionic ladder operators obey:

{62,63} ={é,a}t=0 (581)
{ewe} =ou. (582)

Defining

éhay =11 (583)

it follows immediately that we can only have 0 or 1 particles in a given quantum state, since

{ef el =0 (584)
I

elet = —éfet (585)

and so if we try to define

2
2) £ efe’|) (586)
we find

eret|Q) = —éfel|Q) (587)
2) = —12) (588)

which implies that |2) = 0, where this is really 0 and not the vacuum. Hence, trying to raise a fermionic
state a second time annihilates it. This is the Pauli exclusion principle.

5.2.3 Grassman variables & integrals [Peskin & Schroeder Sec 9.5]

Recall that when we move from the canonical quantization picture to the path integral picture, we
replace non-commuting field operators ¢, with classical commuting field variables ¢,, which assign a
real number ¢, at each spacetime position . Quantum non-commutation then arises from the fractal
nature of the field configurations being functionally integrated over.

All of this carries over to fermionic fields, with commutators replaced with anti-commutators. This is
quite strange: fermionic fields v, in the path integral picture assign a number to each point in space.
But two of these numbers must now anti-commute! This wasn’t a problem with bosonic fields, since
both real and complex numbers commute.

We call anti-commuting numbers Grassman variables. They obey 0n = —nf. An immediate corollary
is that 2 = ">1 = 0. As a result of this, Grassman algebra is actually very simple. For example, any
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function can be defined by its Taylor series (as with real functions), but now that Taylor series must
terminate at the linear term! For a, b € C we have:

f(0)=a-+bo (589)

where = indicates that this is an exact equality. Of particular interest is the function

exp (—0A0) =1 —0A0 (590)

where 6 is the complex conjugate of # (an independent variable, so that #0 = —06 # 0). Grassman
integrals® have some freedom in their definition, but the standard choice leads to:

/ dg =0 (591)
/ 6df = 1. (592)

As a result, the Gaussian Grassman integral takes a simple form:
/ a7 / A0 oxp (—0A6) = / a7 / a0 (1 — 5.A0) (593)
_ / dd / do — / a7 / 66 49 (594)
:/dg/d0+A/§d§/0d9 (595)
= A.

(596)
Similarly, we have the Grassman Gaussian functional integral:
N N B B
Jim_ 1;[1};[1 / df;d6; exp (—0;A,;0;) = det (A) (597)

perhaps written more familiarly over fields v, as

/ DODp exp (- / dP+1y / dD“WIAw%) — det (A). (598)

This is proportional to the inverse of the the bosonic Gaussian functional integral

N N (27T)N
li dp,dy; 0, Aiip) = ———. 599
Ngnmljlljl:[l/ Bides oxp (~Bidiyes) = 3oy (599)
The Grassman result is so simple that you will often find theories in which determinants play a key role,
otherwise unrelated to QF T, rewritten in ‘free fermion’ form. That is, you rewrite the determinant as a
Grassman Gaussian functional integral, and interpret the physical theory as a QFT of non-interaction
fermions!

As with bosonic integrals we have

N N
Jim H1 H1 / d0;d0;0,0; exp (—0;A;;0;) = det (A) A} (600)
1=1j5=

N—o00

N N
lim [T]] / d0;d0;010,0,,.0,, exp (—0;A;;0;) = det (A) (A Ak + A AT (601)
i=1j=1

and so on: Wick’s theorem applies as before, with the only change being that it is det A rather than
det A~ which appears as the prefactor.

8More frequently called Berezin integrals, although this is the only example I know of a Russian getting something
named after them when an Englishman invented it first (there are many examples the other way around). The first
known reference was David Candlin, 1956, a decade before Berezin.
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5.2.4 Quantum statistics of identical non-interacting particles

Using the exchange properties of bosons and fermions, we can immediately derive their respective
exchange statistics. Working in the grand canonical ensemble, the grand partition function is

Z (1, V,T) = exp(—f (En — Nap) (602)
n=0

where 8 = 1/T, N, is the number of particles in microstate n, and E,, is the energy of that (V is the
volume, which will be held fixed). The mean particle number is then given by

OlnZ
UW61< > ) : (603)
o Jvr
For non-interacting identical bosons the energy to add each particle is the same: € — u. Hence
Qpboson - Z exp (7”’6 (6 - ‘LL)) . (604)
n=0

Recognising the geometric series, we have

goboson = (1 — €Xp (_B (6 - :u)))_l (605)

and the mean particle number (N) is given by

the Bose Finstein distribution function:

1

exp (B(e—p))—1
These are Bose-Einstein statistics. At low energies 3 (¢ — u) — 07 this function diverges: the ground
state of a set of identical non-interacting bosons has space for an infinite number of particles. At
low energies the particles condense into the ground state, simply by their statistics. The result is a
Bose Einstein Condensate (BEC). Examples include superfluids (e.g. helium-4 cooled below 2.17K:
helium-4 is a composite spin-0 boson) and superconductors (in which fermionic electrons bind into
bosonic pairs, which can then condense). Some refer to Bose Einstein condensation as a macroscopic
quantum phenomenon.

For fermions we can only have 0 or 1 particle, and so

np (p,e,T) = (606)

1
prermion = Z exXp (—TLB (6 - /1')) (607)
n=0
=1+exp(—f(e—p) (608)

and the mean particle number is given be
the Fermi Dirac distribution function:

1

Fel) = B+ 1
These are Fermi-Dirac statistics. Adding fermions to a system, each quantum state can only contain
one particle. At zero temperature, the first particle goes into the lowest energy state, the second
particle into the second state, and so on. The result is the ‘Fermi sea’: a set of filled states at low
energy, with a sharp cut-off to a set of empty states at higher energies. At higher temperatures, the
cut-off broadens, and some of the highest-energy particles move to higher energy states, leaving the
low energy states occupied. This situation describes the electrons in a metal, for example.

(609)

5.2.5 Bogoliubov Transformations

Sometimes the most natural way to describe a physical system involves writing down operators that
do not conserve particle number. For example, we might find a Hamiltonian like

Hboson =€ (diél + d;dQ) + A (&Id; + &1&2) . (610)
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Acting on a state of n; particles of type i (i = 1,2) gives

]:Iboson|n1,n2> = 6(711 + nz) |n1,n2> + A (|7’L1 +1,n9 + 1> + |n1 —1,no — 1>) .

(611)

Hamiltonians of this form can always be ‘diagonalised’ by rewriting in terms of new creation and
annihilation operators which the commutation relations but which only involve number conserving

terms. This is called a Bogoliubov transformation.
First note that we can use the bosonic commutation relations

~ At
[ai’ag} = 0ij
to rewrite the Hamiltonian as
~ € IR PR “ N PR
Hboson = 5 (a'{al + a’la; + a’JQFGZ —+ GQCL; —¢€
Afatat | tot | oo o o
+ 5 (alaQ + agaq + ayaq + azal)

and can then put this into matrix form:

2Hpos0n + 2€ = (&Ia &2, &;, CA”l)

SO >
oo >
> OO
A > O O

Focus on the top 2 x 2 block:

o, +2e= (alas) (5 2) ().
a

We can diagonalise this using:
<A1> ( ><@)'
al v 0 b

But we must maintain the bosonic commutation relations. This requires:

{ainl + BbL, b} + 5*132] =1
[aby, a”Bf] + [88},8B,] =1
jaf* — |8 =1
and similarly
[aQ,ag} =1 = |67 - [>=1.
A convenient parameterisation is therefore
< a, )_ ( cosh@ sinh@ ) < b, )
d; ~ \ sinhé coshé B; ‘

Hence we have
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(613)

(614)

(615)

(616)

(617)

(618)



2% (5t s coshf sinhf € A coshf sinh6 1
2Hiomon + 26 = (bl’ b2> < sinh@® cosh® A € sinh@ cosh® ; (626)

b
b
) . (627)

_ (IA)T 5 ) ecosh 26 4+ Asinh 26  esinh 26 + A cosh 26 b,
BN esinh 20 + Acosh 20 e cosh 26 + \sinh 26 (};
Choosing
tanh 20 = —\/e (628)
gives
. 1/ - VeZ =2 0 b
2x2  _ * T 91 o
Hboson - 2 (blv b2) < 0 2 _ \2 > < b; > € (629)
or

. 1 S 1
A2, = 5V/@ = N2 (b1, +01b,) — e+ 5V =02 (630)

Hence, in terms of the new Ej quasiparticles, the Hamiltonian is diagonal.
We can do the same for Fermions by switching commutators for anti-commutators. Defining

f{fermion =€ (éiél + é;ég) + A (élé; + 6261) (631)

(note the switch of order in the final term, required for Hermiticity) and using the anti-commutation
relations

{ccj} - {cT j} —0 (632)
{ccj} =5 (633)

to rewrite as

N € [ .+ A . R A/ o A A
Hiermion = B (CJ{Cl - clc]{ + c;c2 — czcg) + e+ 5 (CJ{CE — c;c]; + o6y — 0162) (634)
and
o Foa At A A —e O 0 ¢
2errmion —2e = (CJ{; Co, C; Cl) 0 0 € ~) éz (635)
0 0 =X\ —¢ ot
1

Let’s again consider the upper 2 x 2 block (the other now takes a slightly different form):

2‘E[fze>r<112110n —2e= (61762) ( ; _AE ) ( 211' ) : (636)
2

This time it turns out (using the same reasoning as before) that to maintain anticommutation relations
requires
¢\ cosf sind d,
(@5 >_( —siné cos@)(@ : (637)
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’ spin \ statistics \ field \ examples ‘

0 boson scalar Higgs boson
1/2 | fermion | spinor | electron, proton
1 boson vector | W=, Z bosons
2 boson tensor graviton?

Table 1: Particles labelled by spin. If we succeed in quantizing gravity, we know that the particle
excitations will be spin-2.

X2 o T € —Atan20 etan26+ A dy
2Hiermmion — 2€ = c0s 20 (dl’ d2) < etan20 + X Atan20 —¢ d} (638)
and choosing
tan26 = —\/e (639)

gives

)(m 0 >(0?1>_ (640)

2H2X2 9 :(cﬁd '
e=(d1dy o —vere ) ld

fermion
This Fermionic case occurs in superconductors. Here, the two species of fermion are electrons with
opposite crystal momentum. These pair up to form bosonic ‘Cooper pairs’, created by éLéi x> Which
then Bose-condense in their ground state. There is an energy gap separating the ground state from the
first excited state, which is the energy required to break one of these Cooper pairs back into fermions.
Interestingly, however, the Bogoliubov transformation shows that the fermions formed by breaking a
Cooper pair are not electrons! They are superpositions of electrons and holes:

dl = cos ¢, — sin Héik. (641)

But electrons and holes have opposite charge (the are antiparticles of one another, in a condensed
matter setting). Hence these particles, called Bogoliubons, have an electric charge that is in a quantum
superposition! When measured, they are found to have any charge from e to —e.

5.2.6 The spin-statistics theorem

The exchange operator argument explains that there must be exactly two types of particle in 3D:
those that are symmetric or antisymmetric under exchange. We call these bosons and fermions. As
we saw in Section X, their exchange properties lead to different statistics: Bose-Einstein for bosons,
Fermi-Dirac for fermions.

However, bosons and fermions are also classified by their spin: bosons have integer spin, while fermions
have odd-half-integer spin. This perfect correspondence between spin and statistics was for a long time
called the spin-statistics connection. In fact it has now been proven, using axiomatic QFT, to be a
consequence of CPT symmetry and Lorentz invariance, but the proof is very complicated. The result
is the spin-statistics theorem.

Many suspect there should be a simpler explanation for the spin-statistics connection. In a sense,
a single spin—S particle has to be rotated through 27/S before it returns to its original orientation.
Hence, the connection says something about the relationship between the symmetry of a single particle
under rotation, versus rotating a pair of particles into one another. So far, no simple explanation of
spin-statistics has been identified.

The spin of a particle is deeply connected to the symmetries of spacetime. Specifically, spin labels
which irreducible representation of the Poincare group a particle lives in. You will see more of this in
the second part of the course. For now, we will proceed to list some basic properties of the different
irreps. Table 1 provides a summary.
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5.3 A Field Guide to Fields
5.3.1 Spin-0: Scalar fields
Spin-0 fields are Lorentz scalars:
p(x) = @' (2') = p (A1) = ¢ (A)z") (642)

(i-e. the field itself does not transform under the Lorentz transformation). They have been our main
focus until now. The non-interacting action is the Klein Gordon action. For a real field this is:

1 1
Lipin—0 = —58“@0#@ - §m2w2. (643)

Its Euler Lagrange equation is the Klein Gordon equation, which governs the motion of a non-
interacting massive spin-0 particle:

(0 +m*) p=0. (644)

The only spin-0 particle in the standard model is the Higgs boson, which obeys the Klein Gordon
equation with an added potential (and also interacts with other particles).

5.3.2 Spin-1: Vector fields

Spin-1 fields transform as vectors under Lorentz transformations:

AF(x) — AP () = A AY (Aflx’) . (645)
The corresponding Lagrange density is
1 uv 1 QA;LA
D%pin_l = _ZF FHV + §m m (646)

where we have used the field strength:

FHY & gAY — 9¥ AP, (647)
The corresponding Euler-Lagrange equation is the Proca equation
O, F" +m? At = 0. (648)

This describes massive spin-1 particles, such as the W+, W~ and Z bosons.

5.3.3 Abelian Gauge fields (spin-1)

With m = 0, the Proca equation becomes Maxwell’s equations:

1
cg/ﬂMaxwell = _ZF“VFMV (649)
1 (650)
8, F" = 0. (651)

These describe a massless spin-1 particle: the photon. In this case (only) the action features a gauge
symmetry: the action is invariant under a gauge transformation A" (z) — A* (z) + 0*A(x). In
electromagnetism this has a simple interpretation. We have

A — ( ¢ ) (652)

where ¢ is the voltage and A is the magnetic vector potential. That is:

B=VxA (653)
E=-VV-A (654)
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Hence the gauge transformation is equivalent to

(3)-(53%)

which leaves B and E unchanged. The invariance of the action to the gauge transformation encodes
the fact that the absolute value of voltage has no meaning: only potential differences are physical.
Hence we can shift all voltages in the universe by an amount d°\ and must get the same physical
results. Similarly, we can shift the magnetic vector potential by a pure gradient and get the same
physical situation.

Maxwell theory, of a massless spin-1 field, is therefore an example of an Abelian gauge theory. Gauge
fields are of particular importance in QFT, since it is potentials, rather than forces, which appear in
quantum mechanics. For example, the non-relativistic Hamiltonian of a single particle in a magnetic
field is

1 /. . A\%2 =~
= (p—id) +V. (656)
This carries over to QFT.

5.3.4 Non-Abelian gauge fields (spin-1)

We can promote any field to a vector of fields simply by adding an index. For example, for a scalar
field:

va (z) = : . (657)

on (z)
This index is not a spacetime index, so this does not describe a spin-1 field. It is simply a convenient
notation for handling multiple independent fields. You can, for example, rewrite a single complex
scalar field as a vector of real fields with an appropriate metric. We can just as easily add a vector
index to a spin-1 field, to describe N independent spin-1 fields:

4 (2
Ay = ° :(x) . (658)
AR (2)

Such fields appear in the Standard Model. Here, the vector space indexed by a is the non-Abelian
gauge group G = SU (2) or SU (3); then N = dim G. The result is described by Yang Mills theory:

1
gYang—Mills = _ZFéLDFSV (659)
where
FiY & 91 AL — 0V All 4 g f**e Ay AY. (660)

The corresponding Euler-Lagrange equation is

D,F* =0 (661)

where

DF £ 9F —igT* AF. (662)

Here T are the generators, and 2 the structure constants, of the Lie algebra of G:

[T, T"] = if*bT* (663)
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(since these are not spacetime indices they can be raised and lowered without any change). For the
simplest case of G = SU (2), we can choose as generators the Pauli matrices 0. Then we have the
familiar relation

[0, O'b} = 2jebeqe (664)

where €% is antisymmetric in any pair of indices. Non-Abelian gauge fields describe quarks and gluons

in the Standard Model: called quantum chromodynamics, the gauge group is SU (3). Additionally,
electroweak theory describing W and Z particles and the photon starts off as an SU (2) non-Abelian
gauge theory, although the story here is complicated by the Higgs mechanism.

5.3.5 Spin-1/2
The spin-1/2 field is called a spinor field. The Lagrange density is

%pin—l/Q (E? 1/}) = @a (i75b8# - mﬂab) ’l/)b (665)

where

Bo 200 (666)

and the corresponding Euler Lagrange equation is the Dirac equation

(i’ygbau - m]Iab) 1/}b =0. (667)

Here, the gamma matrices are any matrices obeying the anti-commutation relations:

{77} = 2" (668)
which defines the Clifford algebra Cly 5 (R). The smallest dimension of representation is 4, giving 4 x 4
matrices. In fact any 4 x 4 representation of this algebra is unitarily equivalent to any other:

A = gtyrg (669)

for some unitary 4 x 4 matrix S. One choice, the Weyl representation, is

Y=l (670)
7 =io? @ d’. (671)
Dirac derived his equation by taking the ‘square root’ of the Klein Gordon equation, and working out

a set of matrices which allowed this to work. Hence, you can square the Dirac equation to return to
the Klein Gordon equation:

(17430 — mla) wb =0 (672)

(673)

(—17q 00 — mlca) (i%/:ba —mlgp) 1/) (674)
(Veu Vi OOy + mQch) Py = (675)

( {Vear Yap} 0vOu +m ch> Yy = (676)
(00, +m?) e =0 (677)

where it should be noted that 1, has the basic appearance of a 4-component vector. It is not a Lorentz
vector; rather it is a vector in ‘spinor space’, although this is linked to Minkowski space. As a result
the transformation of spinor fields is a bit more complicated:

Ya () = U, (¢') = Sap (M) (A '2) . (678)

It is conventional to drop the spinor indices, and to additionally define the ‘Feynman scratch notation’
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d £ Yau

to write the Dirac equation in the neater form

5.4

(id —m) ¢ = 0.

The Standard Model

The Lagrange density for the Standard Model is

with

Here,

gSM = gboson + cgfermion + gHiggs + gYukawa

Lhoson = _iG(lHVGZV - iwaltl’wﬁy - EBMVBMV

oiﬂfermion = Z ELHM/’

1 efermions

Litiges = (D H) DFH + 2 HUH — X\ (HTH)

(1? > 0).

(679)

(680)

(681)

(682)

(683)

(684)

G}, 1s the field strength of the non-abelian SU (3) group (strong force-carrying bosons: gluons)

W, is the field strength of the non-abelian SU (2) group (electroweak force-carrying bosons)

B,,, is the field strength of the abelian U (1) field (hypercharge)

1 includes all fermions: quarks and leptons, left- and right-handed

Pyukawa describes the Fermion masses.

This form is before the Higgs field has induced spontaneous symmetry breaking. You now have all the

tools to do calculations with these fields and their particles, in the second part of this course.
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