
Quantum Fields and Particles: Problem Sets

Felix Flicker

Problems sets 1, 2, and 3 are due on Thursday 10am on weeks 2, 3, and 4 respectively.

We will go through the solutions in the problems classes on Thursdays 10-11am in weeks 3, 4, and 5
respectively.

The marking scheme for coursework will be unusual! You will receive full marks on a problem set if
you attempt every question, regardless of whether you get it right.

An attempt is defined as either:
(i) a logical sequence of reasoning leading to a proposed answer, or
(ii) a list of two specific locations in textbooks (paragraphs/subsections) you believe to be the most
relevant to answering the question, and a written explanation of why you haven’t understood from
them how to achieve (i).

If you opt for (ii) at any point, please provide a cover sheet for your problem set highlighting where
you do so.

Marks are indicated for each question only as a guide to the amount of time you should spend on
each part. Each problem set is pass (100%, all part-questions attempted) / fail (0%, one or more
part-questions not attempted).

Marking: you will be assigned to groups of 3. One of you will receive detailed feedback on each
problem set each week. During the problems class, it will be that person’s job to ensure that all three
understand the solutions to every problem.

1



1 Canonical Quantization of Fields

1.1
Consider a 1D chain of atoms, with two different atoms per unit cell. The total unit cell length is
a. The mass of the atoms with displacements un (t) is m, and the mass of atoms with displacements
vn (t) is M > m. Explain with the aid of a diagram why the classical motion is described by

mün = −K (un − vn) +K (vn+1 − un) (1)
Mv̈n = K (un − vn)−K (vn − un−1) . (2)

[3 marks]

1.2
1.2.1

Show that the normal modes of this chain are given by

ω2
± =

K

µ

(
1±

√
1− 4µ2

mM

(
sin2 (ka/2)

))
(3)

where we have defined the reduced mass

µ ≜
mM

m+M
. (4)

[5 marks]

1.2.2

The two branches of the dispersion are called the acoustic branch ω− (k) and the optical branch ω+ (k).
Find their dispersions to leading order in k around k = 0.

[4 marks]

1.2.3

Hence find the speed of sound c of the acoustic branch:

c ≜ lim
k→0

ω−

k
(5)

[2 marks]

and the mass gap ∆ of the optical branch:

∆ ≜ ω+ (k = 0) . (6)

[2 marks]

Show that to leading order in k,

ω− = ck

ω+ =
√
∆2 − c2k2.

[2 marks]



1.2.4

Find the gap ω+ − ω− at k = π/a. Show that it closes when m = M , and explain this result.

[2 marks]

1.2.5

Sketch ω± over k ∈ [−π/a, π/a] marking on values at key points.

1.3
Show that the Lagrangian

L =

N∑
n=1

1

2
mu̇2

n +
1

2
Mv̇2n − K

2

{
(un − vn)

2
+ (vn+1 − un)

2
}

(7)

leads to the correct equations of motion.

[4 marks]

Hint: it is easiest tp derive separate equations of motion for u̇,u holding v̇,v constant and vice versa.

1.4
1.4.1

Take the continuum limit to find classical fields using the substitutions

un (t) → U (x, t) (8)
vn (t) → V (x, t) (9)

where x = na at lattice sites. Using a Taylor expansion

vn+1 → V (x+ ϵ) = V (x) + ϵV ′ (x) +
1

2
ϵ2V ′′ (x) +O

(
ϵ3
)

for vn+1, show that the resulting coarse-grained Lagrangian is

L =

∫ ∞

−∞

dx
a

[
1

2
mU̇2 +

1

2
MV̇ 2 − K

2

{
2 (U − V )

2
+ (ϵV ′)

2
+

(
1

2
ϵ2V ′′

)2

+ 2ϵ (V − U)V ′ + ϵ2V ′′ (V − U) + ϵ3V ′V ′′

}]
.

(10)

[4 marks]

1.4.2

Explain why this is equal to

L =

∫ ∞

−∞

dx
a

[
1

2
mU̇2 +

1

2
MV̇ 2 − K

2

{
2 (U − V )

2
+

(
1

2
ϵ2V ′′

)2

− U
(
2ϵV ′ + ϵ2V ′′)}] . (11)

[2 marks]



1.5
We would like to decouple the fields U and V . To do so we can use transformed fields

U = αΦ+ βΨ (12)
V = γΦ+ δΨ. (13)

1.5.1

Find a condition on α, β, γ, δ required for the kinetic terms to remain decoupled.

[2 marks]

1.5.2

One possible choice is

α = γ = 1 (14)
β = µ/m (15)
δ = −µ/M (16)

giving

U = Φ+
µ

m
Ψ (17)

V = Φ− µ

M
Ψ. (18)

Show that Ψ and Φ are simply the relative and centre-of-mass co-ordinates.

[2 marks]

1.5.3

Using these new fields, and dropping terms of order > ϵ2, show that the Lagrangian density can be
written

L = Lacoustic + Loptical + Lint (19)

where

Lacoustic =
m+M

2
Φ̇2 − K

2
(ϵΦ′)

2 (20)

Loptical =
µ

2
Ψ̇2 +

K

2

(
µ

m+M

)
(ϵΨ′)

2 −KΨ2 (21)

and Lint is an interaction term you should state (which we will subsequently neglect).

[2 marks]

1.6
Consider the general action for a relativistic massive real scalar field, with ℏ and c written explicitly
(assuming the field itself is dimensionless):

S [φ] =
ℏ
c

∫
dt
∫

dx
(
1

2
φ̇2 − 1

2
(c∇φ)

2 − 1

2

m2c4

ℏ2
φ2

)
. (22)



1.6.1

By varying the action with respect to the field, show that the Euler Lagrange equation is the Klein
Gordon equation

φ̈− c2∇2φ+
m2c4

ℏ2
φ = 0. (23)

[6 marks]

1.6.2

Show that for a massless field, the Klein Gordon equation reduces to the wave equation for a wave of
speed c.

[1 mark]

1.6.3

Hence, show that Lacoustic corresponds to a massless scalar field, and find the speed of sound.

[2 marks]

1.6.4

Find the length scaling ϵ such that the speed of sound in the continuum model matches that in the
microscopic model.

[2 marks]

1.6.5

Show that Loptical corresponds to a massive scalar field. Show that the mass, in natural units ℏ = c = 1,
is equal to the mass gap of the optical branch of the dispersion.

[2 marks]

1.7
1.7.1

Find Π, the momentum canonically conjugate to Ψ.

[1 mark]

1.7.2

Find the classical field Hamiltonian corresponding to Loptical.

[4 marks]

1.8
We saw in the lectures how to canonically quantize the acoustic branch. We will now quantize the
optical branch.

1.8.1

Write the canonically quantized field Hamiltonian.

[1 mark]



1.8.2

Using the Fourier transformed field operators (we will use the same symbols for the fields and their
Fourier transforms, to save on notation):

Ψ̂x,t =

∫
dk
2π

exp (ikx) Ψ̂k,t

Π̂x,t =

∫
dk
2π

exp (−ikx) Π̂k,t

show that the Hamiltonian can be written

Ĥ =

∫
dk
2π

{
1

2µ
Π̂kΠ̂−k +

1

2
µω2

kΨ̂kΨ̂−k

}
for an ωk you should specify.

[4 marks]

1.8.3

Show that the lengthscale ϵ you found in Question 1.6.4 causes the optical dispersion in the continuum
model to match that which you found in the microscopic model in Question 1.2.2, at small k.

[2 marks]

1.8.4

Sketch the dispersions of the acoustic and optical fields over the original dispersions.

[2 marks]

1.9
Find the second-quantized normal-ordered Hamiltonian : Ĥ : for the optical phonon field by rewriting
in terms of creation and annihilation operators

Ψ̂k =
1√
2µωk

(
âk + â†−k

)
(24)

Π̂k = i

√
µωk

2

(
âk − â†−k

)
. (25)

[4 marks]



2 Path Integral Field Quantization
In this problem set we will derive the propagator of the photon.

2.1
• Explain the philosophy behind path integral quantum mechanics, including how non-commutation

arises. [3 marks]

• Why is a Lagrangian formulation of quantum mechanics especially advantageous for QFT? [2
marks]

• Quantum Mechanics is sometimes said to be a 0+1D quantum field theory. Explain why. [3
marks]

2.2
2.2.1

Using the chain rule, derive the Euler Lagrange equations for a general Lagrange density that is a
function of a Lorentz scalar field: L (φ, ∂µφ).

[5 marks]

2.2.2

Derive the Euler Lagrange equations for a Lagrange density that is a function of a Lorentz vector field:
L (Aν , ∂µA

ν).

[5 marks]

2.3
The photon is governed by Maxwell theory, whose Lagrange density is

LMaxwell = −1

4
FµνFµν (26)

where

Fµν ≜ ∂µAν − ∂νAµ. (27)

2.3.1

Find the Euler Lagrange equations of Maxwell theory.
Hint : you will need to use the fact that

∂ (∂νA
µ)

∂ (∂αAβ)
= δαν δ

µ
β (28)

where δαν is a Kronecker delta. Additionally, you will need to make use of the Minkowski metric ηµν

to raise and lower indices as appropriate.

[6 marks]



2.3.2

Show that Fµν is invariant to local gauge transformations

Aµ → Aµ + ∂µλ (x) (29)

for arbitrary λ (x).

[2 marks]

2.4
Following the lectures, we can attempt to find the momentum-space photon propagator G̃µν by rewrit-
ing the Fourier transformed action in the form

SMaxwell =

∫
d4p

(2π)
4

1

2
ÃµG̃−1

µν Ã
ν . (30)

Show that this gives

G̃−1
µν = pµpν − ηµνp

2. (31)

[6 marks]

2.5
However, G̃−1

µν cannot be inverted. To show this, find an eigenstate of G̃−1
µν with zero eigenvalue, and

explain the relevance.

[4 marks]

2.6
To see where the issue arises, state the number of degrees of freedom of the real vector field Ãµ (ω,k),
and the number of degrees of freedom of a photon with wavevector k and energy ω.

[2 marks]

2.7
To proceed, we must restrict the freedom of Aµ by making a gauge choice. Consider the modified
action

Sξ
Maxwell =

∫
d4x

{
−1

4
FµνFµν +

1

2ξ
(∂µAµ)

2

}
. (32)

The new term can be thought of as a Lagrange multiplier: taking the limit ξ → 0 enforces the gauge
choice

∂µAµ = 0 (33)

which is the Landau gauge. We do the calculation with arbitrary ξ, then take the limit ξ → 0 at the
end. Find G̃−1

µν for this modified action.

[4 marks]



2.8
To invert and find the momentum-space Green’s function, identify G̃µν such that

G̃µλG̃−1
λν = δµν . (34)

Hint : make an educated guess at an ansatz, keeping the dimensions in mind. Recall that

ηµληλν = ηµν = δµν . (35)

[8 marks]

2.9
We motivated the ξ term by saying that it enforces the Landau gauge when ξ → 0. Other gauge
choices can be made with other values of ξ (the term added to the action turns out not to affect
physical results). Another common choice is the Feynman gauge, ξ = 1. Show that the real-space
photon propagator in the Feynman gauge is

Gµλ = −ηµλ
∫

d4p

(2π)
4

exp (ip · x)
p2 + iϵ

(36)

where ϵ is a term you should explain.

[4 marks]



3 Interacting Quantum Fields
In the lectures we have focussed on φ4 theory. A simpler theory is φ3; it is, unfortunately, physically
unrealisable. Still, we can look at some of its properties.

3.1
Consider the Lagrange density for a real scalar field:

L = LKlein Gordon + Lint (37)

with

Lint =
g

N
φ3 (38)

where N is an integer which we will determine in this question.

3.1.1

Draw the full set of Feynman diagrams (including disconnected diagrams) that contribute to the 3-point
function ⟨φ1φ2φ3⟩ at linear order in g.

[4 marks]

3.1.2

Explain what is meant by a 1PI diagram, and why the concept is useful.

[3 marks]

3.1.3

Using Wick’s theorem, derive the 3-point function ⟨φ1φ2φ3⟩ explicitly to order g in terms of non-
interacting Klein Gordon propagators. Hence suggest a suitable normalisation N .

[8 marks]

3.1.4

Assuming your choice of N , write down the real-space Feynman rules for φ3 theory by specifying the
algebraic equivalents to:

• an internal vertex at x

• a line connecting vertices at x and y.

[4 marks]

3.1.5

Write down the full ⟨φ1φ2φ3⟩ (including disconnected diagrams) to order g in terms of Green’s functions
directly from your Feynman diagrams. Explain the symmetry factors of each.

[8 marks]

3.2
In φ3 theory, only even powers of g contribute to N -point functions for even N , and only odd powers
of g contribute for odd N . Explain this:



3.2.1

Algebraically

[2 marks]

3.2.2

Diagrammatically (i.e. using Feynman diagrams).

[2 marks]

3.3
Sketch all the 1PI vacuum diagrams of φ3 theory to order g4.

[3 marks]

3.4
3.4.1

Identify the 1PI diagram contributing to the renormalisation of the propagator up to order g2.

[2 marks]

3.4.2

Calling the amputated 1PI diagram Π, write an algebraic Dyson series for the renormalisation of the
momentum space propagator G̃ to infinite order.

[4 marks]

3.4.3

Rewrite the Dyson series calculation entirely diagrammatically. You can denote G̃ren however you like
(e.g. a double line).

[2 marks]

3.4.4

Use the momentum space propagator

G̃ =
i

p2 −m2 + iϵ

to evaluate the Dyson series, showing that the renormalised propagator is

G̃ren =
i

p2 −m2 − iΠ
. (39)

[4 marks]


