
Perturbation Theory � Felix Flicker

1 Perturbation Theory

The set of quantum mechanical problems which admit exact analytical solutions is very small. For-

tunately, there exists a powerful method for achieving approximate solutions to a much wider class of

problems, based on perturbing away from known exact results. This method is perturbation theory. In

this lecture we will consider the simplest case of time-independent perturbations in which all energies

remain non-degenerate. We will deal with these more general cases in subsequent lectures.

We begin by assuming we can solve exactly for a complete set of n eigenvalues E
(0)
n and eigenfunctions

ψ
(0)
n (x) of a given time independent Schrödinger equation

Ĥ0ψ
(0)
n (x) = E(0)

n ψ(0)
n (x) . (1)

The superscript 0 indicates that this is the unperturbed case. We then perturb the Hamiltonian according

to

Ĥ0 → Ĥ = Ĥ0 + Ĥ ′ (2)

and seek an approximate solution for the eigenvalues En and eigenfunctions ψn

Ĥψn (x) = Enψn (x) . (3)

A convenient trick at this point is to de�ne

Ĥ ′ = λV̂ (4)

where λ is a dimensionless real parameter. In this way, setting λ = 0 returns the unperturbed problem

which we know how to solve. Setting λ = 1 instead gives the perturbed problem. Provided no energy

levels cross in the interval λ ∈ [0, 1] it is safe to assume that the two sets of solutions can be smoothly

connected.

We seek solutions to

(
Ĥ0 + λV̂

)
ψn (λ, x) = En (λ)ψn (λ, x) . (5)

Our key assumption is that the solutions to the full equation are close enough to those of the unper-

turbed case that we are justi�ed in expanding the behaviour in λ as a Taylor series:

ψn (λ, x) =
∞∑

m=0

λmψ(m)
n (x) = ψ(0)

n (x) + λψ(1)
n (x) + λ2ψ(2)

n (x) + . . . (6)

En (λ) =
∞∑

m=0

λmE(m)
n = E(0)

n + λE(1)
n + λ2E(2)

n + . . . (7)

Substituting the trial solutions of Eqs. 6 and 7 into Eq. 5 we can proceed to a solution working power-

by-power in λ:
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λ0 : Ĥ0ψ
(0)
n (x) = E(0)

n ψ(0)
n (x) (8)

λ1 : Ĥ0ψ
(1)
n (x) + V̂ ψ(0)

n (x) = E(0)
n ψ(1)

n (x) + E(1)
n ψ(0)

n (x) (9)

λ2 : Ĥ0ψ
(2)
n (x) + V̂ ψ(1)

n (x) = E(0)
n ψ(2)

n (x) + E(1)
n ψ(1)

n (x) + E(2)
n ψ(0)

n (x) (10)

...

Note that the expansion parameter λ is best thought of as a bookkeeping device introduced to keep track

of the order of the perturbation. The sums de�ned in Eqs. 6 and 7 are not in general convergent even

for 0 ≤ λ < 1. Instead, they are asymptotic, meaning they converge for a few terms before diverging.

We will ultimately set λ = 1.

1.1 First-order energy shift

The λ0 equation (Eq. 8) is simply the unperturbed Schrödinger equation which we can solve exactly (Eq.

1). The �rst correction is found in the λ1 terms (Eq. 9). We'd �rst like to solve for E
(1)
n , the �rst-order

shift in the nth energy coming from the perturbation. We can re-arrange the λ1 equation to the form

E(1)
n ψ(0)

n (x) = V̂ ψ(0)
n (x) +

(
Ĥ0 − E(0)

n

)
ψ(1)

n (x) . (11)

To isolate E
(1)
n on the left, we can use the fact that the eigenfunctions ψ

(0)
n (x) form an orthonormal basis,

such that

∫
ψ(0)∗

n (x)ψ(0)
m (x)dx = δnm (12)

with δnm the Kronecker delta. Left-multiplying Eq.11 by ψ
(0)∗
n and integrating over the relevant domain

gives

E(1)
n

∫
ψ(0)∗

n (x)ψ(0)
n (x)dx =

∫
ψ(0)∗

n (x) V̂ ψ(0)
n (x)dx+

∫
ψ(0)∗

n (x)
(
Ĥ0 − E(0)

n

)
ψ(1)

n (x)dx. (13)

The �nal term on the right-hand side vanishes, since we can act to the left with Ĥ0 and use the λ0 result:

ψ(0)∗
n (x)

(
Ĥ0 − E(0)

n

)
= ψ(0)∗

n (x)
(
E(0)

n − E(0)
n

)
= 0. (14)

Re-arranging Eq.13 then gives the result

E(1)
n =

∫
ψ(0)∗

n (x) V̂ ψ(0)
n (x)dx. (15)

We can now formally identify the �rst-order correction to the original problem by setting λ = 1, for which
V̂ = Ĥ ′, giving the �nal result:

E(1)
n =

∫
ψ(0)∗

n (x) Ĥ ′ψ(0)
n (x)dx. (16)
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The shift in the nth energy level induced by Ĥ ′, found to �rst order in perturbation theory, is simply the

expectation value of Ĥ ′ evaluated with the unperturbed nth eigenstate.

Example: the anharmonic oscillator

The anharmonic oscillator is described by the Hamiltonian

Ĥ =
p̂2

2m
+

1
2
mω2x̂2 + εa−4x̂4 (17)

with a =
√

~
mω and ε a real parameter with the dimensions of energy. We can de�ne

Ĥ = Ĥ0 + Ĥ ′

with

Ĥ0 =
p̂2

2m
+

1
2
mω2x̂2 (18)

Ĥ ′ = εa−4x̂4

where Ĥ0 is the standard quantum harmonic oscillator, whose (normalized) eigenstates and energies are

given by:

E(0)
n = ~ω

(
n+

1
2

)
ψ

(0)
0 (x) =

(
1
πa2

)1/4

exp
(
− x2

2a2

)
ψ

(0)
n+1 (x) =

1√
n+ 1

1√
2a

(
x− a2 d

dx

)
ψ(0)

n (x) . (19)

Using the result of Eq. 16 we �nd that the �rst-order energy shift is given by

E(1)
n = εa−4

∫ ∞

−∞
ψ(0)∗

n (x)x4ψ(0)
n (x)dx. (20)

For example, the shift in the ground state energy is given by

E
(1)
0 = εa−4

(
1
πa2

)1/2 ∫ ∞

−∞
x4 exp

(
−x

2

a2

)
dx

↓ let y = x/a

= ε
1√
π

∫ ∞

−∞
y4 exp

(
−y2

)
dy

=
3
4
ε.

3



1.2 First-order wavefunction shift Perturbation Theory � Felix Flicker

1.2 First-order wavefunction shift

The �rst-order shift in the eigenstates is given by ψ
(1)
n (x). To get this in terms of known quantities we

can use the fact that ψ
(0)
n comprise a complete set of basis states, and therefore any function (including

ψ
(1)
n (x)) can be written in terms of them. Speci�cally

ψ(1)
n (x) =

∑
m

Cnmψ
(0)
m (x) (21)

=
∑
m6=n

Cnmψ
(0)
m (x) + Cnnψ

(0)
n (x) (22)

where

Cnm =
∫
ψ(0)∗

m (x)ψ(1)
n (x)dx. (23)

In fact, since both the unperturbed states ψ
(0)
n (x) and the perturbed states ψn (x) must be normalized

we must have that Cnn = 0 to �rst order in λ.

Exercise 1 : prove this result [solution at the end of the document].

We therefore have that

ψ(1)
n (x) =

∑
m6=n

Cnmψ
(0)
m (x) . (24)

To �nd Cnm we can return to Eq. 11, this time multiplying from the left with ψ
(0)∗
m (x) and integrating

over x:

E(1)
n

∫
ψ(0)∗

m (x)ψ(0)
n (x)dx =

∫
ψ(0)∗

m (x) V̂ ψ(0)
n (x)dx+

∫
ψ(0)∗

m (x)
(
E(0)

m − E(0)
n

)
ψ(1)

n (x)dx.

When m = n this simply returns the result of the �rst-order energy shift. Considering instead the case

m 6= n gives

∫
ψ(0)∗

m (x)ψ(1)
n (x)dx = Cnm =

∫
ψ

(0)∗
m (x) V̂ ψ(0)

n (x)dx

E
(0)
n − E

(0)
m

. (25)

Substituting Eq. 25 into Eq. 24 gives

ψ(1)
n (x) =

∑
m6=n

∫
ψ

(0)∗
m (y) V̂ ψ(0)

n (y)dy

E
(0)
n − E

(0)
m

ψ(0)
m (x)

and once again we formally set λ = 1, so that V̂ = Ĥ ′, to give the �nal result:
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ψ(1)
n (x) =

∑
m6=n

∫
ψ

(0)∗
m (y) Ĥ ′ψ

(0)
n (y)dy

E
(0)
n − E

(0)
m

ψ(0)
m (x) . (26)

1.3 Second-order energy shift

If perturbation theory is valid and useful for the problem at hand, we should only need to consider the

�rst few terms. Higher order results can nevertheless be inferred by iterating the same processes as above.

For example, to �nd the second-order correction to the energy we can start from the λ2 result in Eq. 10,

which re-arranges to:

(
Ĥ0 − E(0)

n

)
ψ(2)

n (x) +
(
V̂ − E(1)

n

)
ψ(1)

n (x) = E(2)
n ψ(0)

n (x) . (27)

As before, we can act from the left with ψ
(0)∗
n (x) and integrate over x to give

∫
ψ(0)∗

n (x)
(
V̂ − E(1)

n

)
ψ(1)

n (x)dx = E(2)
n . (28)

We can now substitute Eq. 26 for the �rst-order wavefunction correction ψ
(1)
n (x), and set λ = 1 so that

V̂ = Ĥ ′, to give the result

E(2)
n =

∑
m6=n

∫
ψ

(0)∗
n (x) Ĥ ′ψ

(0)
m (x)dx

∫
ψ

(0)∗
m (y) Ĥ ′ψ

(0)
n (y)dy

E
(0)
n − E

(0)
m

. (29)

1.4 Streamlining with Dirac notation*

*If you are familiar with Dirac notation, the working above can be carried out more elegantly. If not,

this section can safely be skipped.

De�ning the eigenkets

〈x|ni〉 = ψ(i)
n (x)

for i = 0, 1, 2, . . . we have

Ĥ0|n(0)〉 = E(0)
n |n(0)〉 (30)

and we can rewrite Eqs. 5, 6, and 7 as

(
Ĥ0 + λV̂

) (
|n(0)〉+ λ|n(1)〉+ . . .

)
=

(
E(0) + λE(1) + . . .

) (
|n(0)〉+ λ|n(1)〉+ . . .

)
. (31)

Once again equating powers of λ we obtain
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λ0 : Ĥ0|n(0)〉 = E(0)
n |n(0)〉 (32)

λ1 : Ĥ0|n(1)〉+ V̂ |n(0)〉 = E(0)
n |n(1)〉+ E(1)

n |n(0)〉 (33)

λ2 : Ĥ0|n(2)〉+ V̂ |n(1)〉 = E(0)
n |n(2)〉+ E(1)

n |n(1)〉+ E(2)
n |n(0)〉. (34)

...

To �nd the �rst order energy shift we re-arrange Eq. 33

E(1)
n |n(0)〉 =

(
Ĥ0 − E(0)

n

)
|n(1)〉+ V̂ |n(0)〉 (35)

then left-multiply by 〈n(0)|:

E(1)
n 〈n(0)|n(0)〉 = 〈n(0)|Ĥ0 − E(0)

n |n(1)〉+ 〈n(0)|V̂ |n(0)〉. (36)

We have that 〈n(0)|Ĥ0 = 〈n(0)|E(0)
n , and 〈n(0)|n(0)〉 = 1. Using these results, and formally setting λ = 1

such that V̂ = Ĥ ′ gives the result

E(1)
n = 〈n(0)|V̂ |n(0)〉. (37)

To �nd the �rst-order shift in the eigenstate we return to Eq. 33, re-arranged as follows:

(
Ĥ0 − E(0)

n

)
|n(1)〉 =

(
E(1)

n − V̂
)
|n(0)〉. (38)

Acting from the left with 〈m(0)|, where m 6= n, gives

(
E(0)

m − E(0)
n

)
〈m(0)|n(1)〉 = −〈m(0)|V̂ |n(0)〉 (39)

and so

〈m(0)|n(1)〉 =
〈m(0)|V̂ |n(0)〉
E

(0)
n − E

(0)
m

(m 6= n) . (40)

Using the resolution of the identity:

I =
∑
m

|m(0)〉〈m(0)| (41)

we can write

|n(1)〉 =
∑
m

|m(0)〉〈m(0)|n(1)〉 (42)

and inserting Eq. 40 (with λ = 1) gives the result

|n(1)〉 =
∑
m6=n

〈m(0)|Ĥ ′|n(0)〉
E

(0)
n − E

(0)
m

|m(0)〉. (43)
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1.5 Summary and Further Reading

In this lecture we saw how to �nd an approximate solution for the eigenfunctions and energy levels of a

quantum system, by perturbing a system for which we can obtain an exact result.

Starting from an unperturbed Hamiltonian Ĥ0 for which we have the exact energy

eigenvalues E
(0)
n and normalized eigenfunctions ψ

(0)
n (x):

Ĥ0ψ
(0)
n (x) = E(0)

n ψ(0)
n (x)

and perturbing to a new Hamiltonian Ĥ0 → Ĥ = Ĥ0 + Ĥ ′ such that

Ĥψn (x) = Enψn (x)

with

ψn (x) =
∞∑

m=0

ψ(m)
n (x)

En =
∞∑

m=0

E(m)
n

we found expressions for the following:

• the �rst-order correction to the energy:

E(1)
n =

∫
ψ(0)∗

n (x) Ĥ ′ψ(0)
n (x)dx

• the �rst-order correction to the wavefunction:

ψ(1)
n (x) =

∑
m6=n

∫
ψ

(0)∗
m (y) Ĥ ′ψ

(0)
n (y)dy

E
(0)
n − E

(0)
m

ψ(0)
m (x)

• the second-order correction to the energy

E(2)
n =

∑
m6=n

∫
ψ

(0)∗
n (x) Ĥ ′ψ

(0)
m (x)dx

∫
ψ

(0)∗
m (y) Ĥ ′ψ

(0)
n (y)dy

E
(0)
n − E

(0)
m

.

We also saw how to arrive at these results more succinctly using Dirac notation.

Perturbation theory allows the solution of a number of physically interesting problems which do not admit

an exact solution. Some examples include: a spin in a transverse magnetic �eld; the splitting of atomic

spectral lines in an applied electric �eld (the quadratic Stark e�ect); and the Van der Waals interaction

between two Hydrogen atoms.

For further reading, a good reference is provided by J. J. Sakurai, Modern Quantum Mechanics (Ed. San

Fu Tuan, Addison Wesley (New York) 1994).
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1.6 Solutions to Exercises

Exercise 1

Given that we can write

ψ(1)
n (x) =

∑
m6=n

Cnmψ
(0)
m (x) + Cnnψ

(0)
n (x)

with

Cnm =
∫
ψ(0)∗

m ψ(1)
n (x)dx

and since both ψn (x) and ψ
(0)
n (x) are normalized, we are asked to show that Cnn must equal zero to

�rst order in λ. We have that

ψn (x) = ψ(0)
n (x) + λψ(1)

n (x)

and the normalization of ψn (x) tells us that

1 =
∫
ψ∗n (x)ψn (x)dx

=
∫ (

ψ(0)∗
n (x) + λψ(1)∗

n (x)
) (

ψ(0)
n (x) + λψ(1)

n (x)
)
dx

=
∫
ψ(0)∗

n (x)ψ(0)
n (x)dx+ λ

∫
ψ(0)∗

n (x)ψ(1)
n (x)dx+ λ

∫
ψ(1)∗

n (x)ψ(0)
n (x)dx+O

(
λ2

)
.

Since ψ
(0)
n (x) is also normalized, the �rst term on the right-hand side is equal to one. Using the de�nition

of Cnm above, it follows that

0 = Cnn + C∗nn.

As we are free to choose the overall phase of the wavefunction we can always choose Cnn to be real, and

so it must be equal to zero.
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