Perturbation Theory — Felix Flicker

1 Perturbation Theory

The set of quantum mechanical problems which admit exact analytical solutions is very small. For-
tunately, there exists a powerful method for achieving approximate solutions to a much wider class of
problems, based on perturbing away from known exact results. This method is perturbation theory. In
this lecture we will consider the simplest case of time-independent perturbations in which all energies

remain non-degenerate. We will deal with these more general cases in subsequent lectures.

We begin by assuming we can solve exactly for a complete set of n eigenvalues Eﬁ,,o) and eigenfunctions

O (z) of a given time independent Schrédinger equation

I:Iowr(LO) (LC) = E7(L0)w7(LO) (LC) . (1)

The superscript 0 indicates that this is the unperturbed case. We then perturb the Hamiltonian according

to

Hy— H=Hy+H (2)

and seek an approximate solution for the eigenvalues F,, and eigenfunctions v,

ﬁwn (z) = Enthy (). (3)
A convenient trick at this point is to define

H =)V (4)

where ) is a dimensionless real parameter. In this way, setting A\ = 0 returns the unperturbed problem
which we know how to solve. Setting A = 1 instead gives the perturbed problem. Provided no energy
levels cross in the interval A € [0,1] it is safe to assume that the two sets of solutions can be smoothly

connected.

We seek solutions to

(FIO + )\V) U N 2) = Ep (\) ¥ (A, ). (5)

Our key assumption is that the solutions to the full equation are close enough to those of the unper-

turbed case that we are justified in expanding the behaviour in A as a Taylor series:

U (Az) = Y A (2) = 00 () + M) (2) + AP (2) + ... (6)
m=0

E,(A) =Y X"E(™ =EQ® + AE{) + N¥EQ + ... (7)
m=0

Substituting the trial solutions of Egs. [6] and [7] into Eq. [5] we can proceed to a solution working power-
by-power in A:
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X Hop (2) = EQy? (2) (8)
A HeyplY (2) + VoY (2) = EQYY (2) + BV () (9)
A Byl () + Vol (2) = EOYP (2) + EVy® (z) + EP YD (x) (10)

Note that the expansion parameter A is best thought of as a bookkeeping device introduced to keep track
of the order of the perturbation. The sums defined in Eqgs. [6] and [7] are not in general convergent even
for 0 < X\ < 1. Instead, they are asymptotic, meaning they converge for a few terms before diverging.

We will ultimately set A = 1.

1.1 First-order energy shift

The \° equation (Eq. [8) is simply the unperturbed Schrédinger equation which we can solve exactly (Eq.
. The first correction is found in the A! terms (Eq. @) We’d first like to solve for ET(LD, the first-order

shift in the n*® energy coming from the perturbation. We can re-arrange the A! equation to the form

EOwO (2) = Vo) (@) + (Ho - BED) o1 (a). (11)

To isolate Ey(bl) on the left, we can use the fact that the eigenfunctions wELO ) (2) form an orthonormal basis,

such that

/ PO (2) 9O (£) Az = bpm (12)

*

with 6,,,, the Kronecker delta. Left-multiplying Eq by 1/1,(?) and integrating over the relevant domain

gives

EM /1/17(10)* () (z)dz = /%(10)* (@) V' (z) da + /1/)7(10)* (x) (ﬁo _ Ego)) O (z)dz.  (13)
The final term on the right-hand side vanishes, since we can act to the left with Hy and use the \° result:

W0 (@) (Ho — B ) = 00" (@) (B — E) =o. (1)
Re-arranging Eq[13] then gives the result
B = [0 @) Vol () da. (15)

We can now formally identify the first-order correction to the original problem by setting A = 1, for which

V = H', giving the final result:

O — / O () H'%© (2) dz. (16)
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The shift in the n*® energy level induced by H ! found to first order in perturbation theory, is simply the

expectation value of H' evaluated with the unperturbed n'" eigenstate.

Example: the anharmonic oscillator
The anharmonic oscillator is described by the Hamiltonian
. H?

1
H= o + §mw2562 + ea™ 12" (17)

with a = \/% and € a real parameter with the dimensions of energy. We can define

H=Hy+H

with

N H2 1
Hy =2 + “mw?s? (18)

where Hj is the standard quantum harmonic oscillator, whose (normalized) eigenstates and energies are

given by:

1
E7(10) = hw <n+ 2)

1 1/4 2
i@ = () e (-5)

W)= e (et ) 0 ) e

Using the result of Eq. we find that the first-order energy shift is given by

ED — gt / GO (2) 2" (a) da. (20)

For example, the shift in the ground state energy is given by

llet y=2x/a
1 o0
:Eﬁ /_Ooy‘lexp (—y2) dy
3
=1
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Historical background: Erwin Schrodinger introduced perturbation theory as part
of his wave mechanics approach in a 1926 paper. He attributed the technique to Lord
Rayleigh (John William Strutt, 3rd Baron Rayleigh) who had employed it for the study
of sound waves as introduced in his 1877 textbook The Theory of Sound. The technique
is sometimes still referred to as Rayleigh-Schrédinger perturbation theory.

Rayleigh

1.2 First-order wavefunction shift

The first-order shift in the eigenstates is given by 1/),(}) (z). To get this in terms of known quantities we
can use the fact that %(10) comprise a complete set of basis states, and therefore any function (including

W (z)) can be written in terms of them. Specifically

Ui (x Z Crom® Y (w (21)
= Z Crmtiy)) () + Crnth) (@) (22)
m#n
where
Coum = / $O* (2) 0 () da. (23)

In fact, since both the unperturbed states 1/),(10) (z) and the perturbed states ¢, () must be normalized
we must have that C,,,, = 0 to first order in \.

Ezxercise 1: prove this result [solution at the end of the document].

We therefore have that

O (2) = Y ComtoD (2 (24)

m#n

To find C,,,, we can return to Eq. this time multiplying from the left with 1/17(,?)* (z) and integrating

over x:

B [0 @) 0l @) do = [0 @) Vo0 @) do+ [0 @) (EQ - BO) uld (@) do

When m = n this simply returns the result of the first-order energy shift. Considering instead the case

m # n gives

_ e (@) Vi (@) de

EOR=0 (25)

/ PO (2) D (2) dz = Cppy

Substituting Eq. 25]into Eq. [24] gives

V n
v (z wa E(O 12() w(o)()

m#n

and once again we formally set A = 1, so that V=H ' to give the final result:
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Z E<o> E,Si”

1.3 Second-order energy shift

If perturbation theory is valid and useful for the problem at hand, we should only need to consider the
first few terms. Higher order results can nevertheless be inferred by iterating the same processes as above.
For example, to find the second-order correction to the energy we can start from the A2 result in Eq.

which re-arranges to:

(fo— BD) 02 @) + (V= ED) 4D (2) = BEDp (@), (27)
As before, we can act from the left with wy(l,o)* () and integrate over x to give
[0 @) (7= B0) D (@) do = EP. (28)

We can now substitute Eq. [26|for the first-order wavefunction correction 1/);1) (x), and set A =1 so that
V = H’, to give the result

po — Y LU @ H @) da [ () A () dy
ESP—E%S’ '

m#n

1.4 Streamlining with Dirac notation*

*If you are familiar with Dirac notation, the working above can be carried out more elegantly. If not,

this section can safely be skipped.

Defining the eigenkets

(alng) = ) (z)
fori =0, 1, 2,... we have
Ho[n”) = EY[n”) (30)
and we can rewrite Eqs. [B] [6] and [7] as
(FIO + AV) (\n(0)> + AlnM)y + ) = (E<O) +AEW . ) (\n“”) + Ay + . ) : (31)

Once again equating powers of A we obtain
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A0 Hon(@y = BEOp(0)y (32)
A Holn®)y 4 Vin©@)y = EQ M)y 4+ B |n(0) (33)
N Holn®) + Vin®) = EP[R®) + BN ™) + EPn). (34)

To find the first order energy shift we re-arrange Eq.

ED ) = (Ao — EQ) [nM) + V|n®) (35)
then left-multiply by (n(9)|:
EL Q) = (n@1Hy — EP W) + (O [V [n(). (36)

We have that (n(©|Hy = (n@|EY, and (n(®|n(®) = 1. Using these results, and formally setting A = 1
such that V = H’ gives the result

EY = (nO[V]n®). (37)

To find the first-order shift in the eigenstate we return to Eq. re-arranged as follows:

(Jflo - Eg‘))) InMy = (E,(}) - f/) ). (38)
Acting from the left with (m(%)|, where m # n, gives
(D~ BD) mOn®) = —m OV n®) (39)
and so

mO [V [5,0)
<m(o)|n(1)> = <E(0)||E(O)> (m#n). (40)

Using the resolution of the identity:

I= Z Im @) (m(®)]| (41)

we can write

1) = 37 @) @ ) (12

and inserting Eq. 40| (with A = 1) gives the result

nM) =3 gt Im?). (43)
m#n E7(1 - E7(n)
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1.5 Summary and Further Reading

In this lecture we saw how to find an approximate solution for the eigenfunctions and energy levels of a

quantum system, by perturbing a system for which we can obtain an exact result.

Starting from an unperturbed Hamiltonian H, for which we have the exact energy

eigenvalues Eg)) and normalized eigenfunctions 1/1,(10) (z):
Hop? (z) = BEQ ¢ ()
and perturbing to a new Hamiltonian f[o — H= ro + H’ such that

with

Yn () =Y 9™ (2)
m=0

00
DL
m=0

we found expressions for the following:

e the first-order correction to the energy:
B = [0 (0) BHO () do

e the first-order correction to the wavefunction:

s T () B (y) dy

PP (z)
EO _ g©

m#n

e the second-order correction to the energy

f 1/1(0)* le(O) dl’ f w(o)* le(o) ( ) Y
=2 <o> _ 5O '
m#n n m

We also saw how to arrive at these results more succinctly using Dirac notation.

Perturbation theory allows the solution of a number of physically interesting problems which do not admit
an exact solution. Some examples include: a spin in a transverse magnetic field; the splitting of atomic
spectral lines in an applied electric field (the quadratic Stark effect); and the Van der Waals interaction

between two Hydrogen atoms.

For further reading, a good reference is provided by J. J. Sakurai, Modern Quantum Mechanics (Ed. San
Fu Tuan, Addison Wesley (New York) 1994).
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1.6 Solutions to Exercises

Exercise 1

Given that we can write

= Comty) (2) + ConthY ()
m#n

with

TI'HL - /w 0)*

and since both i, (z) and P () are normalized, we are asked to show that C,, must equal zero to
first order in A\. We have that

U () = 0 (z) + ) (2)

and the normalization of ¥, (x) tells us that

1= [ 4@ te

= [ (w0 @)+ x> <x>) (4 @)+ 20f) (@) da
:/@yﬂ@yﬂ”@ﬁm+x/ﬂ$”@y@”@ym+x/¢9*@mﬁwmdm+o@%.

Since %(10) (z) is also normalized, the first term on the right-hand side is equal to one. Using the definition

of C,,,,, above, it follows that

0= Chpn+C,.

As we are free to choose the overall phase of the wavefunction we can always choose C,,,, to be real, and

so it must be equal to zero.
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