
Fourier Series

February 1, 2013

As I don't know of a particularly good reference for this topic, and because I made a mistake in
the class today which I imagine was fairly confusing, I've written the following notes to clarify how we
do Fourier series, from a physicist's point of view. None of this stu� will be in the exam, for which
you are free to quote results as you like - but if you put the time in to really understanding the basics
at this stage you will not regret it in later years (when the exams count towards your degree!).

Say we'd like to decompose a function f (x) as follows:

f (x) =
a0

2
+

∞∑
n=1

an cos
(nπx

L

)
+

∞∑
n=1

bn sin
(nπx

L

)
where x ∈ [−L, L). Outside that domain the function repeats. The standard result for calculating the
coe�cients is

an =
1
L

� L

−L

f (x) cos
(nπx

L

)
dx

bn =
1
L

� L

−L

f (x) sin
(nπx

L

)
dx.

I'll show where this comes from, and will explain how this whole process is really no more tricky than
decomposing a vector into basis vectors.

The trick is that the functions
{
1, cos

(
nπx
L

)
, sin

(
nπx
L

)}
are `orthogonal' over the domain x ∈

[−L, L). This means that if you multiply two di�erent ones together and integrate from −L to L the re-

sult will be zero. I'll prove a slightly stronger result here, though, that
{

1√
2L

, 1√
L

cos
(

nπx
L

)
, 1√

L
sin

(
nπx
L

)}
form an `orthonormal basis' (orthogonal and normalized) over this domain.

First, some vector notation. You've probably seen vectors written as u, u, ~u. There's another
alternative (invented by Bristol's most famous alumnus Paul Dirac) where vectors are written |u〉.
We de�ne the transpose of the vector, uT = 〈u|. The nice thing about this notation is that inner
products (the dot product for usual vectors) can be written as u · v = 〈u|v〉. When vectors become
more complicated, by being composed of complex numbers or having an in�nite number of components
for example, Dirac's notation treats them all exactly the same, 〈u|v〉.

An additonal thing we'll need is an `inner product', which is the more general form of a dot product
for vectors. For more information you can look up `inner product spaces' on wikipedia or in a textbook
- these are de�ned by a small set of rules, and if something obeys these rules it's an inner product.
The normal dot product of two vectors obeys the rules - you can think of an inner product as a
generalization. For normal vectors, then, the inner (or dot) product is given by

〈u|v〉 =
∑

n

unvn

(where un is here the nth element of |u〉) or, if the vectors are complex,
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〈u|v〉 =
∑

n

u∗nvn.

Note that for complex numbers, 〈v|u〉 = (〈u|v〉)∗. As you'll recall of the dot product, the inner product
gives the projection of one vector along another. We say in the above cases that we have found the
projection of |v〉 in the 〈u| basis.

Now, to keep everything completely correct, rather than over-simpli�ed, the next bit will be a
little conceptually di�cult. Mathematically it's not too hard, but it requires you to accept some
abstractions. We can write a function, say 1√

L
cos

(
nπx
L

)
, as the projection of a vector |cn〉 into the

basis 〈x|. That's a bit strange, but only because you only tend to see things being a function of x,
for example. With Dirac's notation we can separate the abstract entity that is the function from the
basis, x in this case. So we can write that 〈x|cn〉 = 1√

L
cos

(
nπx
L

)
. This is useful because it allows us

to write inner products of functions quite simply by using a trick called the `resolution of the identity',
which mathematically is

1 =
� L

−L

|x〉〈x|.

All the stu� with functions in Dirac notation needs a domain to be de�ned on x, to set the limits of
such integrals. That's OK, though, as you need to specify your domain in Fourier analysis anyway.
Things like |u〉〈v| are sometimes called `outer products'. If |u〉 and |v〉 are n component vectors, i.e.

1× n component matrices, then their inner product is a scalar (1× 1 matrix) and their outer product
is an n× n matrix.

The resolution of the identity isn't that strange a concept, really: as usual, just think about

normal vectors. Say we're in 2D, then a complete orthonormal basis is given by |e1〉 =
(

1
0

)
and

|e2〉 =
(

0
1

)
. The resolution of the identity simply states that the sum of the `outer products' of

these states is the identity:

2∑
i=1

|ei〉〈ei| =
(

1
0

)
(1, 0) +

(
0
1

)
(0, 1) =

(
1 0
0 1

)
.

This is true for any complete orthonormal basis, including |x〉 above. The usefulness of this trick is as
follows: for functions the inner product is

〈u|v〉 =
� L

−L

〈u|x〉〈x|v〉dx =
� L

−L

u (x)∗ v (x)dx

where we inserted a 1 in the second step and used that 1 =
� L

−L
|x〉〈x|.

Now, say we choose to de�ne

〈x|cn〉 =
1√
L

cos
(nπx

L

)
〈x|sn〉 =

1√
L

sin
(nπx

L

)
〈x|1〉 =

1√
2L

.

It's a bit strange at �rst thinking of functions as in�nite dimensional vectors. To understand this,
think of how a computer program would store a function. Computers do everything discretely with
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arrays, so when you ask a plotting program to plot a continuous function over some domain of x it's
actually got a large number of discrete x values, probably so densely packed as to look continuous.
For each it has a y value, and again if everything's set up correctly the density of the points in x will
be large enough that the function looks continuous in y, even if it's steeply sloped. So when you draw
a function, by assigning a point in y to each point along your x axis, it would be indistingushable by
eye if you had a very large set of (x, y) densely packed along x and if you had an in�nite number. For
more on this look up `linear vector spaces' on wikipedia or in a textbook. It's quite straightforward
- there are a list of 8 or so rules de�ning if some object is a vector, and it turns out that functions,
correctly de�ned, obey the rules. In the computer example it's as if we've `projected' the function onto
the point x for each of a discrete set of points, hence why we write 〈x|f〉 = f (x).
The point of this digression is that we can show

〈1|cn〉 = 〈1|sn〉 = 〈cn|sm〉 = 0 (1)

〈cm|cn〉 = 〈sm|sn〉 = δnm

where the `Kronecker delta' is de�ned as δnm = 1 if n = m, 0 otherwise. The proofs are in the
appendix, and you should check them, as they form the crux of the argument (and demonstrate the
usual tricks for Fourier analysis). For now let's get back to Fourier.

So say we have a function we'd like to decompose into our orthonormal basis

|f〉 =
a0

2

√
2L|1〉+

∞∑
n=1

an

√
L|cn〉+

∞∑
n=1

bn

√
L|sn〉

which is just the �rst equation written in Dirac notation (the
√

2L,
√

L come from the de�nitions of
|1〉 = 1√

2L
etc. - they just ensure that the basis vectors are normalized, i.e. 〈1|1〉 = 1). How would

you do it for vectors? Well, we could dot the whole thing with a vector which is perpendicular to two
of the three vectors. So for example if we'd like the an coe�cients we can take the inner product of
|f〉 with the |cm〉 basis function:

〈cm|f〉 =
a0

2

√
2L〈cm|1〉+

∞∑
n=1

an

√
L〈cm|cn〉+

∞∑
n=1

bn

√
L〈cm|sn〉

note that we used 〈cm| rather than 〈cn| in order that we could legitimately pull it through the sums.
Just think of this as `dotting from the left with the vector ~cm' - after all, that's what it is, but we've
generalised our idea of `dot' and `vector'. Using Equations 1 this becomes

〈cm|f〉 =
√

L

∞∑
n=1

anδmn =
√

Lam

where the δmn selects out only the term m = n from the sum. Rewriting back into the usual function
notation , by inserting an identity as above, this equation states that

1√
L

� L

−L

cos
(mπx

L

)
f (x)dx =

√
Lam

or that

1
L

� L

−L

cos
(mπx

L

)
f (x)dx = am

which is hopfeully what you have in your notes. To �nd the bn term is just as simple:
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|f〉 =
a0

2

√
L|1〉+

∞∑
n=1

an

√
L|cn〉+

∞∑
n=1

bn

√
L|sn〉

↓ 〈sm| →

〈sm|f〉 =
a0

2

√
L〈sm|1〉+

∞∑
n=1

an

√
L〈sm|cn〉+

∞∑
n=1

bn

√
L〈sm|sn〉

=
∞∑

n=1

bn

√
Lδmn

=
√

Lbm

or, rewritten,

1
L

� L

−L

sin
(mπx

L

)
f (x)dx = bm

and �nally

〈1|f〉 =
a0

2

√
2L

1
L

� L

−L

f (x)dx = a0.

If the Dirac notation is a bit confusing try redoing all the above stu� just writing everything as
functions. It all works exactly the same. I prefer the Dirac way because it lets you see that you already
know how to do Fourier analysis - it's just decomposing vectors into basis vectors. It also helps when
you get to quantum mechanics in your second year; it appears to be completely new, but quantum
mechanics is again just manipulation of linear vector spaces.

Appendix

Proof that

〈x|cn〉 =
1√
L

cos
(nπx

L

)
〈x|sn〉 =

1√
L

sin
(nπx

L

)
〈x|1〉 =

1√
2L

form an orthonormal basis over x ∈ [−L,L), i.e. that

〈1|cn〉 = 〈1|sn〉 = 〈cn|sm〉 = 0
〈cm|cn〉 = 〈sm|sn〉 = δnm.

Let's check them explicitly. Any I miss out you can check yourself if you're not convinced.

4



Figure 1: SMBC's briefer explanation of Fourier Analysis. Well, Fourier transforms - you'll en-
counter these later, but they can be considered a certain limit of Fourier series. Retrieved from
http://www.smbc-comics.com/index.php?db=comics&id=2874
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〈1|cn〉 = 〈1|
(� L

−L
|x〉〈x|dx

)
|cn〉 =

� L

−L
〈1|x〉〈x|cn〉dx =

� L

−L

1√
2L

1√
L

cos
(nπx

L

)
dx

=
1√
2L

[
L

nπ
sin

(nπx

L

)]L

−L

=
2√
2nπ

[sin (nπ)] = 0

(there's no singularity to deal with since n > 0).

〈cn|sm〉 =
1
L

� L

−L

cos
(nπx

L

)
sin

(mπx

L

)
dx

Note that this is the one I attempted to prove was δmn in the class - it's not! We found in the class
that it was zero, and indeed it should be. Sorry about that. Use

sin (A + B) = sin (A) cos (B) + cos (A) sin (B)
sin (A−B) = sin (A) cos (B)− cos (A) sin (B)

to rewrite as

〈cn|sm〉 =
1

2L

� L

−L

(
sin

(
(n + m) πx

L

)
− sin

(
(n−m) πx

L

))
dx

=
−1
2π

[
1

n + m
cos

(
(n + m) πx

L

)
− 1

n−m
cos

(
(n−m) πx

L

)]L

−L

= 0

where the last line follows from the fact that cos is an even function, and there is no problem when
n = m as we showed with l'Hôpital's rule in the class.

〈cm|cn〉 =
1
L

� L

−L

cos
(mπx

L

)
cos

(nπx

L

)
dx

this time use

cos (A + B) = cos (A) cos (B)− sin (A) sin (B)
cos (A−B) = cos (A) cos (B) + sin (A) sin (B)

to rewrite as

〈cm|cn〉 =
1

2L

� L

−L

(
cos

(
(m + n) πx

L

)
+ cos

(
(m− n) πx

L

))
dx

=
1
π

[
1

m + n
sin ((m + n) π) +

1
m− n

sin ((m− n) π)
]

.

The �rst term disappears without incident since the denominator cannot become zero. For the second
term, check the two cases:
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m 6= n : 〈cm|cn〉 =
1
π

1
m− n

sin ((m− n) π) = 0

and using l'Hôpital's rule for the other case, di�erentiating top and bottom with respect to m− n,

m = n : 〈cm|cn〉 =
π

π

cos ((m− n) π)
1

= 1

so we have proven that
〈cm|cn〉 = δmn.
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