
Faddeev Popov Ghosts

Felix Flicker

These notes are to accompany my talk on gauge �xing in quantum �eld theories (QFTs), and the mathematical
tricks associated with this procedure. In Section 1 I will look at gauge �xing for Abelian �elds, considering the
speci�c case of the Maxwell theory describing photons. In Section 2 I consider a non-Abelian generalization of the
Maxwell theory called Yang Mills theory, which describes vector bosons or gluons. I demonstrate the necessity of
introducing `ghost' �elds in order to �x the gauge. In Section 3 I look at how ghosts arise as a natural consequence
of the geometry of QFTs.

1 Abelian �elds

The Maxwell action is

S [A] =

ˆ
d4x

(
−1

4
FµνFµν

)
(1)

where the �eld strength (`curvature' in Maths language) is de�ned to be

Fµν = ∂µAν − ∂νAµ. (2)

Physical observables in QFT are given by the vacuum expectation values of gauge invariant quantities O [A]:

〈Ω|TO [A] |Ω〉 =

´
DAO [A] exp (iS [A])´

DA exp (iS [A])
(3)

where vacuum states (containing no particles) are denoted |Ω〉, and T is the time-ordering operator (which is not
important for what follows).

Just as in the case of classical electromagnetism, the �eld A is only de�ned up to a choice of gauge. That is,
physical results should remain unchanged under a transformation

Aαµ (x) = Aµ (x) +
1

e
∂µα (x) (4)

with α (x) a Lorentz scalar �eld. This is the Lorentz covariant version of the classical statement that the magnetic
�eld B = ∇ × A is una�ected if we change the magnetic vector potential A to Aα = A + 1

e∇α (x). The �eld
strength Fµν in QED acts a little like the magnetic �eld in classical electrodynamics, and we can see that it is
indeed invariant to the gauge choice.

The problem with having the gauge freedom of Equation 4 is that the functional integration DA has an in�nite
degeneracy built into it: for each physically unique �eld con�guration there are an in�nite number of equivalent
con�gurations given by the choice of gauge. This situation is shown schematically in Figure 1.

Physically equivalent �elds are said to lie on the same `gauge orbit'. We need to pick one �eld from each gauge
orbit in order to remove the degeneracy in our functional integral. If the space of all �elds is denoted A , we'd like
to consider a subset S ⊂ A which contains only physically inequivalent �elds. This situation is given schematically
in Figure 2.

First we de�ne a functional G [A] such that enforcing G [A] = 0 �xes the gauge. In this talk I will use the
Feynman 't Hooft Landau gauge, given by

G [A] = ∂µAµ (x) + w (x) . (5)

1



A
A

A
g(  )

Figure 1: The space of all �eld con�gurations, A , includes an in�nite degeneracy of physically equivalent �elds
related by a choice of gauge. If two �elds are related by a gauge transformation g (α) we say they sit on the same
`gauge orbit'. In this picture A has been drawn as a set of gauge orbits.
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Figure 2: Gauge choices which select out a subset of all �elds S ⊂ A . The choice S1 shows a complete gauge
choice; examples include the Feynman 't Hooft Landau gauge G = ∂µAµ (x) + w (x). The choice S2 shows an
incomplete gauge choice, in which there is a residual gauge freedom remaining. Examples of this type are the axial
gauge G = A0 (x) and the Coulomb gauge G = ∇iAi (x) (with i ∈ [1, 3]).

Now we employ what I'll call the �rst Faddeev Popov trick (FP1):

1 =

ˆ
Dαδ (G [Aα]) det

(
δG [Aα]

δα

)
(6)

where the delta function is understood to be in�nite dimensional (a delta functional, perhaps). Although I can't
prove Equation 6 I can give a plausibility argument for it: FP1 is the continuum limit of the N -dimensional equation

1 =

(
N∏
i=1

ˆ
dαi

)
δ(N) (Gi (αj)) det

(
∂Gi
∂αj

)
, i, j ∈ [1, N ] (7)

and, if we take the simplest case of N = 1, the equation takes the trivial form

1 =

ˆ
dαδ (G (α))

dG

dα
. (8)

In order to evaluate Equation 3 it is only necessary to evaluate the numerator, then set O = 1 for the denomi-
nator. Applying FP1 we have

ˆ
S

DAO [A] exp (iS [A]) =

ˆ
S

DA

ˆ
DαO [A] δ (G [Aα]) det

(
δG [Aα]

δα

)
exp (iS [A]) . (9)

The determinant can be found explicitly given our choice of gauge (Equation 5):

G [Aα] = ∂µAµ +
1

e
∂µ∂µα+ w

⇓
δG

δα
=

1

e
�
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where � , ∂µ∂µ is the d'Alembertian. The important point to note is that the determinant (whatever it is) is
independent of both α and of A, so can be pulled out of the functional integrals to give a constant prefactor. Thus
we have that

ˆ
S

DAO [A] exp (iS [A]) = det

(
δG [Aα]

δα

)ˆ
S

DA

ˆ
DαO [A] δ (G [Aα]) exp (iS [A]) . (10)

Furthermore, noting that both S [A] and O [A] are gauge invariant, we can replace them with S [Aα] and O [Aα]
respectively. The integration measure is also unchanged by gauge transformations (as they're just linear shifts), so
we have

ˆ
S

DAO [A] exp (iS [A]) = det

(
δG [Aα]

δα

)ˆ
S

DAαDαO [Aα] δ (G [Aα]) exp (iS [Aα])

= det

(
δG [Aα]

δα

)ˆ
Dα

ˆ
S

DAO [A] δ (G [A]) exp (iS [A]) (11)

where we have simply relabelled Aα to A in the second line (it's a dummy function!). The functional integral over
α now gives an in�nite constant, which will cancel out later on.

In Equation 11 we have achieved the desired result, in that the delta function enforces our gauge choice and
restricts the functional integral from the space of all �elds A to the space of all physically ineqivalent �elds S .
Before �nishing with the Abelian case, though, there's a further trick which makes the physics of the problem more
apparent.

If we functionally integrate both sides of Equation 11 with a Gaussian distribution over w,
´

Dw exp
(
−i
´
d4xw2/2ξ

)
,

the left hand side (being independent of w) is simply multiplied by a function of ξ. Bringing this across to the right,
and grouping the various prefactors together, we have that

ˆ
S

DAO [A] exp (iS [A]) = N (ξ)

ˆ
Dw

ˆ
S

DAO [A] δ (∂µAµ + w) exp

(
−i
ˆ

d4x
1

2ξ
w2

)
exp (iS [A])

= N (ξ)

ˆ
A

DAO [A] exp

(
−i
ˆ

d4x
1

2ξ
(∂µAµ)

2

)
exp (iS [A]) (12)

or alternatively

ˆ
S

DAO [A] exp (iS [A]) = N (ξ)

ˆ
A

DAO [A] exp (iSGF [A]) (13)

with

SGF =

ˆ
d4x

(
−1

4
FµνFµν −

1

2ξ
(∂µAµ)

2

)
(14)

the gauge �xed action. Finally we have the desired result:

〈Ω|TO [A] |Ω〉 =

´
A DAO [A] exp (iSGF [A])´

A DA exp (iSGF [A])
. (15)

1.1 The Maxwell propagator

Using integration by parts we can rewrite Equation 14 as

SGF =

ˆ
d4x

1

2
Aµ

(
ηµν�− ∂µ∂ν +

1

ξ
∂µ∂ν

)
Aν (16)

with ηµν the Minkowski metric. In momentum space this is

SGF =

ˆ
d4k

(2π)
4

1

2
Ãµ

(
ηµν

(
−k2

)
+ kµkν − 1

ξ
kµkν

)
Ãν . (17)

The term sandwiched between the gauge �elds is the inverse of the photon propagator, (Dµν)
−1
. The propagator

itself is uniquely de�ned by this, and can easily be veri�ed to be
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<AA>~

<AA>~ + g +g2 +g2 +

Figure 3: a) Photons have no self-interactions, so the tree-level propagator is exact. b) Gluons (and vector bosons)
have 3-pt and 4-pt vertices, so there are loop contributions to the propagator.

Dµν (k) =
−i

k2 + iε

(
ηµν − (1− ξ) k

µkν

k2

)
(18)

where the small imaginary term iε has been added to make things better de�ned in calculations (again, it's not
necessary in what follows). Note that if we hadn't applied the gauge �x, the last term in the inverse propagator in
Equation 17 would not be present, and the inverse propagator would not have been invertible (so the propagator
wouldn't exist).

The propagator features a term proportional to ξ, which was introduced in Equation 12 by functionally inte-
grating the gauge �xing delta function with

´
Dw exp

(
−i
´
d4xw2/2ξ

)
. Taking the limit ξ → 0 therefore rigidly

enforces the gauge �xing condition. However, there's no requirement to do this in the quantum theory - after all,
we introduced ξ arbitrarily. From the form of Equation 18 we see that ξ has something to do with regulating
the transverseness of the photons' polarizations. If we choose to take ξ → 0 all photons (even virtual photons1)
must be transverse. If ξ takes a �nite value, virtual photons are allowed to have a longitudinal component to
their polarizations, with photon polarizations having a Gaussian distribution of longitudinal components centred
on zero2.

In the case of quantum electrodynamics (QED), which governs the coupling of photons to electrons, the unphys-
ical nature of the longitudinal virtual photons is not a problem. All Feynman diagrams with contributions from
longitudinal photons cancel one another, as a result of the Ward identity, which follows from applying Noether's
theorem to the continuous symmetry associated with the invariance of DA to gauge transformations.

2 Non-Abelian �elds

Yang Mills theory provides an extension of Maxwell theory to the case of non-Abelian �elds. The action takes the
following form:

S [A] = tr

ˆ
d4x

(
−1

4
Fµνa F aµν

)
(19)

where the �eld strength is

F aµν = ∂µA
a
ν − ∂νAaµ + gfabcAbµA

c
ν . (20)

The non-Abelian �elds are now matrix valued: Aµ = Aaµta, with ta the basis elements of the relevant group. For
example, if our group is SU (2) we could choose ta to be the Pauli matrices. The trace would then be the trace of
these 2× 2 matrices. The structure constants are de�ned by ifabctc ,

[
ta, tb

]
.

One major di�erence between Yang Mills theory and Maxwell theory, and consequently between gluons and
photons, is that gluons have self-interactions, as can be seen from the terms ∼ A2∂A and A4 in Equation 19. This
makes things much more di�cult. The situation is depicted in Figure 3.

Gauge transformations of the �eld Aµ now take the form

(Aα)
a
µ = Aaµ +

1

g
∂µα

a + fabcAµbαc

= Aaµ +
1

g
Dab
µ αb (21)

1Virtual photons appear as internal lines in Feynman diagrams. This requires an interacting theory, such as QED, rather than the
free Maxwell theory. Still, the point remains.

2For interest, ξ = 0 is called the `Landau gauge' and ξ = 1 the `Feynman gauge'. I don't know where these names came from, but
the choice of ξ (a Lagrange multiplier) is not a gauge choice, so they're misleading.

4



with

Dab
µ , δ

ab∂µ + gfabcAcµ. (22)

Equation 21 can be compared with Equation 4 of the Abelian case.
We proceed as before to evaluate the vacuum expectation values of gauge invariant operators. We again choose

the Feynman 't Hooft Landau gauge:

G = ∂µAaµ + wa (23)

and we need to evaluate

〈Ω|TO [A] |Ω〉 =
tr
´
ADAO [A] exp (iS [A])

tr
´
ADA exp (iS [A])

. (24)

Focussing on the numerator as before, we apply FP1 (Equation 6):

tr

ˆ
A

DAO [A] exp (iS [A]) = tr

ˆ
A

DA

ˆ
Dαδ (G [Aα]) det

(
δG [Aα]

δα

)
O [A] exp (iS [A]) . (25)

In the Abelian case we now used the fact that the determinant is independent of A to pull it out of the functional
integral. Let's see if this holds for the non-Abelian case.

G [Aα] = ∂µAaµ +
1

g
∂µDab

µ αb + wa

⇓
δG

δα
=

1

g
∂µDab

µ =
1

g
�+ fabc∂µAcµ. (26)

So the determinant in the non-Abelian case is a function of A, and we can't use the same simpli�cation as before.
It is however independent of α, meaning we can at least use the trick of changing the gauge invariant quantities DA,
O [A], and S [A] to DAα, O [Aα], and S [Aα], and then relabelling Aα → A. Thus Equation 25 can be rewritten

tr

ˆ
A

DAO [A] exp (iS [A]) =

(ˆ
Dα

)
tr

ˆ
A

DAδ
(
∂µAaµ + wa

)
det

(
1

g
∂µDab

µ

)
O [A] exp (iS [A]) . (27)

One more trick carrying over from the Abelian case is to functionally integrate both sides of the equation with´
Dw exp

(
−i
´
d4xw2/2ξ

)
. Again the left hand side is just multiplied by a function of ξ, and the delta functional

picks out the gauge �xing condition:

tr

ˆ
S

DAO [A] exp (iS [A]) = N (ξ) tr

ˆ
A

DAdet

(
1

g
∂µDab

µ

)
O [A] exp (iSGF [A]) (28)

with

SGF = tr

ˆ
d4x

(
−1

4
Fµνa F aµν −

1

2ξ

(
∂µAaµ

)2)
. (29)

How do we deal with the determinant? The most elegant solution was again proposed by Faddeev and Popov,
and is what I'll call the second Faddeev Popov trick (FP2):

det

(
1

g
∂µDab

µ

)
=

ˆ
D c̄Dc exp

(
i

ˆ
d4xc̄a (x)

(
−∂µDab

µ

)
cb (x)

)
(30)

(the coupling g has been absorbed into the de�nition of c). The �elds ca (x) and c̄a (x) are complex anticommuting
Lorentz scalar �elds. To see where FP2 comes from, let's again consider the �nite dimensional case, in which we
have Grassman variables ci and c̄i. Grassman variables for the case i = 1 are just anticommuting complex numbers.
If i ∈ [1, N ] then ci is an N component complex vector satisfying these anticommutation relations:
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{ci, cj} = {c̄i, cj} = {c̄i, c̄j} = 0 (31)

with c̄i being the equivalent of the complex conjugate to ci. Calculus is de�ned over this �eld by

ˆ
dcici = 1,

ˆ
dci = 0 (32)

with the equivalent for the c̄is. We are interested in evaluating(
N∏
i=1

ˆ
dc̄i

)(
N∏
i=1

ˆ
dci

)
exp

(
−c̄iAijcj

)
. (33)

Note that the exponential, de�ned by its Taylor series, terminates at �nite order due to the anticommutation
relations. For i ∈ [1, N ] the series terminates at the N th order. For simplicity we'll consider N = 1. The second
term in the series is 1

2 c̄Acc̄Ac = − 1
2 c̄Ac̄cAc = − 1

2 c̄
2A2c2 = 0, and similarly for higher terms (A is a commuting

complex number here, or a commuting complex matrix in general). Therefore we have

ˆ
dc̄dc exp (−c̄Ac) =

ˆ
dc̄dc (1− c̄Ac)

= −A
ˆ

dc̄

ˆ
dcc̄c

= A

ˆ
dc̄c̄

ˆ
dcc

= A (34)

which can be contrasted with the case for commuting complex numbers z = x+ iy:

ˆ
dz̄dz exp (−z̄Az) =

ˆ
dxdy exp

(
−
(
x2 + y2

)
A
)

(35)

=
π

A

from which we see the necessity of using anticommuting rather than commuting �elds.
Applying FP2 to our numerator (Equation 28) we have the �nal result

tr

ˆ
S

DAO [A] exp (iS [A]) = N (ξ) tr

ˆ
A

DA

ˆ
D c̄DcO [A] exp (iSFP [A, c̄, c]) (36)

with

SFP = tr

ˆ
d4x

(
−1

4
Fµνa F aµν −

1

2ξ

(
∂µAaµ

)2
+ c̄a

(
−∂µDab

µ

)
cb

)
. (37)

The �nal form of our action suggests that gauge �xing in the non-Abelian case requires the introduction of
additional (anticommuting complex scalar) �elds. These �elds are called Faddeev Popov ghosts. Expanding the �nal
term in Equation 37 we have both a ghost propagator 〈c̄c〉 and an antighost-gluon-ghost vertex, with corresponding
Feynman rules

b a

=
iδab

k2 + iε
(38)

b

a

c

k,

= −gfabckµ. (39)
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<AA>~ + g + g + g2(  )O

Figure 4: The 2-pt propagator for the gluon �eld, 〈AA〉, to order g (one loop). Gluons are given by coiled lines, and
ghosts by dashed lines.

These rules add extra Feynman diagrams to those in Figure 3 b. The modi�ed 2-pt function for gluons is given in
Figure 4.

Note that the ghost �eld describes anticommuting spin-0 (scalar) particles. This is in contradiction to the spin
statistics theorem, which states that fermionic particles (odd-half-integer spin) are antisymmetric under exchange
(the �elds anticommute) whereas bosonic particles (integer spin) are symmetric under exchange (the �elds commute).
It is a general property of ghosts in any QFT that they violate spin statistics. For this reason, and because they
only appear as internal lines in Feynman diagrams, we say that ghosts are not `real'. They are a mathematical trick
required to patch up perturbation theory.

3 BRST symmetry

In Section 1 we saw that virtual photons can have unphysical longitudinal polarizations, but that the contributions
to scattering amplitdes from these photons exactly cancel out. This is a result of the Ward identity (or the Ward
Takahashi identity if the photons are also allowed to move o�-shell). Do we have a similar scenario for the non-
Abelian case? The action (Equation 37) appears to allow unphysical longitudinal gluons. It turns out that the
Ward identity no longer cancels these contributions, but a new symmetry does. We call this BRST (Becchi Rouet
Stora Tyutin) symmetry, and it arises from the geometry of gauge �elds.

Rewriting the Lagrangian density slightly we have

L = −1

4

(
F aµν

)2 − 1

2ξ

(
∂µAaµ

)2
+ c̄a

(
−∂µDab

µ

)
cb (40)

which we can rewrite by introducing a scalar commuting auxiliary �eld Ba like so:

L ′ = −1

4

(
F aµν

)2
+
ξ

2
(Ba)

2
+Ba∂µAaµ + c̄a

(
−∂µDab

µ

)
cb (41)

where the equality follows from completing the square. The remaining term disappears upon functional integration
over the B �eld:

ˆ
DAD c̄Dc exp

(
i

ˆ
d4xL (A, c̄, c)

)
=

(
ξ

2π

)2 ˆ
DAD c̄DcDB exp

(
i

ˆ
d4xL ′ (A, c̄, c, B)

)
. (42)

BRST is an additional symmetry of L ′, not present in the bare Yang Mills Lagrangian, which comes about
upon the introduction of the ghosts and the auxiliary �eld. For an in�nitesimal perturbation ε, with ε a Grassman
variable, we have that δL ′ = 0 for

δAaµ = εDac
µ c

c

δca = −1

2
gεfabccbcc (43)

δc̄a = εBa

δBa = 0.

The �rst term in Equation 43 is simply a local gauge transformation with parameter αa (x) = gεca (x), which
means that the �rst and second terms in Equation 41 are trivially invariant. With some rearrangement the remaining
variation is found to be δL ′ = − 1

2εg
2fabcfcde

(
Abµc

dce +Adµc
ecb +Aeµcbc

d
)
, which vanishes because of the Jacobi

identity.
De�ning the BRST operator Q such that δφ = εQφ (for φ any of the �elds), the geometrical nature of the

symmetry begins to take shape. First we note that applying the operator twice (the variation of the variation) gives
zero, showing that Q is `nilpotent':

Q2 = 0. (44)
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This property holds for the boundary operator ∂ in algebraic geometry, which maps (for example) a manifold M
to its boundary ∂M. Nilpotent operators have the property that they split up the space on which they act into
three distinct subspaces. To make this statement precise, let's consider the canonically quantized Yang Mills theory
(with fermions, ghosts, and auxiliary �elds). The continuous BRST symmetry must have a conserved charge Q (the
eigenvalues of the Q operator) by Noether's theorem. Being conserved we know the operator Q commutes with the
Hamiltonian:

Q̇ = 0, ∴ [Q,H] = 0. (45)

Our Hilbert space H is now divided into three subspaces by Q. We can write it as a direct sum of these subspaces
H = H0 ⊕H1 ⊕H2, where

|ψ1〉 ∈ H1, such that Q|ψ1〉 6= 0

|ψ2〉 ∈ H2, such that |ψ2〉 = Q|ψ1〉 (∴ Q|ψ2〉 = 0) (46)

|ψ0〉 ∈ H0, such that Q|ψ0〉 = 0, but |ψ0〉 6= Q|ψ1〉.

In Maths-speak, we say that the vector space annihilated by Q is its kernel : H0⊕H2 = ker (Q), whereas the vector
space comprising vectors of the form Q|ψ〉 is the image of Q: H2 = im (Q).

To see the relevance of this, consider the limit of zero coupling g → 0, in which we approach the Abelian case. In
this case, Q acts as follows: it annihilates single ghosts, it converts forward-polarized components of A to ghosts, and
it converts antighosts to backward-polarized components of A3. In terms of our Hilbert space decompostion, then,
we see that forward-polarized components of A and antighosts both live in H1, backward-polarized components of
A and ghosts live in H2, and the transverse components of A (the only physical bits of the whole theory) live in
H0. Thus BRST symmetry shows that the unphysical polarization states of non-Abelian gauge theories are exactly
cancelled by the Faddeev Popov ghosts.

Let's look at this statement a di�erent way. Again in the g → 0 limit, choosing the Feynman `gauge' ξ = 1, and
working in d dimensions, our partition function is

Z =

ˆ
DAD c̄Dc exp

(
i

ˆ
ddx

(
−1

4

(
F aµν

)2
+ c̄a

(
−∂µDab

µ

)
cb

))
=

ˆ
DA exp

(
i

ˆ
ddx

1

2
Aµ�η

µνAν

)ˆ
D c̄Dc exp

(
i

ˆ
ddxc̄a

(
−�δab

)
cb

)
(47)

= (det (−�))
−d/2 · (det (−�))

+2/2
.

This tells us that the ghosts act as `negative degrees of freedom', which cancel out the unphysical degrees of
freedom (∼unphysical polarization states) a�orded us by the ambiguity in gauge. By construction we see that the
ghosts cancel exactly two degrees of freedom, which is intuitively correct in d = 4: we should have 2 transverse
polarizations, but Aµ is a 4-vector, with 4 degrees of freedom. The ghosts cancel the other two.

3.1 The S-matrix

As a �nal remark on BRST symmetry, I will prove that the S-matrix projected onto the physical H0 subspace is
unitary, meaning that we can work entirely in that subspace rather than in the whole Hilbert spaceH = H0⊕H1⊕H2

(in which S is automatically unitary).
From the de�nitions of the states |ψi〉 in Equation 46, and the Hermiticity of Q, it follows that the inner product

of any two states in H2 is zero:

〈ψA2 |ψB2 〉 = 〈ψA2 |Q|ψB1 〉 =
(
Q|ψA2 〉

)† |ψB1 〉 = 0 (48)

and similarly the product of any state in H2 with a state in H0 is also zero:

〈ψA2 |ψB0 〉 = 0. (49)

We need to show that S projected onto H0 is unitary, i.e.

3Directly it converts c̄ → B, but varying the action with respect to B to get the equations of motion, we �nd that ξBa = −∂µAaµ,
showing that Q in fact acts to convert antighosts to backward-polarized components of A.
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∑
C

〈ψA0 |S†|ψC0 〉〈ψC0 |S|ψB0 〉 ≡ 〈ψA0 |I|ψB0 〉 (50)

with I the identity. We can choose our initial state to be |ψin〉 = |ψA0 〉 ∈ H0. Now, since Q commutes with
the Hamiltonian, we know that if the initial state is an eigenvector of Q with eigenvalue zero then the �nal (time
evolved) state must also be an eigenvector of Q with eigenvalue zero (as Q and H are simultaneously diagonalizable,
and the total S matrix is unitary). Therefore we have that

|ψout〉 = S|ψA0 〉 ∈ H0 ⊕H2. (51)

We already know that the inner product of any |ψ2〉 state with either a |ψ2〉 or a |ψ0〉 state is zero, so any
contribution to the inner product of two �nal states can only come from the inner product of |ψ0〉 states. That is,(

〈ψA0 |S†
) (
S|ψB0 〉

)
=
∑
C

(
〈ψA0 |S†

)
|ψC0 〉〈ψC0 |

(
S|ψB0 〉

)
(52)

which is exactly Equation 50.
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