
A Practical Intoduction to QFT: Questions

These questions are completely optional. Some questions do not require anything to be written down. In all cases
collaboration and discussion is thoroughly encouraged. Starred (*) questions are either hard, very hard, or require
use of index manipulation which is not covered in this course.

1 Actions and Lagrangians

1.1 Natural Units

[Copied from my �rst year notes on dimensional analysis] Choosing our one dimension to be energy E, we can say
for example [E] = [m] = 1, [x] = [t] = −1, where the number indicates the power of E (no ambiguity since we only
have one dimension).
(a) Calculate the dimensions of the following �elds given that [S] = 0 and [∂] = 1.

• S =
�
d4x

{
− 1

2 (∂ϕ)2
}

• S =
�
d4x

{
− 1

2 (∂ϕ)2 − 1
2m

2ϕ2 − g
4!ϕ

4
}

(gand mare not �elds)

• S =
�
d3xεµνρA

µ∂νAρ ([ε]=0)

• S =
�
d3xεµνρ

(
Aµ

a∂
νAρ

a + gfabcAµ
aA

ν
bA

ρ
c

)
([f ] = 0)

• S =
�
d4xψ† (i∂t −H)ψ

• S =
�
d3xψ† (i∂t −H)ψ

• S =
�
d4xψ (iγµ∂µ −m)ψ

• S =
�
d4x

{
− 1

4 (∂µAν − ∂νAµ) (∂µAµ − ∂νAµ) + ψ (iγµ∂µ −m)ψ − gAµψγ
µψ

}
If the coupling constant g has dimension [g] > 0 the theory is said to be `relevant'. If [g] < 0 it is irrelevant, and if
[g] = 0 it is marginal.
(b) Classify the three cases above.

1.2 Functional Derivatives

In the lectures we found that the shortest distance between two points, with no additional weighting, is a straight
line. This is the `geodesic' light would follow in Euclidean space. An additional weighting would come in for example
if we were to consider light moving in a medium, in which case the weight is the refractive index.
(a) If the measure of length is

L [f ] =
� x1

x0

dxn (x)
√

1 + f ′ (x)2

show by varying the functional that minimal paths now obey

0 =
d

dx

 n (x) f ′ (x)√
1 + f ′ (x)2

 .

(b) By considering an in�nitesimal part of the line f (x) show that
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f ′ (x)√
1 + f ′ (x)2

= sin (ϑ)

where ϑ is the angle between the tangent to the curve and the x-axis.
(c) By considering a refractive index of the form

n (x) =

{
n−,

n+,

x < 0
x > 0

deduce Snell's law.

1.3 Euler-Lagrange Equations

A generic action functional of a real scalar �eld ϕ can be written

S [ϕ] =
�

d4xL (ϕ, ∂µϕ) .

(a) Show (using the ϕ (x) + λε (x) method) that if ϕ extremises the action the Lagrange density obeys the Euler-
Lagrange equation:

0 =
∂L

∂ϕ
− ∂µ

(
∂L

∂ (∂µϕ)

)
.

(b) Find the Euler-Lagrange equations for the actions listed in the �rst lecture, either using the result of (a) or by
varying explicitly again. If you're unhappy with Einstein summation notation skip Maxwell and Chern-Simons:

SKlein-Gordon [ϕ] =
�

d4x

(
−1

2
ϕ�ϕ− 1

2
m2ϕ2 + jϕ

)
SMaxwell [Aµ] =

�
d4x

(
−1

4
FµνF

µν + jµAµ

)
, Fµν = ∂µAν − ∂νAµ

SSchrödinger [ψ] =
�

d3xdt
(
ψ† (i∂t −H)ψ + jψ† + j†ψ

)
SChern-Simons [Aµ] =

�
d3x (εµνρA

µ∂νAρ + jµA
µ)

SKlein-Gordon [ϕ̃] =
�

d4p

(2π)4

(
1
2
ϕ̃

(
p2 −m2

)
ϕ̃+ j̃ϕ̃

)
.

(c) The sine-Gordon action is

Ssine-Gordon [ϕ] =
�

d4x

[
1
2
∂µϕ∂

µϕ− 1
2
m2ϕ2 + cos (ϕ)

]
.

Find the Euler Lagrange equation and hence explain the name.

1.4 Maxwell-Chern Simons Theory*

An example of a tricky quadratic theory is de�ned by the Maxwell-Chern Simons Lagrangian density

L = −1
4
FµνF

µν +
im

2
εµνρA

µ∂νAρ − 1
2α

(∂µA
µ)2 + jµA

µ

where εµνρ is the antisymmetric (Levi Civita) tensor. The Chern Simons term only works in 2+1D, and is know to
provide a low energy e�ective �eld theory for anyons (worth a look-up on wikipedia!). A gauge �x into the Lorenz
gauge is carried out by the third term upon sending α→ 0.
(i) Show that the Euler Lagrange equation, with a δ-function current, is given in reciprocal space by(

−k2ηαµ +
(

1− 1
α

)
kαkµ +mεµβαk

β

)
G̃µν (k) = δν

α
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(you will �nd it helpful to follow the working for the Maxwell theory in the notes).
(ii) Show by substitution that this is a valid solution:

G̃µν (k) =
−1

k2 +m2

(
ηµν −

(
1−

(
k2 +m2

) α

k2

) kµkν

k2
+
m

k2
εµνγkγ

)
(here it is helpful to note that kµkν is symmetric, while εµνρ is antisymmetric. I found it easiest to write out the 9
terms separately then look to see which combine naturally, and which cancel).

2 Partition Functions

2.1 0+0D QFT

2.1.1 The �rst trick in the book

QFTs can be de�ned in arbitrary numbers of dimensions. The simplest is to have a �eld which takes values in a 0D
space and 0D time (i.e. no space or time dependence). Then the �eld φ is just a variable rather than a function
(let's say it's real). All the usual calculational methods follow through.
Let

Zj

Z0
,

�∞
−∞ dφ exp

(
i
(
−a

2φ
2 + jφ

))
�∞
−∞ dφ exp

(
−a

2 iφ
2
) .

By changing variables to φ′ = φ+ Φ, with Φ �xed and chosen to cancel the linear term of φ′, show that

Zj

Z0
= exp

(
ij2/2a

)
.

2.1.2 Functional averages

We de�ne the functional average of an operator O [φ] to be

〈O [φ]〉 ,

�∞
−∞ dφO [φ] exp

(
i
(
−a

2φ
2 + jφ

))
�∞
−∞ dφ exp

(
−a

2 iφ
2
) .

Show that

〈φφ〉 =
(
−i ∂
∂j

)2
Zj

Z0

∣∣∣∣∣
j=0

.

By taking derivatives of both forms of Zj/Z0 separately (then setting j = 0) show that

A : 〈φ〉 = 0
B : 〈φφ〉 = −i/a
C :

〈
φ2n

〉
= const.×Πn

i=1 〈φφ〉
D :

〈
φ2n+1

〉
= 0.

From top to bottom the results are: (A) zero vacuum expectation value for the �eld (a sensible choice in most QFTs
except, notably, the Higgs �eld); (B) the Green's function for this trivial theory; (C,D) Wick's theorem.

2.1.3 Diagrammatics

Wick's theorem really follows from the simple realisation that the only object in the free theory (about which you
are always expanding) is the 2-point correlator (propagator). Diagrammatically a propagator is represented by a
line segment. By drawing a collection of dots and connecting them with line segments, such that each line segment
terminates on two points, convince yourself of conclusions (C) and (D) in the last question. What does (A) look
like diagrammatically?
Imagine if we instead had a weird (0+0D) �eld theory with a cubic action
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S [x] =
a

3
x3.

Calculate algebraically (i.e. by taking derivatives as before) the equivalents to (A)-(D). The fundamental Green's
function is now the 3-point correlator, which you could represent with a triangle. Draw a collection of points and
show your conclusions diagrammatically.
Finally, do the same for a quartic action

S [x] =
a

4
x4.

There are two obvious reasons why the cubic action is not acceptable as a free �eld theory. One of these reasons
applies to the quartic theory as well. What are they?1

2.2 0+1D QFT

You sometimes hear people describe quantum mechanics as a 0+1D quantum �eld theory2.
(a) By considering the generic form of the Lagrangian (not Lagrange density), convince a friend why the quantum
mechanical amplitude to propagate from point q (0) to point q (t) is given by

G =
�

Dq exp
(
i

�
dt

[m
2
q̇2 − V (q)

])
.

(b) Using the result for in�nite dimensional gaussian integrals �nd the Green's function explicitly for the case of
the simple harmonic oscillator, V (q) = 1

2mω
2q2, in terms of the determinant of an operator.

(c) Discuss with another friend in what sense QM = 0+1D QFT.

2.3 3+1D QFT

It's a simple generalization to consider higher dimensional, say 3+1D, QFTs. Reproduce the results of Sections
2.1.1 and 2.1.2 using the real scalar �eld de�ned on a 3+1D spacetime, starting from

Zj

Z0
,

�
Dφ exp

(
i
�
d4x

(
−a

2φ (x)2 + j (x)φ (x)
))

�
Dφ exp

(
−a

2 i
�
d4xφ (x)2

)
noting that the partial derivative ∂/∂j becomes a functional derivative δ/δj (x).

2.4 Dodgy Commutation?

In the lectures I started from

Zj ,
�

Dϕ exp
(
i

�
d4x

(
−1

2
ϕG−1ϕ+ jϕ

))
and again substituted

ϕ′ (x) , ϕ (x) + Φ (x)

to get

Zj =
�

Dϕ′ exp
(
i

�
d4x

(
−1

2
ϕ′G−1ϕ′ − 1

2
ΦG−1Φ +

1
2
ϕ′G−1Φ +

1
2
ΦG−1ϕ′ + jϕ′ − jΦ

))
.

I then asserted that I can write

1
2
ϕ′G−1Φ

=
dodgy?

1
2
ΦG−1ϕ′.

(a) The Klein Gordon action starts o� life as

1The answers are far far simpler than �they're not renormalizable�, although that's true as well.
2This question is done in more detail in exercise 23.7 in Lancaster and Blundell
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SKG [ϕ] =
�

d4x

(
1
2
∂µϕ∂

µϕ− m2

2
ϕ2

)
.

show using integration by parts that this can be written as3

SKG [ϕ] =
�

d4x

(
−1

2
ϕ∂µ∂

µϕ− m2

2
ϕ2

)
=

�
d4x

(
−1

2
ϕ

(
� +m2

)
ϕ

)
and so G−1 = � +m2.
(b) Show, again using integration by parts, that in this case

�
d4x

1
2
ϕ (x)G−1Φ (x) =

�
d4x

1
2
Φ (x)G−1ϕ (x) .

(c) Convince yourself by discussing with a friend that this ultimately worked because the quadratic term in the
action only contained even powers of derivatives.
(d) In fact, due to our favourite Deus Ex Machina (renormalization group �ow), no (∂ϕ)n

for n > 2 are allowed.
Ignoring interaction terms ϕn (n > 2) list all possible allowed combinations of ϕ and ∂ϕ. Explain why each is
trivial.
(e*) An interesting exception is Chern Simons theory. This is a topological �eld theory - it has no kinetic term in
its action, but still manages to be non-trivial. The action is

S [A] =
�

d3x (εµνρA
µ∂νAρ + jµA

µ)

with εµνρ the Levi-Civita symbol (antisymmetric in all indices). Vary Aµ → aµ + Bµ. This time we can do the
commutation trick for a di�erent reason. What is it? If Bµ (x) is the �xed �eld, what is the form of jµ (x) which
cancels the linear aµ (x) terms?
(f) Do you think the hand-waving commutation was justi�ed?

2.5 Di�erentiation

Verify using the rules of the functional derivative that

(
−i δ

δj (x2)

) (
−i δ

δj (x1)

)
exp

(
i

�
d4x

�
d4y

1
2
j (x)G (x, y) j (y)

)∣∣∣∣
j=0

= −iG (x1, x2) .

3 n-point Functions

3.1 Generating Functions

In the notes it is stated that Zj is a generating functional, since one can use it to generate quantities of interest by
taking derivatives with respect to j (which is generally then set to zero). A simple analogy is given by Gaussian
integrals. First, show that

I0 (α) ,
� ∞

−∞
exp

(
−1

2
αx2

)
dx =

√
2π
α

as shown in the notes. Now show that

In (α) ,
� ∞

−∞
x2n exp

(
−1

2
αx2

)
dx = (2n+ 1)!

√
2πα−1/2−n

by treating I0 as a generating function and di�erentiating under the integral with respect to α.

3Note that in a generic �eld theory the kinetic energy term in the Lagrangian density always takes the form (∂ϕ)2 for the relevant

de�nitions of ∂ and ϕ.
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3.2 More Generating Functions

There are many parallels between QFT and thermodynamics / statistical mechanics. In the latter we de�ne the
partition function to be

Z =
∑

i

exp (−βEi)

(note the similarities to the �eld theory de�nition). The partition function is a generating function for every
thermodynamic function of state. By di�erentiating under the integral with respect to inverse temperature β show
that the internal energy is given by

−∂ lnZ
∂β

= 〈E〉 , U.

Note also that it is lnZ which is of interest here, just as lnZ generated the connected diagrams in QFT (* not
actually mentioned in lectures, but it's in the notes!). Find also the thermodynamic quantities CV , CP , and F .

3.3 Feynman-Stückelberg Interpretation

Interpret the Feynman diagrams in this picture as sequences of spacetime events. Come up with a couple of
interpretations for each. What kind of interaction term is needed in each case?

a) b) c)

(d)

(e)

(f)

3.4 Mandelstam Variables

In 2-particle to 2-particle scattering events, where the ingoing particles have 4-momenta pin
1 and pin

2 and the outgoing
particles have 4-momenta pout

1 and pout
2 , there are three well-de�ned relativistic quantities known as the Mandelstam

variables:

s ,
(
pin
1 + pin

2

)2
=

(
pout
1 + pout

2

)2
(CoM Energy)

t ,
(
pin
1 − pout

1

)2
=

(
pin
2 − pout

2

)2
(4-momentum transfer)

u ,
(
pin
1 − pout

2

)2
=

(
pin
2 − pout

1

)2
.

The Feynman diagrams are:
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s-channel t-channel u-channel

t

x

p1
in p2

in

p1
out p2

out

p1
in

p2
in

p1
out

p2
out

p1
in

p2
in

p1
out

p2
out

known as the s-channel, t-channel, and u-channel respectively. In this case we have picked a frame to work in such
that the pin particles come from the past and pout go to the future. Interpret the diagrams as scattering events.

3.5 Diagrammatic Expansions

3.5.1 ϕ4 partition function

Start from the partition function

W = Z −1
0

�
Dϕ exp

(
i

�
d4x

�
d4y

(
−1

2
ϕyG

−1
xy ϕx

)
+ i

�
d4x

(
λ

4!
ϕ4

x

))
where we know that

〈ϕyϕx〉 = −iGxy

and 〈O〉 = Z −1
0

�
DϕO exp

(
i

�
d4x

(
−1

2
ϕG−1ϕ

))
.

(a) Verify the result from the lecture, that by expanding the interaction exponential to second order in the coupling
the partition function evaluates to

W = 1 +
iλ

4!

�
d4x (−iGxx)2 · 3

+
1
2!

(
iλ

4!

)2 �
d4xd4y

(
(−iGxx)2 (−iGyy)2 · 32 + (−iGxx) (−iGxy)2 (−iGyy) · 62 · 2 + (−iGxy)4 · 4!

)
.

(b) Draw the Feynman diagrams for each term.
(c) Draw the Feynman diagrams for the terms of order λ3.
(d) Give a couple of interpretations of each diagram in terms of virtual particle processes (virtual particles are any
particles appearing as internal lines in Feynman diagrams).

3.5.2 ϕ4 2-point function

(a) By again expanding the exponential as a Taylor series, evaluate the interacting 2-point function

〈ϕ2ϕ1〉λ ,

〈
ϕ2ϕ1 exp

(
i
λ

4!

�
d4xϕ4

x

)〉
to order λ.
(b) Draw the corresponding Feynman diagrams.
(c) Draw all the Feynman diagrams to order λ3.
(d) Draw all the diagrams to order λ4, excluding those which contain vacuum bubbles.

3.5.3 ϕ4 4-point function

(a) Draw the 4-point function diagrams to order λ, and then write down the corresponding analytic expressions.
(b) It turns out that only connected diagrams contribute to physical processes. There are two di�erent senses of
the word `connected' used in QFT. The �rst means diagrams with no bubbles. The second means diagrams where
all external legs are joined. Let's call them connectedA and connectedB (not common terminology). Selecting from
the λ2 4-point functions draw examples of A&B, AqB, BqA, qAqB (where q means `not').
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3.5.4 QED-type partition function*

Let's consider a theory with two �elds

W = Z −1
ϕ Z −1

η

�
Dϕ

�
Dη exp

(
i

�
d4x

�
d4y

(
−1

2
ϕyG

−1
xy ϕx −

1
2
ηyD

−1
xy ηx

)
+ ig

�
d4xηxϕ

2
x

)
.

Now we have two kinds of functional average,

〈O〉ϕ , Z −1
ϕ

�
DϕO exp

(
i

�
d4x

(
−1

2
ϕG−1ϕ

))
〈O〉η , Z −1

η

�
DηO exp

(
i

�
d4x

(
−1

2
ηD−1η

))
and two kinds of propagator,

〈ϕyϕx〉ϕ = −iGxy

〈ηyηx〉η = −iDxy.

The �elds are independent at the Gaussian level so the ϕ average does not `see' the η �eld and vice versa. Denote
the ϕ propagator by a solid line and the η propagator by a dashed line.
(a) Find the partition function W analytically to second order in g2, assuming 〈ϕ〉ϕ and 〈η〉η are both zero (zero
vacuum expectation value of the �elds).
(b) Draw the Feynman diagrams and give some interpretation in terms of particle processes.
(b) Draw the Feynman diagrams to order g4.

3.5.5 QED-type n-point functions*

(a) Continuing on from Section 3.5.4: the lowest order corrections to each propagator are order g2. Draw the
diagrams in each case.
(b) The simplest n-point function containing both particles as external �elds is of order g:

〈ϕ3ϕ2η1〉g .

Draw the diagram. Let's call this a 3-point function.
(b) What is the next order correction to the 3-point function? Just like in Section 3.5.3 draw examples of A&B,
AqB, BqA, qAqB.

4 Renormalization

4.1 Bad Jokes

Aside from not being funny, what is wrong with the jokes in this chapter?

4.2 Dyson Series

4.2.1 Freeman Dyson, pub Landlord

In the lectures we deduced the e�ect of including an in�nite series of uncorrelated self-energy corrections to the
Klein Gordon propagator. In this question we will reproduce the working for the electron propagator in a condensed
matter setting, where the bare propagator is de�ned to be 4

G0 (ε,k) =
1

ε+ iδ − ξk

4This is the Euclidean form of the propagator; a `Wick rotation' has changed variables from iωn → ε + iδ. For more information see

Altland and Simons.
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with ε the energy, ξk the energy of a state with crystal momentum k, and δ an in�nitesimal regularization δ → 0+.
First, add in self-energy corrections of the form

G = G0 +G0ΣG0 +G0ΣG0ΣG0 +G0ΣG0ΣG0ΣG0 + . . .

and use the `pub landlord' technique (geometric series sum) to �nd the renormalized propagator

G =
1

ε+ iδ − ξk − Σ
.

4.2.2 Diagrammatics

The self-energy correction comes from including the e�ect of some kind of interaction in the propagator. The
interacting theory is re-expressed as a free theory with a di�erent (renormalized) propagator. If we allow a QED-
type interaction of electron and hole (positron in QED) annihilating to a phonon (photon in QED) we can represent
the objects diagrammatically as

G(k) 

=

=

=

(k)

G0(k)

where it is understood that the struck-through lines indicate amputated external legs. Redo the algebraic calculation
using only diagrams and the number one.

4.2.3 Spectral Function

The spectral function is de�ned as

A (ε,k) , − 1
π

ImG (ε+ iδ,k) .

(a) Find the spectral function for the bare electron G0. You should �nd the result is a Lorentzian which is in�nitely
sharp, localized on ε = ξk.
(b) The spectral function gives the probability of �nding a particle with energy ε and crystal momentum k. This
suggests it should be positive de�nite, and that its integral over all energies should equal unity. Check both
conditions.
(c) Now �nd the spectral function for the particle renormalized by a complex self-energy: Σ = Σ′+ iΣ′′ with Σ′, Σ′′

real. Assume Σ′′ < 0 to avoid any confusion. By considering the e�ect of including Σ on the Lorentzian distribution
interpret the e�ect of the real and imaginary parts of the self-energy on the particle's properties.
(d) Verify that the spectral function can still be interpreted as the probability for �nding a particle.
(e) Discuss with a friend what is going on philosophically.

5 E�ective Action

5.1 An interacting 0+0D QFT of two �elds

Returning to our old friend the 0+0D QFT we will now consider two real scalar �elds coupled through an interaction
term:

W =

�
dφdη exp

(
i
(
−a

2φ
2 − b

2η
2 + gφ2η

))
�
dφdη exp

(
− i

2 (aφ2 + bη2)
) .

From the working of Section 2.1 we know that the bare Green's functions (2-point correlators / propagators) for
the �elds are
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�
dφ (φφ) exp

(
− i

2aφ
2
)

�
dφ exp

(
− i

2aφ
2
) , 〈φφ〉φ =

−i
a�

dη (ηη) exp
(
− i

2aη
2
)

�
dη exp

(
− i

2aη
2
) , 〈ηη〉η =

−i
b
.

By expanding the exponential interaction term, using the working in the notes, integrate out the φ �eld to arrive
at an e�ective action in terms of only η particles. Go to the �rst order beyond Gaussian in η.

5.2 Scalar QED

In the lectures we found the e�ective action for Scalar QED by integrating out the η �eld from the de�ning equations:

Z = Z −1
ϕ Z −1

η

�
DϕDη exp

(
iS0

ϕ + iS0
η + iSint [ϕ, η]

)
S0

ϕ [ϕ] ,
�

d4x

�
d4y

(
−1

2
ϕ (x)A (x, y)−1

ϕ (y)
)

S0
ϕ [η] ,

�
d4x

�
d4y

(
−1

2
η (x)B (x, y)−1

η (y)
)

Sint [ϕ, η] ,
�

d4x (gϕ (x) η (x) η (x)) .

Carry the same working out to integrate out the ϕ �eld instead. Go to the lowest non-vanishing order, and state
what the next non-zero order would be.
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