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Charge order from orbital-dependent coupling
evidenced by NbSe2

Felix Flicker1 & Jasper van Wezel2

Niobium diselenide has long served as a prototype of two-dimensional charge ordering,

believed to arise from an instability of the electronic structure analogous to the

one-dimensional Peierls mechanism. Despite this, various anomalous properties have

recently been identified experimentally, which cannot be explained by Peierls-like weak-

coupling theories. Here, we consider instead a model with strong electron–phonon coupling,

taking into account both the full momentum and orbital dependence of the coupling matrix

elements. We show that both are necessary for a consistent description of the full range of

experimental observations. We argue that NbSe2 is typical in this sense, and that any charge-

ordered material in more than one dimension will generically be shaped by the momentum

and orbital dependence of its electron–phonon coupling as well as its electronic structure. The

consequences will be observable in many charge-ordered materials, including cuprate

superconductors.

DOI: 10.1038/ncomms8034

1 H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, UK. 2 Institute for Theoretical Physics, Institute of Physics, University of
Amsterdam, 1090 GL Amsterdam, The Netherlands. Correspondence and requests for materials should be addressed to F.F. (email: flicker@physics.org) or
J.v.W. (email: vanwezel@uva.nl).

NATURE COMMUNICATIONS | 6:7034 | DOI: 10.1038/ncomms8034 | www.nature.com/naturecommunications 1

& 2015 Macmillan Publishers Limited. All rights reserved.

mailto:flicker@physics.org
mailto:vanwezel@uva.nl
http://www.nature.com/naturecommunications


T
he charge density wave (CDW) order in 2H-NbSe2 has
been surrounded by controversy since its first observation
nearly 40 years ago1. The most basic unresolved question

concerns the driving mechanism of the ordering transition. In
quasi-one-dimensional (1D) materials, it is well known that
charge order arises from a Peierls instability: any interaction
between states at the Fermi energy (EF) results in a periodic
modulation of both the electronic charge density and the atomic
lattice positions, which lowers the free energy through the
corresponding opening of a band gap2. Such a mechanism is
termed weak coupling since an arbitrarily small interaction will
drive the system to order at low enough temperatures. In higher-
dimensional systems, a nesting of the Fermi surface is typically
required for such an instability to be effective. In NbSe2, however,
Fermi surface nesting does not occur1,3–5. The lack of a lock-in
transition and the coexistence of CDW order with
superconductivity below 7.2 K nonetheless seem to suggest a
weak-coupling origin of the charge order. As a result, a number of
alternative weak-coupling mechanisms have been proposed,
based on nested saddle-points in the electronic dispersion6,
local field effects5 or a combination of weak nesting with
momentum-dependent electron–phonon coupling3,7.

There are a number of experimental observations, however,
that are hard to reconcile with weak-coupling approaches in
NbSe2. The first concerns the size of the electronic gap in the
charge-ordered state. Kinks in the density of states (DOS)
observed by planar tunnelling experiments have been interpreted
to arise from a gap of D¼ 35 meV8,9, while only much smaller
gaps between 2 and 5 meV were seen by high-precision angle-
resolved photoemission spectroscopy (ARPES) experiments4,10,
and older studies even reported no gap at all in ARPES and
resistivity measurements11,12. Assuming a weakly coupled driving
mechanism for the charge order, the size of the gap is expected to
be proportional to the transition temperature, DC1.76kBTC, in
direct analogy to the BCS theory of superconductivity13. A gap
size of 35 meV would then be far too large to explain the observed
TCDW of 33 K14. The 5 meV gap consistent with ARPES data is of
the expected size, but it occurs only in isolated points on the
Fermi surface4,10, raising the question of how the correspondingly
small gain in electronic energy can overcome the cost of
introducing the periodic lattice distortions associated with
CDW order. In addition, while the gaps seen in ARPES
measurements are connected by the CDW wave vector, other
equally well-connected points support either only a much smaller
gap or no gap at all4,10. It was recently suggested, based on
scanning tunnelling spectroscopy (STS) measurements15, that a
particle–hole asymmetric gap of 12 meV, centred above EF, exists
in NbSe2. The offset in energy explains why ARPES only sees a
smaller gap size, while the value of 12 meV is consistent with
the order of magnitude expected for a strongly coupled CDW,
which may have DB4kBTC in analogy to strong-coupling
superconductors16–18.

The idea that the CDW order in NbSe2 is of the strong coupling
variety, in which a sizable electron–phonon coupling is essential in
causing an instability of the electronic structure, is also consistent
with two further recent experimental observations. First, it was
observed in X-ray scattering experiments that at the transition
temperature a broad momentum-range of phonons simulta-
neously softens towards zero energy7,19. This is in stark contrast to
the sharp Kohn anomaly expected in a Peierls-like transition13

and may be understood to be an effect of the importance of the
entropy carried by phonon fluctuations in the strongly coupled
scenario20–22. These phonon fluctuations are localized in real
space and therefore necessarily involve a broad range of momenta.
In an electronically nested system, on the other hand, the nesting
vector localizes any fluctuations to a single point in momentum

space. The second experimental result arguing for a strongly
coupled transition is the observation of a reduction of the density
of states persisting well above the transition temperature, in what
has been termed a pseudogap regime4,23,24. In strongly coupled
CDW materials, a pseudogap typically appears through the
presence of locally fluctuating charge order without long-range
coherence23. These same charge fluctuations have recently been
suggested to play a central role in the description of the pseudogap
phase of cuprate superconductors25–30. The precise nature of the
pseudogap in these materials, however, is difficult to establish
owing to the presence of various nearby competing orders. NbSe2,
being free of such complications, provides a test bed on which the
formation and characteristics of a pseudogap phase due to charge
fluctuations can be studied directly.

Here we present a theoretical analysis of the charge order in
NbSe2 based on a model of strong electron–phonon coupling.
Although the transition is phonon driven, we find that a full
knowledge of the electron states scattered from and to, including
both wave vector and orbital dependence, is crucial in explaining
the experimental data. Despite a lack of nesting, the limited
matching of states at EF acts in unison with the momentum
dependence of the electron–phonon coupling to select out the
CDW-ordering vector, while the orbital characters of the bands
naturally explain why a CDW gap appears primarily in only one
of the Fermi surface pockets. The resulting momentum
dependence of the gap itself agrees with ARPES experiments as
well as with the observed particle–hole asymmetry in the DOS.
Finally, we find that the phonon modes are softened over a broad
range of wave vectors, and that including the presence of strong
phonon fluctuations leads to a suppression of the transition
temperature, implying a range of intermediate temperatures
dominated by incoherent, fluctuating, charge order and a
corresponding pseudogap. In light of these findings, and the
generic nature of the electronic structure of NbSe2, we argue that
the momentum and orbital dependence of the electron–phonon
coupling may be expected to play a similarly central part in the
description of other charge-ordered materials, especially in the
presence of relatively strong coupling as in the case of the layered
high-TC superconductors.

Results
The extent of electronic nesting. NbSe2 is a layered material, in
which hexagonal layers of niobium atoms are sandwiched
between similar layers of selenium atoms, displaced so that they
lie above and below half of the Nb interstitial locations, as shown
in the inset of Fig. 1. Consecutive sandwich layers are displaced to
have the complementary half of the interstices occupied, giving
two formula units per unit cell. The Fermi surface consists of two
concentric barrel-shaped pockets centred around both the G and
the K points, as well as a very small pancake-shaped pocket
surrounding G, which we ignore in the analysis below. The inner
pockets at K are seen in ARPES to develop the largest CDW
gaps4,10. The CDW itself is of the 3Q type, with three equivalent
superposed modulations at 120� with respect to one another.

To describe the electronic states, we employ a Slater–Koster
tight-binding fit to the band structure using a basis of Se-4p and
Nb-4d orbitals31,32. For the two main bands crossing EF that give
rise to the barrel-shaped pockets (which we will refer to as inner,
developing the CDW instability, and outer), the fit is constrained
by data from ARPES measurements10, while the remaining 20
bands are fit to recent LDA calculations5. In agreement with
earlier reports32, we find that both the inner and outer bands at
EF are primarily composed of the d3z2 � r2 orbitals centred on the
two Nb atoms within a unit cell, in the form of bonding (inner)
and antibonding (outer) combinations (as shown in Fig. 1).
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Focussing on the two non-interacting bands at EF, we
introduce the interaction between electrons c and phonons j:

Ĥint ¼
X
m;n

X
k;q

gm;n
k;kþ qĵqĉ

ym
k ĉn

kþ q: ð1Þ

The bare phonon dispersion can be described by a Brillouin
function tending to a maximum of 11.2 meV at the zone
boundary19. The electron–phonon coupling g depends on the
momenta, as well as the band indices m and n, of the the ingoing
and outgoing electron states. Following Varma et al.33, we model
both of these dependencies using knowledge purely of the
electronic structure, which has been shown to work well for a
range of transition metals and their compounds. In terms of the
matrices of tight-binding overlap integrals Sk and generalized
eigenvectors Ak, the electron–phonon coupling matrix elements
are given by33:

gmn
kk0 ¼ vm

k AykSkAk0

h imn
� AykSk0Ak0

h imn
vn

k0 ; ð2Þ

where a constant prefactor has been omitted, and the band
velocity vn for electrons in band n is defined in terms of the band
energy xn

k as vn
k ¼ @x

n
k

�
@k. In the interaction of equation (1) we

restrict attention to the longitudinal component of g, since only
the longitudinal acoustic phonons are observed to soften in
inelastic neutron and X-ray scattering experiments19.

Inserting the tight-binding results into equation (2), we find
that the interband electron–phonon coupling is strictly zero,
while the intraband coupling is about a factor of three stronger
for the inner band than for the outer. This result immediately
explains why the experimentally observed CDW gap is so much
more pronounced in the inner band4,10, since the static electronic
susceptibility (that is, the linear response to lattice distortions)
scales with the square of the electron–phonon coupling:

w0 qð Þ /
X

k

gmn
k;kþ q

���
���

2f xm
k

� �
� f xn

kþ q

� �

xn
kþ q� xm

k
: ð3Þ

Here f(x) is the Fermi–Dirac distribution function, and the static
Lindhard function is given by w0 when g¼ 1. The absence of
interband coupling causes the contributions of the two bands to

the susceptibility to be entirely independent. This means that the
lower value of the intraband coupling in the outer band leads to
an order of magnitude suppression of its contribution to w0 and
therefore to a correspondingly reduced gap in its Fermi surface
pocket. It is thus the orbital character of the electronic bands, and
consequently the orbital dependence of the electron–phonon
coupling, that causes a relative size difference between the CDW
gaps in the pockets around the K-point, even if they are equally
well nested.

The expression for the susceptibility in equation (3) can further
be used to quantify both the amount of nesting present in NbSe2

and to evaluate the relative contribution of the electron–phonon
coupling matrix elements in selecting the observed value of the
(incommensurate) ordering wave vector QCDW ¼ 1� dð Þ 2

3 GM,
with dE0.021. In the left panel of Fig. 2, three susceptibilities are
compared. The dotted blue line shows the susceptibility for a
perfectly nested model with a single 1D band of cosine dispersion.
The sharp peak characteristic of a nested Fermi surface is
apparent. The dashed red line is the bare susceptibility in NbSe2,
obtained by setting g¼ 1 in equation (3). This does not include
any of the momentum and orbital dependence of the electron–
phonon coupling and is the form that has been widely used in
previous studies5,10,15. It is almost completely flat except for a
very broad and low maximum far from QCDW, and can therefore
not explain the observed ordering vector. The solid black line,
on the other hand, displays the susceptibility of just the inner
band. A broad but distinct maximum develops at the
experimentally observed CDW vector. The selection of the
ordering vector is thus shown to arise from the combined
influence of both the electronic structure and the orbital and
momentum-dependent electron–phonon coupling, with neither
contribution being negligible4,10.

EF

Γ ΓM K

Γ
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K

Figure 1 | Model band structure of NbSe2. (a) The band structure of

NbSe2 modelled by a tight-binding fit to both ARPES data and first-

principles band structure calculations. The two bands crossing EF (thick

lines) are the ones involved in the formation of charge order. They consist of

bonding and antibonding combinations of the two niobium d3z2 � r2 orbitals

within a unit cell, as indicated (with red and blue signifying postive and

negative parts of the orbital wave functions). (b) The Fermi surface

resulting from the two bands crossing EF. (c) The layered atomic structure

of NbSe2, with Nb in red and Se in blue. The unit cell, containing two

formula units across consecutive sandwich layers, is indicated.
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Figure 2 | Quantifying the extent of nesting in NbSe2. (a) Electronic

susceptibility as a function of momentum transfer along GM. Here q is

defined through q¼ qGM, with qA[0,1]. Blue dotted line: in a perfectly

nested 1D band structure, the susceptibility is sharply peaked at q¼QCDW.

Red dashed curve: the result for the two bands in NbSe2 crossing EF, and an

orbital-independent electron–phonon coupling. The susceptibility is nearly

flat, without any peaks. Black solid curve: the susceptibility of just the inner

band, in which a CDW gap is observed. Although a clear maximum can be

seen at QCDW, it is not a sharp divergence indicative of perfect nesting.

(b) The model electron–phonon coupling g ¼ � a qg� q
�� ��2þ gmax as q is

varied along GM. (c) Evolution of the CDW vector QCDW with varying peak

position qg of the model electron–phonon coupling. Blue dotted line: in a

perfectly nested 1D band structure, the electronic structure determines the

CDW formation and QCDW is independent of qg. Red dashed curve: the

result for an orbital-independent electron–phonon coupling and the two

bands crossing EF, which is close to a straight line at 45�, indicative of a

negligible role of the electronic structure. Black solid curve: the evolution

relevant for NbSe2, given by just the inner band as imposed by the orbital-

dependent electron–phonon coupling. This curve interpolates between the

flat plateau of a perfectly nested structure, and the 45� line dominated by

just the structure of the electron–phonon coupling.
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Restricting attention to the inner band, we can quantify the
extent to which nesting contributes to the selection of QCDW.
For this purpose we temporarily switch to a simplified form
of g, which is a function only of the momentum transfer:
g¼ � a(qg–q)2þ gmax. Even though in general the shape of the
susceptibility is determined by both the incoming momentum
and the momentum transfer, modelling the electron–phonon
coupling in this simplified form allows us to directly quantify the
effect of varying the position of its peak, and thus its influence on
the position of the peak in w0. The values of the parameters
a, qg and gmax can be estimated by fitting the experimentally
observed phonon softening7 to the expression for the
renormalized phonon energy in the random phase
approximation (RPA), O2

RPA ¼ O0 O0� w0ð Þ, where we take O0

to be the high-temperature (unrenormalized) dispersion. In the
right panel of Fig. 2 we plot the variation of the maximum in the
susceptibility (that is, the expected QCDW) as qg is varied along
GM. Again, the blue dotted line represents the situation of a
perfectly nested band structure, in which the electron–phonon
coupling never overcomes the peak in the susceptibility, and thus
has no effect on QCDW. The red dashed line has the same form of
g for all bands, and is close to a straight line at 45� (grey dashed
line). A true 45� line would indicate that QCDW¼ qg, implying
that the CDW vector is completely determined by the electron–
phonon coupling, with the electronic structure having no
influence at all. The solid black line, which shows the behaviour
of just the inner band, interpolates between these two extremes.
There is no plateau, but there is an indication of some flattening,
suggesting that while it is mainly the momentum dependence of
the electron–phonon coupling that determines the value of
CDW-ordering vector, the role of the electronic structure cannot
be neglected entirely.

The CDW gap. Having identified the importance of both
electron–phonon coupling and electronic structure, we now
revert to using the full expression of equation (2). To compare the
size and shape of the CDW gap resulting from the orbital- and
momentum-dependent g to the experimentally observed beha-
viour, the RPA gap equations shown diagrammatically in Fig. 3
are solved self-consistently. We simplify the calculation by using
the 9� 9 gap matrix which includes all higher harmonics
appropriate for a commensurate CDW wave vector at Q ¼ 2

3 GM,
as an approximation for the gap matrix of the incommensurate
CDW in NbSe2 with QCDW ’ 0:98 2

3 GM. We further fix the
values of the electronic self-energies to 7 meV, approximating the
self-consistent result across k in the high-temperature phase, and
constrain the momentum dependence of the gap function to a
five parameter tight-binding fit consistent with the symmetries of
the lattice. A self-consistent solution for the gap function to all
orders in RPA can then be found by searching for a fixed point in
the flow of consecutive iterations of the gap equation.

Figure 4 shows energy and momentum cuts through the
electronic spectral functions resulting from the solution to the gap
equations, as well as their corresponding DOS. A good match with
the shape of the experimentally determined DOS in STS experiments
can be achieved by introducing a 4 meV shift in the chemical
potential, which falls well within the range of experimental
uncertainty15. The overall strength of the electron–phonon
coupling, the constant of proportionality omitted in equation (2)
and the only free parameter in the theory, is set to give a maximum
CDW gap magnitude of E12 meV. The Fermi surface on the right
of Fig. 4 then shows a CDW gap opening on the inner band only,
and Fermi arcs forming at the same locations as observed in ARPES
measurements4,10,23. The extent of the gap on the Fermi surface, its
size (apparent from the dispersion’s back-folding in the centre of
Fig. 4) and its restriction to one band are all in agreement with
experimental findings4,10,23. The plot of the DOS on the left
indicates that these results, which were previously interpreted to
imply a gap size of B5 meV4,10, are in fact consistent with the STS
results indicating a particle–hole asymmetric gap of B12 meV15,23.
The asymmetry hides most of the gap structure above EF, where
photoemission intensity is suppressed by the Fermi–Dirac
distribution23. The comparison between the experimental STS data
and the calculated RPA results shows that the particle–hole
asymmetry arises naturally from the interplay between the
electronic structure and the momentum-dependent electron–
phonon coupling.

The pseudogap. The central role of the orbital- and momentum-
dependent electron–phonon coupling in determining both the
CDW propagation vector and the structure of the gap suggests
that the charge order in NbSe2 falls in the strong-coupling regime,
in which the electronic structure alone is not sufficient to char-
acterize the emergent charge order. In the presence of strong
electron–phonon coupling, it is well known that the entropy
associated with localized lattice vibrations plays an essential part
in the system’s thermal evolution20. To understand the properties
of NbSe2 above its CDW transition temperature, it is therefore
necessary to consider the influence of phonon fluctuations
beyond RPA. The so-called mode–mode coupling
approximation (MMA) includes the lowest order terms of this
type and has been shown to successfully describe the influence of
phonon fluctuations in some of the electronic properties of
related dichalcogenide materials like TaSe2 and TiSe2

21,22,34. The
additional terms included in the MMA fall into two categories: a
vertex correction, which we neglect by appeal to Migdal’s
theorem because of the large momentum transfer associated
with QCDW, and self-energy corrections to the internal electron
lines (indicated diagrammatically in Fig. 5), which we include.
In agreement with recent X-ray scattering observations on
NbSe2

7,19, the MMA-renormalized phonon spectrum shown in
Fig. 5b shows a broad range of phonon modes softening near the

   0(k) Qi = 0

Qi ≠ 0k k+Qi k k+Qi     (k,k+Qi) if Qi ≠ 0

    (k) Qi = 0

if0

if if

Figure 3 | The RPA gap equation. Diagrammatic form of the self-consistent RPA gap equations. As indicated in the legend, the single arrows indicate bare

electronic Green’s functions G0, and the double arrows the renormalized Green’s functions G and F. The anomalous functions F k; kþQið Þ ¼ hĉkĉ
y
kþQi
i

do not conserve crystal momentum, and correspond to the CDW order parameter. Notice that the momentum labels for the Green’s functions include

Matsubara frequencies, and the final diagram includes a summation over the anomalous momentum Qi of the internal electronic propagator.
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transition temperature, rather than the sharp Kohn anomaly
indicative of well-nested materials. The momentum of the softest
phonon mode at the transition temperature coincides with the
experimentally observed CDW propagation vector.

The softening of phonon modes, as the charge-ordered state is
approached from high temperatures, is suppressed by the
fluctuations beyond RPA. Since the temperature at which the
first phonon mode reaches zero energy defines the transition
temperature TCDW, this means that the charge-ordering transition
temperature in MMA, TMMA, is suppressed with respect to the
corresponding value in RPA, TRPA. Choosing the overall strength
of the electron–phonon coupling such that TMMA matches the
experimentally observed value of TCDW¼ 33.5 K, Fig. 5 shows
that the corresponding RPA transition occurs already at
TRPAE300 K. Physically, this suppression of the transition
temperature can be ascribed to the presence of fluctuations in
the phonon field. In the temperature range TMMAoToTRPA, the
phonon fluctuations are strong enough to destroy the long-range
order predicted by (mean field) RPA theory. In that regime,

the amplitude of the static order parameter vanishes, hĵQi ¼ 0,
but dynamic fluctuations of the order parameter persist,
h ĵQ

�� ��2i4020–22. The result is a locally fluctuating short-range
ordered state, characterized by the presence of a non-zero order
parameter amplitude, without any long-range phase coherence23.
Due to the non-zero amplitude, the gap in the electronic structure
will survive even above the transition temperature TCDW¼TMMA,
in the form of a pseudogap phase4,23. The dynamical fluctuations
in this regime may become locally pinned in the presence of
defects, creating islands of order up to T¼TRPAE300 K,
in agreement with recent STM and X-ray scattering
experiments23,24. The properties of this regime are reminiscent
of the features that characterize the pseudogap phase of cuprate
high-temperature superconductors35, which have recently been
shown typically to contain charge-ordered phases of their
own28–30. Specific similarities are the presence of a pseudogap,
Fermi surface arcs, dynamical fluctuations and a corresponding
sensitivity to the timescales employed by experimental probes, as
well as the existence of the crossover to the normal state at
T*¼TRPA. Note that the existence of a crossover temperature
T*E300 K, between the pseudogap and disordered regimes
predicted here, falls outside of the temperature range that has
been probed in NbSe2 to date4,24.

Discussion
Although various theories for the formation of charge order in
NbSe2 have been able to explain many parts of its diverse
experimental signatures, the material has so far evaded the
simultaneous description of all of its properties by a single
consistent theoretical account. The main features, which remain
difficult to reconcile with the weak-coupling theories considered
so far, include the emergence of CDW order in spite of a lack of
nesting in the electronic structure, and an anomalously flat
electronic susceptibility, the softening of a broad range of phonon
modes rather than a sharp Kohn anomaly, a discrepancy in the
sizes of the CDW gap observed in different electron pockets in
spite of them being similarly nested, disagreement about the
existence, size and particle–hole symmetry of the CDW gap as
seen by different experimental probes and the presence of a
pseudogap phase characterized by locally fluctuating charge order
above the CDW transition temperature. We have shown here that
all of these observations can be consistently understood, within a
single theory, to result from the simultaneous influence of the
presence of a strong electron–phonon coupling, its orbital
dependence and its dependence on both incoming and outgoing
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electron momentum. We have shown that none of these
ingredients can be neglected in the full description of
NbSe2

5,21,22,34, suggesting their possible importance in other
dichalcogenide materials as well.

The combination of both the momentum-dependent coupling
and the particular electronic structure of NbSe2 is found to be
crucial in the selection of the charge-ordering vector, while the
orbital dependence naturally explains the different behaviours of
different Fermi surface pockets. The same dependencies on
momentum and orbital character are also reflected in the
emergence of a particle–hole asymmetric gap, which has a size
of about 12 meV, centred above EF where it is largely inaccessible
to observation by ARPES. These observations put NbSe2 in the
regime of strongly coupled charge-ordered materials, in the sense
that the specifics of the electron–phonon coupling qualitatively
affect the properties of the ordered state.

The pseudogap phase above TCDW may arise in such a scenario
from local fluctuations of the lattice, which destroy the long-range
phase coherence of the CDW order parameter but not its
amplitude. Taking into account higher-order phonon fluctua-
tions, we find that indeed the mean field transition temperature is
suppressed, leading to a regime above TCDW characterized by the
absence of long-range charge order and the presence of phonon
fluctuations. This agrees with the experimental observation of
Fermi arcs and a pseudogap above the transition temperature, as
well as that of pinned charge order at high temperatures around
local defects. All of these signatures of the pseudogap phase are
reminiscent of similar features seen in the pseudogap phase of
cuprate high-temperature superconductors.

In conclusion, while the Peierls mechanism can explain charge
ordering in 1D systems entirely in terms of the electronic
structure, this is not the natural starting point for higher-
dimensional materials. Instead, it is necessary to include full
information about the dependence of the electron–phonon
coupling on the momenta and orbital characters of the electronic
states involved in the CDW formation. This is evidenced by the
present case of NbSe2, a typical quasi-two-dimensional material
without a strongly nested Fermi surface, in which knowledge
about all aspects of the electron–phonon coupling proves to be
essential in explaining the full range of experimental observations.
We suggest this consideration to be generically applicable across
charge-ordered quasi-two-dimensional and quasi-three-dimen-
sional materials lacking strong nesting features. In particular, the
full momentum and orbital dependence of the electron–phonon
coupling should be taken into account throughout the class of
transition metal dichalcogenides and related material classes,
including high-temperature superconductors.
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