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Itinerant density wave instabilities at classical and
quantum critical points
Yejun Feng1,2*, Jasper vanWezel3, JiyangWang2, Felix Flicker4, D. M. Silevitch2, P. B. Littlewood2,5

and T. F. Rosenbaum2,6*
Charge ordering in metals is a fundamental instability of the electron sea, occurring in a host of materials and often linked
to other collective ground states such as superconductivity. What is di�cult to parse, however, is whether the charge order
originates among the itinerant electrons or whether it arises from the ionic lattice. Here we employ high-resolution X-ray
di�raction, combined with high-pressure and low-temperature techniques and theoretical modelling, to trace the evolution
of the ordering wavevector Q in charge and spin density wave systems at the approach to both thermal and quantum phase
transitions. The non-monotonic behaviour of Q with pressure and the limiting sinusoidal form of the density wave point to the
dominant role of the itinerant instability in the vicinity of the critical points, with little influence from the lattice. Fluctuations
rather than disorder seem to disrupt coherence.

Understanding the formation and evolution of instabilities in
electronic systems, from charge and spin order1–6 to heavy
fermion and high-Tc superconductivity7,8, to insulator–metal

transitions9, has assumed a central stance in physics for decades.
These different ordering mechanisms can compete and coexist—
for instance, charge and spin order vying with superconductivity—
in both normal10 and high-Tc materials1,3,4, enriching the phase
space of possible physical states. At the same time, isolating the
fundamental mechanisms underlying a particular Fermi surface
instability becomes key to progress in the field. At stake is not
simply fermiology, but the role of quantum critical points and
the emergence of non-Fermi-liquid behaviour11,12. Perhaps the
quintessential example, going back to the work of Peierls13 in the
1950s, is the ongoing debate about the origin of charge-density-wave
ordering in numerous compounds. Suggested mechanisms range
from Fermi surface nesting and related instabilities in the electronic
structure14–16 to mediation by electron–phonon coupling effects17,18,
to more exotic phenomena such as excitons paired through the
screened Coulomb interaction19,20.

In the case of charge (CDW) and spin (SDW) density waves, a
continuous gap opening at the Fermi surface at zero temperature
is complicated by the presence and potential influence of quantum
critical fluctuations. Over the past two decades, there have been
several theoretical approaches on quantum phase transitions with
a 2kF type of instability16,21–23. This work has mainly focused on
cuprates in two dimensions, and differs primarily on subtle issues
such as distinguishing between nesting or hot spots, treating curved
Fermi surfaces with parallel or non-parallel electron velocities,
and modelling commensurate (1/2, 1/2) versus incommensurate
states. Given the presence of both bosonic and fermionic degrees of
freedom in the theoretical framework, it is still unclear how the 2kF-
type quantum phase transition becomes first16 or second23 order.

Experimental insight into the evolution of the electronic gap
at the Fermi surface is typically provided by angle-resolved

photoemission spectroscopy (ARPES; ref. 24), measurement of the
Hall coefficient11,25, or the observation of quantum oscillations8.
It is important to note, however, that the wavevectors of the
incommensurate CDW/SDWorder also directly reflect the location
and evolution of the associated energy gap in reciprocal space.
With improved X-ray diffraction techniques applied over an
extended pressure range6,26, it is now possible to finely resolve
the evolution of incommensurate wavevectors and the role of an
itinerant instability at a pressure-driven quantum critical point.
This is a topic rarely discussed in the literature, mainly because
direct measurement of the evolution of the wavevector Q by either
neutron or X-ray diffraction was previously scarce, limited to
low pressures, and of low resolution27,28. Here, using diffraction-
resolved incommensurate orders of the CDW in NbSe2 and the
SDW in Cr, we examine the fundamental physics of density wave
formation approaching a pressure-driven critical point. We find
that an itinerant electron instability plays a dominant role when
the order parameter forms, taking on a pure sinusoidal shape
unaffected by interactions with other degrees of freedom, and
dictates the incipient long-range order at both the thermal and
quantum critical points.

Incommensurate wavevector in P–T space
We plot in Fig. 1 both the pressure–temperature (P–T ) phase
diagram and Q(T , P) for our two model systems: the CDW in
2H -NbSe2 and the SDW in Cr. Although of different dimensions
(two and three dimensions, respectively), the phase behaviour
of these two density-wave systems is similar (Fig. 1 insets).
Pressure monotonically suppresses TDW, and both quantum phase
transitions under pressure have proved to be continuous, with
signatures of critical behaviour in both electrical transport and
X-ray diffraction2,5,25.

The evolution of Q(P) over a 1.5% reduction in the lattice
constant2,5 is non-monotonic in the zero-temperature limit, in
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Figure 1 | Pressure–temperature evolution of the incommensurate
wavevector Q. a,b, Ordering wavevector Q plotted as a function of both
temperature T and pressure P. a, For CDW in NbSe2, Q(T, P) with solid
symbols are from the current study, whereas open symbols are from
refs 28,36, with a shift of all Q by 0.00095 r.l.u. to match our data at
Q(0,0). Vertical error bars represent 1 σ s.d. of Q, and horizontal error bars
represent the full range of pressure during measurement. b, For SDW in Cr,
Q(T, P) are collected from the literature (open symbols)27 and our previous
work (solid symbols)2,49. Insets: P–T phase diagrams of NbSe2 (refs 5,31)
and Cr (ref. 25) show similar monotonic trends in TDW(P). On the other
hand, Q(P) of NbSe2 and Cr manifest a non-monotonic behaviour in the
low-temperature limit. Arrows in phase diagrams mark our measurement
trajectories for the data plotted in the main panels.

contrast to the monotonic trend in TDW(P). As we demonstrate
below, the ordering wavevector Q at the critical point represents an
instability in the electronic structure, corresponds to a maximum
in the full electronic susceptibility21, and may be related to
special features of the electronic bands or its Fermi surface14–16.
In real systems with a spatial dimension higher than one, an
itinerant instability is typically induced by a bosonic coupling
between electronic states at the Fermi surface21, with the type of
the exchanged boson ranging from photons (Coulomb)14,19 and
phonons17,18, to magnons (spin fluctuations)6,29. The required finite
strength of bosonic coupling has a limiting behaviour towards zero
only for perfect nesting, which is exemplified by the original Peierls
scenario of 2kF instability of free electron gas in one dimension13.
With the long-range DW order arising, the value ofQmay be tuned
by physical processes beyond the band structure, resulting in non-
monotonic behaviour in the P–T phase space.

Mean-field evolution of Q(T,P=0)
Before discussing the Q(P) behaviour in detail, we survey Q(T ) of
several CDW/SDW materials at ambient pressure. The materials
listed in Fig. 2a have incommensurate ordering existing to the lowest
temperature and represent a diverse spectrum of spin or charge
origins in various dimensions from one (NbSe3) to three (Cr, GdSi).
Some, such as TbTe3 (ref. 30), Cr, and GdSi (refs 6,29), have well-
established nesting conditions at the Fermi surface, whereas others

such as NbSe2 are at best described as hot spots24. Nevertheless,
all five SDW/CDW states are clearly tied to instabilities of the
itinerant electrons, resulting in the formation of gaps in the Fermi
surface, with both resistivity anomalies25,29–32 and strong changes in
the Hall coefficient29,33 at the transition. By contrast to Q(P), all of
theQ(T ) of the CDW/SDW systems in Fig. 2a evolvemonotonically
with temperature.

McMillan prescribed key elements of a mean-field free-energy
expression for an incommensurate CDW/SDW (ref. 34). Here we
take the essence of the McMillan theory and neglect both interlayer
and multi-Q interactions between CDWs. They are not a common
feature of the examples listed above and thus are not expected to
be necessary for explaining the Q(T ) behaviour. The free-energy
density is then2,34:

F = aψ 2
+bψ 4

+cξ 2|∇ψ |2+eψ 2
|∇φ−q|2

− f ψn cos(nφ−Gx) (1)

The CDW order parameter Re(ψe−iθ ) has amplitude ψ and
phase φ. q is the natural wavevector of the CDW determined by
a maximum in its full electronic susceptibility, ξ is the spatial
correlation length of the CDW, G is a reciprocal lattice unit vector
and a,b, c,d , e, f are the coefficients of the individual terms, which
be discussed next. The first two terms are leading orders in a
Landau free-energy expansion. The third and fourth terms come
from the energy costs of distorting a CDW from its ideal condition
by stretching/compressing the wave from the wavevector set by the
susceptibility, and from having a finite spatial correlation length ξ .
For CDWs, these two terms includes both electronic energy from
repopulating the Brillouin zone34 and static phonon energy from
coupling to the lattice. The fifth term reflects the lock-in effect,
which favours a CDW commensurate with the lattice. Q(T ) is
determined by the competition between the fourth and fifth terms,
as ψ grows with decreasing temperature.

This competition is best visualized by plotting Q(ψ) (Fig. 2b),
using as examples TTF-TCNQ and 2H -TaSe2 (refs 35,36). Both
CDW systems order incommensurately at high temperature, before
experiencing a first-order phase transition to a commensurate state
with discontinuities in both Q and ψ . As shown in Fig. 2b, Q is
independent of ψ in the ψ = 0 limit. As ψ increases, Q evolves
continuously until the lock-in transition creates discontinuities in
both Q and ψ . At even lower temperature, ψ continues to grow
whereas Q remains constant at the commensurate position. For
TTF-TCNQ and TaSe2, dQ/dψ approaches zero at both small and
large ψ , which clearly indicates the alternating dominance of either
the fourth or fifth term in equation (1) with different powers of ψ .
As exemplified by TTF-TCNQ, the lock-in position can be located
far from the intrinsic CDWwavevector q=Q(TDW), and1Q can be
as large as one quarter of the reciprocal lattice unit35. In addition,
a lock-in transition does not necessarily exist for every n value; for
TTF-TCNQ, the Q(T ) evolution passes through n=3 and locks in
for n= 4. This possibly explains the wavevectors in NbSe3, GdSi
and Cr seemingly moving away from commensurate positions of
n=4, 2 and 1, respectively. For NbSe2, n=3 was assumed to be the
commensurate position, in association with the lock-in transition in
TaSe2 (ref. 34).

For CDWs that remain incommensurate, theQ(ψ) plot in Fig. 2c
manifests only partial features of the full evolution demonstrated in
Fig. 2b. This indicates that the magnitude of ψ is insufficient for
higher-order terms to contribute substantially to the free energy.
Q(ψ) behaviour similar to Fig. 2c is also observed for the SDW
in Cr at ambient P (Fig. 3a of ref. 2). Hence Q(ψ) provides a
direct measure of the relative importance of terms with different
powers ofψ for a collection of vastly different density-wave systems.
We note that the SDW in Cr possesses no local spin moments,

2 NATURE PHYSICS | ADVANCE ONLINE PUBLICATION | www.nature.com/naturephysics

© 2015 Macmillan Publishers Limited. All rights reserved

http://dx.doi.org/10.1038/nphys3416
www.nature.com/naturephysics


NATURE PHYSICS DOI: 10.1038/NPHYS3416 ARTICLES

NbSe2

TbTe3

NbSe3

K0.3MoO3

|Δ
Q

| (
r.l

.u
.)

/ T=0ψ ψ

/ T=0ψ ψ

0.00

0.01

0 1

0.323a

0.328

0.485

0.495

T/TDW

Q
  (

r.l
.u

.)
NbSe2, TCDW = 33.5 K

GdSi, TSDW = 54.5 K

NbSe3, TCDW ∼ 155 K

Cr, TSDW = 311.5 K

TbTe3, TCDW = 336 K

0.242

0.244

0.950

0.960

0.705

0.710
0.0 0.2 0.4 0.6 0.8 1.0

Q
 (r

.l.
u.

)

TTF-TCNQ
TaSe2

0.25

0.50
0.326

0.330

0.334

0 1

b

c

Figure 2 | Temperature evolution of wavevector Q. a, Incommensurate Q(T) for CDWs and SDWs arranged by increasing TDW over one decade. b, Q(ψ),
with temperature as the hidden variable in the range 0<T<TDW, are plotted for the CDW systems TTF-TCNQ and TaSe2, both of which manifest a lock-in
transition to a commensurate state. Here, ψ at zero temperature is strong enough such that Q(ψ) shows the full evolution between the two limits of
ψ/ψT=0=0 and 1; each end is dominated by individual terms of di�erent powers of ψ in the free energy of equation (1). c, Q(ψ) for CDWs which remain
incommensurate at low temperature evolves over only part of the master curve in b. Q(T) of NbSe2 from the current study is compared to data from the
literature: NbSe2 (ref. 36), GdSi (refs 6,29), NbSe3 (refs 50,51), Cr (ref. 49), TbTe3 (ref. 30), TaSe2 (ref. 36), TTF-TCNQ (ref. 35) and K0.3MoO3 (ref. 52).
The CDW amplitude ψ(T) is obtained from X-ray or neutron di�raction intensity I(T) by I∼ψ2 (ref. 37), and is normalized by its low-temperature limit
ψT=0 for comparisons in b and c. For K0.3MoO3, the experimental resolution was insu�cient to determine whether or not a lock-in transition occurs; no
first-order discontinuity was observed in the temperature dependence of either the order parameter or the wavevector52.

and that SDW states in Cr and GdSi are not coupled to a lattice
distortion at the primary wavevector Q (refs 29,37). Thus, the
similar limiting behaviour of Q(ψ) at ψ=0, regardless of SDW or
CDW type and couplingmechanism6,14,17–19,29, as shown in Fig. 2 and
ref. 2, points to an origin of these instabilities among the itinerant
electrons rather than the localized ionic lattice. In general, Q(ψ)
provides a macroscopic indicator independent of the microscopic
and quantitative details of the DW-lattice coupling. This is reflective
of the fact that allQ(T ) in Fig. 2 behave similarly despite a variation
of over a decade in the ordering temperature TDW.

Harmonics of the incommensurate density wave
For a sinusoidal incommensurate DW with both ψ(x)= constant
and φ(x)=Qx , the last term in equation (1), f ψn cos(nφ−Gx),
will always be zero when summed over all lattice sites, no matter
the magnitude of ψ . For a CDW and a collinear SDW, ψ is a scalar
and constant in a mean-field framework38, and all deviations of the
DW from a pure sinusoid are represented by 1φ(x)=φ(x)−Qx .
Experimentally, the deviation of an incommensurate wave from
a sinusoidal form is reflected by the presence of higher-order
harmonics in the diffraction pattern37,39. For the CDW in NbSe2,
we were able to measure both the primary wave and its second
harmonic with our bulk-sensitive, high-resolution X-ray diffraction
technique (Fig. 3). Combining measurements at orders such as
(Q, 0, 0), (1±Q, 0, 0) and (2−Q, 0, 0), the amplitude ratio between
primary and second harmonics is ψ2/ψ1=0.09±0.02 at T=3.5 K.
No other higher harmonic was observed within our measurement
sensitivity (Fig. 3). Similar behaviour in higher harmonics was

observed in the SDW of Cr up to fourth order of the primary
wave37. For Cr in the low-temperature limit, the amplitude ratios
for SDW/CDW and their higher harmonics are ψ3/ψ1=0.018 and
ψ4/ψ2= 0.019± 0.003, respectively37, only a factor of five weaker
than the ratio ψ2/ψ1 in NbSe2.

The deviation from pure sinusoidal behaviour, 1φ(x), would
minimize the free energy in equation (1). One possible solution
was proposed by McMillan40 as a ‘discommensuration’ state, which
has been widely considered as a model for the CDW in NbSe2.
Locally, the CDW state is forced into a perfectly commensurate
wavelength of 3a by its coupling to the atomic lattice. To satisfy
the requirement of having an incommensurate wave on average, the
density modulations then develop phase slips of −2π/3 between
neighbouring unit cells at every distance ξ0 (ref. 40). To create the
specific Q=1/3−δ=0.3286 r.l.u. observed at T =3.5 K for NbSe2,
the −2π/3 phase slips need to be placed at every 1/(3δ)∼70 unit
cells, or a distance ξ0∼ 240Å. To have an incommensurate order
with a longer wavelength than that of the commensurate order 1/3
r.l.u., all phase slips also need to have the same value of −2π/3
and no phase slips of 2π/3 are allowed. A perfectly sharp −2π/3
phase slip creates many strong higher harmonics that would be
readily observable, with amplitude ratios such as ψ2/ψ1=0.45 for
first and second harmonics (Fig. 3b). To get agreement with the
observed intensity ratios in NbSe2, we thus find that each phase
slip is spread over a distance of the same order of magnitude as
ξ0. Our measurements show that the modulation of the electron
density in the bulk is closer to that of a perfectly incommensurate
pattern than the discommensuration form with sharp phase slips
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Figure 3 | CDW harmonics in NbSe2. a, Longitudinal (θ/2θ) scan in
reciprocal lattice units (r.l.u.) along the in-plane direction of (H, 0, 0) for
NbSe2. Both the primary and second harmonics of CDW are clearly
resolved over the background around mirroring (Q, 0, 0) and (1−Q, 0, 0)
positions. The plotted intensity is normalized to that of the (1, 0, 0) lattice
order. Vertical error bars represent 1σ s.d. of counting statistics. b, A profile
comparison between the experimental observed CDW for NbSe2 at (Q, 0,
0) (red points) and a simulated di�raction pattern of a discommensurate
CDW with phase slips in the sharp limit (grey line)40. For comparison, both
intensities are normalized to unity at the primary wavevector position. The
fine longitudinal CDW scan in b was measured with our best instrument
resolution (better by a factor of two than the long scan in Fig. 2a; Methods).
The data is fitted by the summation of two Lorentzian-squared functions for
primary and second harmonics in addition to a constant background (red
solid line). Positions of CDW harmonics are marked by black arrows on the
horizontal axes in both a and b, with the separation between the primary
incommensurate CDW and the commensurate (1/3, 0, 0) position (white
circle) denoted as δ= 1/3−Q. The separation becomes mδ for the
mth-order harmonic; these are naturally translated by the unit vector of the
lattice periodicity, and hence for small δ are observed close to the
commensurate position. Harmonics from fourth to tenth orders are not
observed even with a CDW signal-to-background ratio larger than 5,000.
The simulated di�raction profile for a discommensurate CDW with
single-helicity−2π/3 phase slips over a single unit cell at a regular spacing
of 70 unit-cell distance has strong harmonic peaks at all orders within our
measurement range41.

proposed by McMillan and observed in the surface state of
NbSe2 (ref. 41).

Approaching the thermal transition temperature, TDW, the di-
minishing coupling between the CDW and the lattice is reflected
directly in the harmonic behaviour. In Fig. 4, we plot representative
diffraction profiles and the temperature evolution of the CDW at
(1+Q, 0, 0). The intensities of both the primary and secondary har-
monics of the CDW in NbSe2 decrease with increasing T . However,
the intensity of the second harmonic drops much faster than that of
the primary CDW,with a relative ratio between the two evolving in a
nearly linear fashion in temperature (Fig. 4 inset). Similar behaviour
was seen as well in Cr, where the higher harmonic intensities scale as
IQ(T )∼ I 2Q1/2

∼ I 4Q1/4 (ref. 37). We conclude that the density waves
due to the itinerant instabilities in NbSe2 and Cr both have the
limiting form of a purely sinusoidal wave at TDW, with a1φ(x)→0.

Evolution of a non-monotonic Q(T=0,P)
The non-monotonic behaviour of Q(T = 0, P) in Fig. 1 evolves
over a range of 0.003–0.012 r.l.u., which is well below the
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Figure 4 | Temperature evolution of CDW harmonics in NbSe2.
Representative longitudinal scans of (1+Q, 0, 0) and (2−2Q, 0, 0) at four
di�erent temperatures below TCDW. Error bars represent 1 σ s.d. of
counting statistics. Inset: temperature dependence of the intensity ratio
between the second harmonic and the primary CDW, plotted for one single
sample. Error bars represent 1 σ uncertainty. The intensity ratio was fitted
(solid line) to a power law of I(2−2Q,0,0)/I(1+Q,0,0)∼(TCDW−T)2β with
β=0.5±0.1 and TCDW=36.8±3.3 K.

resolution of photoemission techniques24. As density functional
theory approaches are still insufficient to describe the SDW ground
state in Cr (ref. 42), this subtle non-monotonic behaviour is
difficult to resolve with ab initio calculations. Here, instead, we
argue that Q(P) can be explained by macroscopic free-energy
considerations similar to those made for Q(T ) at ambient P ,
once the pressure dependence of the different contributions to the
electronic susceptibility are taken into account.

As discussed above, the temperature evolution of the incom-
mensurate wavevector Q starts at the itinerant condition q at TDW
and changes to Q(T = 0, P) owing to the higher-order lock-in
term that pulls Q away from q. The pressure dependence of q
also has been measured, as a part of the full Q(T ) evolution, at
several low pressures up to 0.2 and 0.6GPa for NbSe2 and Cr,
respectively27,28. Those studies provide valuable information of
initial changes in q(P)=Q(TDW,P). From Fig. 1, q(P) is clearly
nonlinear, but nevertheless is still probably monotonic, given the
small variation of 1.5% in the lattice constant. When the transition
temperature TDW decreases towards the quantum critical point, the
strength of the order parameter ψ monotonically decreases with
P at zero temperature. The competition between the lower-order
electronic instability term and the higher-order lock-in term
in equation (1) becomes increasingly one-sided with reducing ψ
under pressure. This is consistent with the experimental observation
that 1Q(P)=q(P)−Q(T=0,P) decreases in magnitude under
pressure in both NbSe2 and Cr (refs 27,28; Fig. 1). Eventually, close
to the quantum critical point, the lower-order term ψ 2

|∇φ− q|2
in equation (1) dominates, and q(P) and Q(T = 0,P) converge at
Pc. The non-monotonic behaviour in Q(T = 0,P) is therefore due
to a changing balance between terms of various powers in ψ , in
addition to a varying q under pressure. The measured CDW/SDW
wavevector at the quantum critical point is a true reflection of a
maximum in the full electronic susceptibility arising from features
such as (but not limited to) the presence of nesting or hot spots in
the electronic structure.
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Figure 5 | Theoretical modelling of Q(T, P). The evolution of Q(T, P) is
modelled by minimizing the free energy in equation (1) for the CDW in
NbSe2 with optimally spaced and widened phase slips, with the global
behaviour controlled by two free parameters. Calculated Q(P) at several
fixed temperatures (linked dots) are plotted in comparison with
experimental data (grey crosses bound by grey dashed lines, from Fig. 1),
capturing the non-monotonic behaviour of Q(P). The simulated results also
show a lock-in transition at T=0 (horizontal dashed line).

We model in Fig. 5 the Q(T , P) behaviour for NbSe2 us-
ing the free-energy expression in equation (1), with parame-
ters and coefficients constrained by physical considerations in
the following way. For a(T , P), which determines TCDW, its tem-
perature dependence is assumed to be linear, whereas its pres-
sure dependence is determined from the measured phase dia-
gram: a(T ,P)=−a0(1−T/TCDW(P)). The coefficient b(T , P) for
the quartic term is assumed constant, which determines the primary
CDW amplitude at T =0 through the ratio b/a. Although the spa-
tial correlation length ξ is pressure dependent5, the third term in
equation (1), describing spatial variations of the DW amplitude, is
neglected in our modelling as it does not directly affectQ. The pres-
sure dependence of the fourth term is directly taken from experi-
mental data as q(P)=Q(TDW,P), with coefficient e assumed con-
stant. The pressure dependence of the coefficient f of the lock-in
term, which arises from the variation of orbital overlaps with pres-
sure, is assumed linear given the small change in the compressed lat-
tice constant. We use McMillan’s discommensuration construction
to build the phase distortion 1φ(x) (Supplementary Information).
The width and density of phase slips in φ(x) can be varied to mini-
mize the free energy F of equation (1) and the density of phase slips
generates the Q value at every point in P–T phase space.

Apart from an overall scaling factor for the magnitude of the free
energy, there are only two free parameters left. They describe the
ratio of the lock-in energy to the energy cost of deviating from q
set by the fourth term in equation (1), as well as the slope of the
linear pressure dependence in the lock-in term. Although 1φ(x)
minimizes the free energy and determines Q at every P–T point,
optimizing those two parameters results in the global behaviour
of Q(T ,P) in Fig. 5 (Supplementary Information). The qualitative
agreement with experimental results in both the magnitude of Q
variations, as well as the non-monotonic pressure dependence, is
satisfying given the simplicity of approximations used.

2kF instability at a quantum critical point
In our current study, the CDW state in NbSe2 was tracked under
pressure (Figs 1 and 6) up to the quantum phase boundary at

Pc=4.6GPa (ref. 5). In addition to wavevector Q(T , P), X-ray
diffraction also provides the static CDW correlation length ξ in real
space, with ξ = 600Å for our samples at T = 3.5 K and ambient
pressure (Fig. 6). Whereas the lattice correlation length remains
long range to at least 1,500Å throughout our probed P–T space, ξ
gradually decreases as it approaches both the thermal and quantum
critical points5, similar to thermal behaviour in other SDW/CDWs
(refs 37,43). Near both thermal and quantum phase boundaries, ξ is
about 26–50Å in NbSe2 (Fig. 6), roughly 3–5 CDW wavelengths or
8–15 unit-cell sizes.

The mechanism for destroying long-range static CDW coher-
ence, leading to a shortened ξ , has been attributed to an increase in
either fluctuation effects5 or disorder pinning37,38,43. AtT=3.5 K and
P=0, our observed CDW line shape is described by a Lorentzian-
squared function (Figs 3b and 6c), which is consistent with disorder
pinning the CDW to random phases at impurity sites5. A strong
pinning picture is unlikely to apply near the transition, as it nec-
essarily introduces many higher harmonics of the CDW, in contrast
to our observed temperature evolution (Fig. 4). Approaching either
the thermal or quantum phase transitions, the line shape is best
described by a pure Lorentzian form (Fig. 6a)5,43, which indicates
that the CDW phase correlation is exponentially decaying in real
space without experiencing abrupt changes. Although this could
be consistent with a pinning picture that allows the CDW phase
distortion to be distributed over a spatial range across a pinning
site38, the extremely short ξ of 8–15 unit cells in our observation
is unlikely to host multiple disorder sites within a coherent volume,
necessary to collectively anchor the phase-coherent CDW domain.
We conclude that the shortened correlation lengths are more likely
due to increasing (quantum or thermal) fluctuation effects at the
phase boundaries. Furthermore,φ(x) is not constrained by disorder,
but has the freedom to adjust to the itinerant instability, and the ob-
served incommensurate CDW wavevector Q continuously evolves
approaching both the thermal and quantum limits (Fig. 1). Similarly,
CDWs remain incommensurate with very short correlation lengths
in cuprates3,4, despite significant disorder from doping. Our obser-
vation of a sinusoidal, incommensurate density wave and a short
correlation length signifies, respectively, the importance of itinerant
instability and fluctuation effects at both classical and quantum
critical points.

Our study examines 2kF density waves in solid-state materials
from a top-down perspective. Pressure tuning helps to identify
the itinerant instability as the dominant influence at a quantum
critical point, even in the presence of spin, charge, orbital and lattice
degrees of freedom. The striking similarity between SDWandCDW
systems in both Q(ψ) at ambient P (Fig. 2 and ref. 2) and Q(T ,P)
over P–T space (Fig. 1) clearly manifests the close relationship
between these two types of correlated electron states, regardless of
the presence of instabilities among the local ions or spins, or the lack
thereof. Our work should motivate attempts to reconcile theories
that describe charge and spin instabilities from very different points
of view. CDWs originating from itinerant electrons previously have
been pooled indifferently with incommensurate lattice systems18.
However, the wavevectors of incommensurate lattice distortions
tend to be temperature independent44. Based on the observed
evolution of Q(T ,P) and Q(ψ), our comparative study of CDWs
and SDWs emphasizes the universal nature and importance of
correlated itinerant pairs, rather than lattice instabilities, in the
presence of various choices of coupling mechanisms. In CDWs,
even if the itinerant instability is mediated by the Coulomb
interaction (photons), there should still exist additional phonon
coupling because of the presence of the localized charge lattice18.
For spins, phonons become largely irrelevant in SDWs, both with
and without local moments29,37, mirroring the charge scenario.
Directly resolving boson coupling between itinerant electron pairs
in traditional CDW/SDW systems or high-temperature cuprates
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Figure 6 | CDW fluctuations near the thermal and quantum critical points. a–c, Longitudinal X-ray di�raction scans for the CDW in NbSe2. Error bars
represent 1 σ s.d. of counting statistics. At (T∼TCDW, P=0)(a) and (T→0, P∼Pc) (b), the CDW line shapes are best fitted with a Lorentzian form plus a
linear background (red, a; light blue, b). At (T→0, P=0) (c), the fit to the CDW line shape instead requires the sum of two Lorentzian-squared functions
and a constant background (blue, c). A Lorentzian-squared form with a linear background (black) is also used to fit data in a as a comparison. The vertical
dashed lines mark the 1/3 commensurate position. Locations of all three (T, P) points are marked by asterisks of the same colour on the grey P–T phase
diagram in the background. Near the phase boundary, the CDW profile represents a small CDW correlation length ξ , which is∼50 Å for (T∼TCDW, P=0)
and∼26 Å for (T→0, P∼Pc) in the basal plane. The shortened ξ is inconsistent with pinning from disorder and is instead attributed to thermal
fluctuations and quantum fluctuations5 near their respective critical points.

remains challenging45, and time-resolved techniques such as pump–
probeARPES (ref. 46) potentially could provide key insights into the
different contributors to the full electronic susceptibility.

In complementary experiments, Fermi surfaces with a nesting
instability potentially could be manufactured from a bottom-
up approach using cold atoms. Following the early idea of a
commensurate nesting condition47, recent developments in shaken
optical lattices48 have pointed to a method to produce customized
band structures with incommensurate nesting. As phonons are
not naturally present in an optical lattice, the coupling between
paired atoms instead comes from the short-range van der Waals
interaction, which is nearly q-independent in reciprocal space
and could be tuned to be attractive. This is comparable to
various interactions between itinerant pairs in solids that are not
phonon-mediated, such as the screened Coulomb interaction in
excitons19,20 ormagnons from fluctuations in locally ordered spins29.
Alternatively, the electron–phonon interaction may be mirrored
in a mixture of fermionic and bosonic atoms in a weak optical
potential. A comparison of these different constructions in cold-
atom systems could shed further light on itinerant instabilities at
quantum critical points14,17,18.

Methods
Methods and any associated references are available in the online
version of the paper.
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Methods
X-ray diffraction. Both ambient and high-pressure X-ray diffractions were
performed at beamline 4-ID-D of the Advanced Photon Source. 18.85 keV
X-rays were used, chosen to lie below the Nb K-edge to avoid this fluorescence
excitation. The X-ray beam was focused to a full-width at half-maximum size of
250×120 (H× V) µm2 using Pd-coated mirrors and further narrowed by
motorized slits for high-pressure work. For high-resolution longitudinal scans, a
vertical detector slit size of 0.1 or 0.2mm was used, with a sample-to-slit distance of
1.25m. Diffraction in the vertical plane thus had a maximal momentum-space
resolution of about 1× 10−3 Å−1. Both ambient and high-pressure diffraction were
performed in the transmission geometry to the a–b plane of NbSe2 for bulk
sensitivity. At ambient pressure, a Vortex Si-drift detector was used to reject Se
K-fluorescence. For the high-pressure study, a Cyberstar NaI X-ray detector was
used for a higher counting efficiency, as the diamond anvils absorb the majority of

the Se K-fluorescence. Both X-ray detectors have only coarse energy resolutions of
0.1–1 keV. However, the spanned solid angle of 1–3× 10−7 sr by our detector slits
effectively eliminated the detected intensity of inelastic scattering of dynamic CDW
fluctuations. Thus, our observed CDW diffraction near the quantum critical point
represents the static order, in comparison to the quasi-elastic nature of resonant
X-ray scattering techniques3.

Sample and high-pressure environment. Single crystals of NbSe2 were used
in as-grown condition at ambient pressure. The thickness of ambient pressure
samples, varying from 40 to 75 µm, matches well with one X-ray absorption
length of our X-rays. For high-pressure measurements, single crystals were
prepared by blade dicing to a typical size of 80×80×50µm3. A methanol:ethanol
4:1mixture was used as the pressure medium. More details can be found
in refs 5,26.
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NUMERICAL EMULATION OF Q(T, P) EVOLUTION IN NbSe2 
 
a. Construction of CDW phase distortion using McMillan’s discommensuration 
model  
 

A distortion Δφ(x) of the CDW phase φ(x) from a purely sinusoidal form, engages 
the lock-in term  𝑓𝑓𝜓𝜓! cos(𝑛𝑛𝑛𝑛 − 𝐺𝐺𝐺𝐺) in Eq. 1 and results in the presence of higher 
harmonics of the primary wave. A growing phase distortion effectively interpolates 
between an incommensurate CDW at the Q-vector preferred by the full susceptibility and 
a commensurate CDW locked into the lattice [40]. Our diffraction results (Fig. 3b, 6c) 
provide the relative intensities but not the relative phases between harmonics, and hence 
it is not possible to experimentally reconstruct Δφ(x). To simulate Q(T, P) as we show in 
Fig. 5, we use McMillan’s discommensuration model [40] to construct a functional form 
of Δφ(x) for smooth and wide phase distortions. The CDW phase φ(x) is expressed using 
a limited number (i.e. two) of parameters:  
 
𝜙𝜙!"#$%&& 𝑥𝑥 = 2π(!

!
+ α 𝑞𝑞 − !

!
)𝑥𝑥 − !

!
!!

!
sin(2𝜋𝜋𝜋𝜋(1− 3𝑞𝑞)𝛼𝛼𝛼𝛼)! .       (S1) 

 
Here, x and q are written in units of the real and reciprocal and space lattice constants, 
respectively. With β = 0, Eq. S1 represents a perfectly sinusoidal wave, with a varying 
wave vector determined by α. At α = 0, the CDW is locked in at the commensurate wave 
vector of 1/3 r.l.u., while for α =1, the CDW propagates at the natural, incommensurate q 
value preferred by the susceptibility, which equals the experimentally measured wave 
vector Q(TDW, P) (purple dashed line in Fig. 1a). For nonzero values of β, the perfect 
sinusoidal CDW is distorted, and 2π/3 phase slips appear at spatial separations of 
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𝜉𝜉! =
!
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= !

!!!! !
. The parameter 𝛽𝛽 controls the width of these distortions. For β = 1, 

the phase slips are infinitely narrow, and the function 𝜙𝜙 𝑥𝑥  is a series of straight lines 
with slope !"

!
 separated by sharp steps. For 𝛽𝛽 < 1, the steps become smooth, and the 

phase distortions obtain a finite width.  
 
b. Determining parameters by minimization of free energy and global Q(T, P) 
behavior   
 

The free energy F (Eq. 1) can be minimized with respect to the parameters α and 
β for any given set of coefficients a, b, e, f, and q. During the minimization, we 
approximate the amplitude of the CDW to be fixed by the first two terms in F, so that 
𝜓𝜓! = !

!!
, which is justified as long as e, f << b. The values of α and β that minimize the 

spatially integrated free energy F thus are only a function of !
!
𝜓𝜓 and q. In these numerical 

minimizations, we retained 200 powers of β in the functional form of Eq. (S1), and 
employed a real space grid of 250,000 sites, covering 5,000 atoms.  

 
In the free energy minimization process described above, we notice α and β are 

smoothly varying as a function of !
!
𝜓𝜓 and q. To reduce computation time, the free energy 

minimization was performed at selected values of !
!
𝜓𝜓 and q, and smooth interpolating 

functions were used to generate α and β values in successive calculations.   
 
The constraints imposed on the parameters a, b, e, f, and q in the free energy F 

(Eq. 1) over the pressure-temperature space are discussed in the main text, based on 
physical considerations. As mentioned, there are consequently only two parameters left to 
determine Q(T, P). They are related to the competition between the fourth and fifth terms 
in Eq. 1, with the coefficient f approximated as 𝑓𝑓 𝑃𝑃 =   𝑓𝑓! + 𝑓𝑓!𝑃𝑃. The first parameter is 
the ratio !!

!
, which sets the evolution of the phase distortions at ambient pressure, and 

hence Q(T, P=0). The coefficient 𝑓𝑓! dictates the evolution under pressure. We chose the 
first parameter so the range of simulated Q(T, P=0) equals that of the experimental 
results. Subsequently, we chose the value of f1 such that Q(T=0, P) reaches the turning 
point of its non-monotonic evolution at about 2.3 GPa, similar to the experimental results 
at 3.5 K (Fig. 1a). The resulting simulated Q(T, P) is shown in Fig. 5.  
 
c. Characteristics of simulated CDW states   
 

Having optimized the temperature and pressure dependence of Q(T, P) we now 
discuss a few characteristics of the simulated CDW states, which follow from the 
corresponding temperature and pressure dependencies of the parameters α and β. 

 
The simulated Q(T, P=0) is presented in Fig. S1. Although the shape and 

curvature are different from that seen in the experimental data (Fig. 2a), the overall 
monotonically changing trend is preserved. The difference between simulation and 

 3 

experiment is due to the combination of restricting the functional form of 𝜙𝜙 𝑥𝑥  in Eq. S1, 
and the linear temperature dependence of the coefficient a. 

 
The real space charge modulation 𝜓𝜓  cos  (𝜙𝜙 𝑥𝑥 ) can be Fourier transformed (FT) 

to directly simulate the experimentally observed diffraction pattern, as the intensity I is 
proportional to the square of the FT amplitude. Two representative spectra at ambient 
pressure are presented in Fig. S2. To increase the precision with which we can determine 
the peak heights, we oversampled the FT. This allows us to get a dense set of data points 
around the incommensurate peak positions, but it also results in ringing near the tails of 
all peaks, as a consequence of the Nyquist effect. Nevertheless, higher harmonics in 
Fourier space are observed as expected from the simulated phase distortion of Eq. S1. In 
Fig. S3, we plot intensity ratios of four strongest harmonics to the primary wave as a 
function of temperature at ambient pressure. We notice the intensity ratio of second 
harmonic to the primary peak reaches 0.037 at base temperature, in comparison to 0.012 
of experimental results (Fig. 4 inset). Although the intensity of harmonics tends to drop 
with increasing distance from the main peak (see Fig. S3), the intensities of the fourth, 
fifth, seventh, and tenth harmonics lie above the experimental sensitivity limit of ~1 10-4 
(see Fig. 3 and Fig. 6c). The presence of these additional harmonics can be attributed to 
the restricted functional form imposed for 𝜙𝜙 𝑥𝑥  by Eq. S1. Nevertheless, the trend of the 
harmonic ratios as a function of temperature is qualitatively correct. The intensity ratios 
are the largest at base temperature, and monotonically disappear as the transition 
temperature is approached.  

 
For CDW states under pressure, our experimentally measured primary CDW has a 

signal to noise ratio much less than 50:1 (Ref. [5], Fig. 6b), mostly due to an increased 
elastic scattering background from diamond anvils as a part of the high pressure sample 
environment. Thus it is insufficient to reveal higher harmonics. Nevertheless, simulation 
can provide qualitatively predictions of the higher harmonics behavior. As the simulated 
CDW becomes commensurate for a finite pressure range at base temperature (Fig. 5), the 
harmonic ratios cannot be unambiguously defined.  Instead, we plot the harmonic ratios 
at T = 9.4 K, a temperature which is about 1/3 of Tc at ambient pressure (Fig. S4). We 
notice that the harmonic ratio is also non-monotonic. The simulation and experiment 
agree that the CDW is always a perfect sine wave without any phase distortions or higher 
harmonics at T = TCDW(P).  
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Fig. S1: Simulated Q(T) evolution of NbSe2 at ambient pressure. 
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Fig. S2: Simulated CDW diffraction profiles Fourier transformed from simulated CDW 
states at 0 K and 28 K.  They represent β values of 0.54 and 0.054 respectively. 
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Fig. S1: Simulated Q(T) evolution of NbSe2 at ambient pressure. 
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Fig. S2: Simulated CDW diffraction profiles Fourier transformed from simulated CDW 
states at 0 K and 28 K.  They represent β values of 0.54 and 0.054 respectively. 
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Fig. S3: Temperature evolutions of intensity ratio of higher harmonics to the primary 
CDW. 
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Fig. S4: Pressure evolutions of intensity ratio of higher harmonics to the primary CDW, 
taken at 9.4K. 
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Fig. S3: Temperature evolutions of intensity ratio of higher harmonics to the primary 
CDW. 
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Fig. S4: Pressure evolutions of intensity ratio of higher harmonics to the primary CDW, 
taken at 9.4K. 
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