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Abstract – The mathematical description of 1D quasicrystals has recently been linked to that of
2D quantum Hall states. The topological classification of 1D quasicrystals and the corresponding
interpretation of their observed charge transport have been widely discussed. We demonstrate
the equivalence of both 1D quasicrystals and 2D quantum Hall states to a mean-field treatment
of charge order. Using the fractal nature of the spectrum of charge-ordered states we consider
incommensurate order as a limit of commensurate. The topological properties of both are identical,
arising from a 2D parameter space of phase and wave vector, and fit into class A of the Tenfold
Way. The topological nature of all the systems can be tested by measuring a quantized particle
transport upon dragging the charge order.

Copyright c© EPLA, 2015

Introduction. – The existence of quasicrystals and the
observation of the quantum Hall effect are two seemingly
unrelated discoveries that revolutionized condensed-
matter physics in the second half of the twentieth cen-
tury. The discovery of quasicrystals began with the
mathematical observation that solids need not involve pe-
riodic repetitions of unit cells, but can involve aperiodic
tilings of two or more inequivalent cells [1]. Experimental
verification in the form of a quasicrystalline Al-Mn alloy
followed shortly after [2].

The observation and subsequent theoretical character-
ization of the quantum Hall effect, on the other hand,
prompted the realization that phase transitions cannot all
be characterized solely in terms of the continuous symme-
tries they break [3,4]. It led to a new, topological, classifi-
cation scheme of all disordered quadratic fermion theories
according to discrete symmetries: the Altland-Zirnbauer
classification or “Tenfold Way” [5,6]. Work has begun on
extending this scheme to include the point and space group
symmetries present in crystalline matter [7–10].

Recently these two cornerstones of modern condensed-
matter physics have been shown to be mathematically
linked through the ubiquitous Harper equation [11]. This
equation has long been known to govern the quantum Hall
effect [12]. It was also recently shown to provide a de-
scription of 1D quasicrystals when used to describe elec-
trons in a 1D lattice with an incommensurate periodically
modulated potential [13]. Based on the equivalence of

the underlying mathematical structures, quantized trans-
port properties analogous to the quantum Hall conduc-
tance were predicted for the quasicrystal, and observed in
an experimental realization using optical waveguides [14].

In this letter, we add a further equivalence by applying
the Harper equation to the description of charge order in
(quasi-)1D materials. As in the case of the quasicrystals in
optical waveguides, we find that a mean-field description
of the charge-ordered state can be labelled by the same
set of topological quantum numbers as the 2D quantum
Hall effect. We further demonstrate that the incommen-
surate charge-ordered state indeed has a quasicrystalline
character.

A question receiving much attention at the moment is
whether quasicrystalline materials, being somewhere be-
tween order and disorder, fit into the Tenfold Way [14–19].
The waveguide experiments involve families of quasicrys-
tals, resulting in a 2D parameter space [20]. The observed
integer set of edge states is in agreement with the Ten-
fold Way’s prediction for a 2D parameter space provided
the Cartan symmetry class is A, C, or D [5,6]. By inter-
preting quasicrystalline charge order as a limiting case of
a sequence of different crystalline charge orders, we find
that the topological properties are unchanged in taking
the limit, and both cases sit in class A of the Altland-
Zirnbauer scheme. We show that this topological clas-
sification of charge-ordered materials is robust beyond
the mean field, and we propose an experimental test of
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the topological character of charge-ordered 1D materi-
als. This provides experimental access to a novel type of
quantized adiabatic particle transport predicted in related
systems [21].

Incommensurate charge order and quasicrystals.
– Quasicrystals are defined to be quasiperiodic tilings of
two (or more) inequivalent unit cells [1]. A quasiperiodic
sequence contains no subset of finite length which can be
tiled periodically to complete the set, but nor is it devoid
of order. One way to see this in 1D is through the fact that
a 1D quasicrystal can be generated from the projection of
a 2D crystal [1]. As shown in fig. 1, a straight line can be
drawn in a 2D lattice, in such a way that it hits exactly
one lattice point. A second line is then drawn parallel to
the first, going through the opposite corner of the same
unit cell. Whenever a point of the 2D lattice falls between
the lines, its projection onto the first line forms a site of
the 1D quasicrystalline lattice. The projected cells form a
never-repeating, quasiperiodic, sequence of two differently
sized unit cells making up the 1D quasicrystal.

A remnant of the 2D projection can be seen in the
quasicrystal’s diffraction pattern, which is generated by
two different reciprocal lattice vectors [1]. By continu-
ously shifting the set of parallel lines along one of the
2D lattice directions, a family of related quasicrystals is
formed, all of which have the same diffraction pattern.
The family is known as a local isomorphism class. Two
quasicrystals are locally isomorphic if and only if every fi-
nite sequence of cells appearing in one also appears in the
other [1].

A projection method similar to that used to define qua-
sicrystals can be employed to generate the electron den-
sity modulations in (quasi-)1D charge-ordered materials.
In such systems, chains of atoms spontaneously develop
a modulation in their electronic density that does not co-
incide with the periodicity of the underlying atomic lat-
tice. They include well-studied materials like NbSe3, KCP,
and TTF-TCNQ, all of which contain weakly coupled 1D
chains [22–26].

Specifically we consider a model 1D atomic lattice with
spacing a and a modulation of charge density with pe-
riod 2π/Q �= a. If the modulation period of the electron
density 2π/Q is not an integer multiple of the lattice spac-
ing a, the charge order is said to be incommensurate. In
this case, the sequence of atomic sites and positions of
maximum electronic charge form a quasiperiodic, never-
repeating, pattern. The combined sequence of sites and
charge maxima can therefore be considered a quasicrys-
tal. The situation can then be interpreted as arising from
the projection of a second 1D lattice with lattice spac-
ing na, where n is the lowest integer number larger than
2π/Qa, rotated to a point where the projections of its
sites onto the original line coincide with the maxima of
the charge modulations (see fig. 1). As with the qua-
sicrystal considered before, a family of locally isomorphic
quasicrystalline charge-ordered states can be generated by

a

φ

2π/(Q
cos

(φ)) = 2a

Incommensurate

2π/Q = 2a

a

Commensurate

Quas
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l

Fig. 1: (Colour on-line) Main panel: generating a 1D quasicrys-
tal by projecting a 2D lattice. A pair of parallel lines is overlaid
on the square lattice, in such a way that the lines hit only a sin-
gle pair of lattice points on opposing corners of one of the unit
cells. The lattice points between the lines are then projected,
and form the sites of the 1D quasicrystal. The inequivalent
cells are coloured red and blue for clarity. Top inset: generat-
ing an incommensurate charge-ordered state with period 2π/Q
on an atomic lattice with spacing a, by a similar projection
method. In this case the sequence of atomic sites and max-
ima of the charge density modulation (red balls and blue tick
marks) is quasiperiodic. Bottom inset: the same method also
trivially generates commensurate charge order, when the angle
between the two lines is rational (in this case zero).

continuously shifting the rotated line along the original
lattice direction.

Energy spectrum. – The emergence of charge or-
der can be described by a model of spinless fermions
hopping on a 1D lattice, in the presence of nearest-
neighbour density-density interactions (strength h) [27].
At the mean-field level, the interactions can be decoupled
by the introduction of the complex two-component order
parameter:

ΔQ (h) = 2h
∑

k

(1, − cos (k) cos (Q/2))T 〈ĉ†
k+Qĉk〉. (1)

Here Q connects two points on the Fermi surface of the
1D band structure. The upper and lower components cor-
respond to the presence of site-centred and bond-centred
charge order, respectively. In general, they will be coupled
through the self-consistency condition for the mean-field
expectation values. In the mean-field Hamiltonian the two
components always appear in the combination

ΔQ (k, h) = (cos (Q) , cos (k) cos (Q/2)) · ΔQ(h). (2)

Using this definition, the mean-field Hamiltonian
becomes

Ĥ =
∑

0≤k<2π/a

{
1
2
εk ĉ†

k ĉk + ΔQĉ†
kĉk+Q + H.c.

}
, (3)

where εk = 2t (1 − cos (ka)) − μ describes the bare band
structure resulting from the hopping integral t and chem-
ical potential μ, and the order parameter is written as
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Fig. 2: (Colour on-line) Left: allowed energies (range [−4t, 4t])
for all values of ka and θ vs. filling fraction p/q ∈ (0, 1) with
q ∈ [2, 50] (discarding noncoprime fractions), in the mean-field
equation (4), with ΔQ → (t/ cos Q, 0)T . The spectrum is al-
most identical to Hofstadter’s, describing allowed electron ener-
gies in the integer quantum Hall effect [12]. The colour of each
sub-band indicates the sum of Chern numbers C1 up to and
including that sub-band (truncated at ±4 for clarity). Right:
the Berry curvatures for the sub-bands at 1/3 filling. The inte-
grals over these surfaces (giving the C1 values) are 1, −2, and
1 in units of 2π.

ΔQ = |ΔQ| exp (iθ). The phase θ of the order parame-
ter corresponds to the distance between one given atom
and a particular maximum in the electronic charge distri-
bution. Varying θ thus corresponds to sliding the charge
modulation along the atomic lattice, and in the incom-
mensurate case this implies a continuous variation of the
quasicrystalline charge order through the members of the
local isomorphism class. If the chemical potential is tuned
to a rational fraction p/q of the bare bandwidth 4t, the
charge order in the ground state of eq. (3) has period qa.
Working in a reduced Brillouin zone of length 2π/qa, the
Hamiltonian can be rewritten as

Ĥ =
∑

0≤k<2π/qa

(
ĉ†
k+Q, ĉ†

k+2Q . . . ĉ†
k+qQ

)
Hk

⎛
⎜⎜⎜⎜⎝

ĉk+Q

ĉk+2Q

...
ĉk+qQ

⎞
⎟⎟⎟⎟⎠ ,

Hk =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

εk+Q ΔQ 0 . . . 0 Δ∗
Q

Δ∗
Q εk+2Q ΔQ 0 . . . 0

0 Δ∗
Q

. . . . . .
...

... 0
. . . 0

0
... ΔQ

ΔQ 0 . . . 0 Δ∗
Q εk+qQ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4)

In the presence of charge modulation with period qa,
the off-diagonal elements in this Hamiltonian cause the
energies to split into q sub-bands, separated by gaps of
order |ΔQ| [27]. For the case ΔQ → (t/ cosQ, 0)T eq. (4)
becomes the matrix form of Harper’s equation, applied by
Hofstadter to the 2D electron gas in the presence of a mag-
netic field [12]. The plot showing all eigenvalues (allowed
energies) for all possible values of ka and θ, vs. filling

fraction, is known as Hofstadter’s butterfly [28] (fig. 2).
Notice that in contrast to Hofstadter’s original picture,
the colour coding in fig. 2 indicates that in the presence of
an infinitesimal amount of bond-centred order, infinitesi-
mally small gaps will appear halfway up the spectrum for
fillings with even denominator.

Topological classification. – The Tenfold Way clas-
sifies the allowed topologies of all gapped, disordered,
quadratic fermion theories into ten classes based on the
dimension of the parameter space and the behaviour un-
der charge conjugation C, time reversal T , and the com-
bined operator S = CT . The classes take labels from
the Killing-Cartan classification of Lie groups [5]. A mea-
surable consequence of a nontrivial topology is the exis-
tence of edge states robust to disorder, characterized by a
nonzero Chern number C1 [4].

By inspecting the form of Hk in eq. (4) we can identify
the symmetry class of the model according to the Tenfold
Way. The original classification was developed for trans-
lationally invariant systems, and extensions to crystalline
systems have only recently been formulated [9,10]. In 1D,
however, the original formulation receives little complica-
tion, since there are only two space groups (trivial and
dihedral). The mirror symmetry of the dihedral case is
dealt with elsewhere [7,8], and is not relevant for the case
of charge-ordered materials, as the presence of a nonzero
θ will spontaneously break any mirror symmetry of the
atomic lattice. We can thus classify the 1D charge-ordered
state directly according to the Tenfold Way.

The chiral cases AIII, BDI, and CII do not apply to
eq. (4), as they require zeroes along the diagonal of Hk.
The Bogoliubov-de Gennes cases C, D, DI, and DIII can
likewise be seen to be inapplicable, since the presence of
scatterings k → k ± Q between reduced Brillouin zones
rules out the possibility of expressing Hk as a 2 × 2 ma-
trix, except in the special case of half-filling1. Within
the remaining three classes, the fact that Hk is necessar-
ily complex directly implies that 1D charge-ordered states
fall into the symmetry-free class, A.

In class A, all systems with an odd-dimensional param-
eter space are topologically trivial, whereas systems with
even-dimensional parameter spaces may have any integer
number of edge states. In cases where a generalized lin-
ear response function can be formed, the corresponding
susceptibility will then be precisely quantized [4–6,29]. In
the case of charge order, this is manifested in a quanti-
zation of the conductance. This may be understood by
realizing that the phase of the order parameter, θ, which
signifies the position of the charge modulation relative to
the atomic lattice, may be varied in the mean-field solu-
tion of eq. (4). The band structure can thus be drawn
within a 2D parameter space spanned by θ and ka, as
indicated on the right of fig. 2 for the case p/q = 1/3.

1Notice that precisely at half-filling there is an additional C
(particle-hole) symmetry, with C2 = −1, which places the Hamil-
tonian at that filling fraction in class C.
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Each of these 2D sub-bands can be assigned a topological
quantum number, the Chern number C1, by integrating
its Berry curvature over the 2D space. In this specific
problem, C1 can also be found by solving a Diophantine
equation [4,28]. The quantized conductance is the sum of
the Chern numbers for all occupied sub-bands [4]. In the
quantum Hall effect, the Hall conductivity σxy is given
by (e2/2πh̄)C1. In the present case, the response func-
tion associated with the topological invariant is instead a
“quantized adiabatic particle transport” [21,30,31]: adia-
batically cycling θ through a full period (sliding the charge
density modulation through a single wavelength) results in
the transfer of an integer number C1 of electrons across the
length of the 1D chain.

Notice that the symmetry-free class A, into which the
charge-ordered states fall, also signifies that C, T , and S
symmetries are broken. For any filling other than one-half,
the breaking of C, or particle-hole symmetry, is clear. To
see that time reversal symmetry T is also broken, consider
the order parameter ΔQ as defined by eqs. (1) and (2).
In the presence of a complex order parameter, the ex-
pectation value 〈ĉ†

k+Q ĉk〉 signifies a current in reciprocal
space, which changes sign under time inversion. Notice
that this current arises from the scattering of electrons
around the torus of the reduced Brillouin zone. Time re-
versal symmetry T is thus broken for any nonzero value
of θ, even though there is no equivalent real-space cur-
rent due to interference between scatterings by ±Q. Note
that a nonzero θ also implies the existence of an electrical
polarization in real space [32,33]. The definition of the
polarization, however, is ambiguous unless a cut is intro-
duced in the system, at which point the crystal as a whole
gains charges on either end [32,33].

Topology of quasicrystals. – So far we only con-
sidered the topological classification of commensurately
charge-ordered states, since eq. (4) only allows solutions
for commensurate phases to appear in fig. 2. Neverthe-
less we can infer certain properties of the incommensurate
states from the fractal structure of the spectrum. A close
inspection of the underside of the lower left wing, for exam-
ple, reveals that summing the Chern numbers up to that
gap yields C1 = 1 for any rational filling fraction. In fact,
this global structure of the fractal is made robust by Bel-
lissard’s “gap labelling theorem”, which shows both that
the gaps at irrational filling fractions can each be assigned
a unique number equal to the sum of Chern numbers, and
that these labels are robust under perturbations including
a shift of filling fraction [34,35]. The global structure of
the fractal therefore guarantees that any incommensurate
state at irrational filling fraction η has the same nonzero
sum of Chern numbers as the state with commensurate or-
der at rational filling p/q = η−ε, with ε → 0. Importantly,
the arguments placing our commensurate problem in the
symmetry-free class A are unaffected by the limiting pro-
cedure, and hence we conclude that the incommensurate
charge-ordered states fall into the same class.
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Fig. 3: (Colour on-line) Left: the allowed energies (scale trun-
cated at [−2.5t, 2.5t]) as a function of filling fraction p/q ∈
(0, 1), q ∈ [2, 50] for the self-consistent solution of eq. (3) with
h = t. Each sub-band is adiabatically connected to the corre-
sponding sub-band in fig. 2. This implies that the sums of
Chern numbers of filled sub-bands, indicated by the colour
scale, are the same. Right: the Berry curvatures for the three
sub-bands at 1/3 filling. Although the shapes are different from
those in fig. 2, the integrals over them remain 1, −2, 1 in units
of 2π.

Since the incommensurate states represent quasicrys-
talline charge order, this result implies that 1D
quasicrystalline materials such as the ones studied in
the recent optical waveguide experiments also belong to
class A [14,20]. This fact, alongside the observation of
quantized transport in these materials, confirms that the
relevant parameter space in the waveguide experiments is
2D [20]. As in the case of commensurate charge order,
the parameter space is spanned by ka and θ, where θ is
the parameter which labels different members of the lo-
cal isomorphism class. Additionally, the assignment of 1D
quasicrystals to class A implies they too have broken time
reversal symmetry T . Although there is no obvious way in
which quasicrystalline materials break this symmetry, the
interpretation of incommensurate charge order as a qua-
sicrystal makes clear that, as in the commensurate case, it
is due to the presence of a complex-valued order parameter
and the corresponding current in reciprocal space.

Measuring quantized transport. – In the analysis
of the spectrum of eq. (4) we imposed a fixed value of
ΔQ (h), and did not take into account the self-consistency
condition of eq. (1). Although the self-consistency require-
ment can affect both the sizes of the gaps in fig. 2 and the
mirror symmetry about Q = 1

2 , the topology of the sub-
bands should not be affected, as the gaps remain open
for any nonzero h. This implies that the Chern numbers
characterizing the contribution of each sub-band to the
adiabatic transport will be protected. Solving eq. (3) self-
consistently, we obtain the allowed energies and Chern
numbers displayed in fig. 3 [4,28]. As expected, the val-
ues of C1 associated with each sub-band are unaltered
by deformations of the gap sizes. It should be noted that
solitons, higher harmonics, and other nonlinear effects can
similarly affect the quantitative shape of the spectrum, but
again this will not alter the topologies of the bands [36,37].

Real materials cannot maintain the infinitely fine struc-
ture of a fractal band. Instead, the gaps separating
consecutive sub-bands will be closed when they become
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of the order of the effective energy scale set by local impu-
rities, disorder, or lattice defects, and the Chern num-
bers of the two merging bands are added together as
mandated by the gap labelling theorem. Large enough
gaps, however, may be expected to survive. For the cor-
responding filling fractions, the sum of Chern numbers
remains nonzero, even for incommensurate charge order
in the presence of defects and disorder. The quantized
adiabatic particle transport associated with the topology
and quasicrystalline nature of incommensurate charge or-
der should therefore be present in experimentally accessi-
ble charge-ordered materials.

Measuring the quantized transport is complicated, how-
ever, by the fact that impurities in real materials can
pin the charge order in place, inhibiting its freedom to
slide along the atomic lattice. It is well established that
an applied voltage may overcome the pinning potential
in incommensurately charge-ordered materials, allowing
them to conduct even in the presence of pinning cen-
tres [27,38–40]. The current produced includes both the
adiabatic particle transport originating in the band topol-
ogy, and the effects of nonadiabatic band-mixing. Since
we are here only interested in the adiabatic transport,
we propose an alternative way of accessing the quantized
particle transport in both commensurate and incommen-
surate charge-ordered states, based on the use of atomic
condensates in optical lattices. Such systems are more
readily controllable and defect-free than 1D chains in real
materials. Indeed, the Harper equation was recently real-
ized in a cold-atom setup [41]. The charge density mod-
ulations in such systems can be intentionally locked into
place either using the confinement potential or by simulat-
ing a strong impurity on a single site. Provided that this
intentional pinning does not disrupt the large-scale gap
structure, the topology of the sub-bands remains unaf-
fected. By manipulating the impurity location or confine-
ment potential, the charge density modulation can then
be dragged along the optical lattice, continuously cycling
the value of θ. As the corresponding charge-ordered pat-
tern moves through one wavelength, an integer number of
atoms will be transported across the length of the optical
lattice. Again, the integer is the sum of Chern numbers of
occupied sub-bands.

Conclusions. – In this letter we have shown the equiv-
alence between families of locally isomorphic 1D quasicrys-
tals and a mean-field model of incommensurate charge
order in 1D materials. Both fall into class A of the Altland-
Zirnbauer classification of topological phases, with bro-
ken C, T , and S symmetries. Having a two-dimensional
parameter space, they exhibit an integer set of possible
edge states, in agreement with recent results in optical-
waveguide experiments [13,14]. The gap labelling theo-
rem further allows us to describe the global structure of
the fractal pattern of allowed energies [34,35], and hence to
interpret incommensurate charge-ordered materials as the
limit of a series of commensurate phases. Importantly, the

space group of the commensurate case is trivial, meaning
no additional restrictions to the Tenfold Way need to be
introduced, and the limiting procedure preserves the topo-
logical class. It is thus shown that the Chern numbers,
describing both the edge states and the quantized trans-
port properties of all charge-ordered phases, arise from an
integral of the Berry curvature over the 2D space gener-
ated by k and the phase θ labelling different members of
the local isomorphism class. The topological properties of
the system survive in the self-consistent solution, and are
robust against the inclusion of weak fluctuations, defects,
and impurities. The large-scale structure of the Hofstadter
spectrum guarantees the possibility of quantized adiabatic
particle transport in any charge-ordered material, as long
as the gap size is nonzero.

Finally, we propose an experimental test of the topo-
logical properties of charge-ordered materials by exploit-
ing the possibility of directly controlling the phase of a
charge density modulation in atomic condensates in op-
tical lattices. Dragging the modulation along a single
wavelength will lead to the transfer of a quantized num-
ber of atoms across the system, providing a standard of
conductance in cold-atom setups. Through the equiv-
alence between incommensurately charge-ordered states
and quasicrystals we see that the results of this experi-
ment give a re-interpretation to previous experiments in
optical waveguides [14].

Charge-ordered materials unite a range of seemingly dis-
tinct physical systems, including forming a bridge between
1D quasicrystals and 2D topological phases. In this way
they provide an intuitive, naturally occurring, physical
system in which the consequences of topological order can
be straightforwardly realized and understood.
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[27] Grüner G., Rev. Mod. Phys., 60 (1988) 1129.
[28] Chang M.-C. and Niu Q., Phys. Rev. Lett., 75 (1995)

1348.
[29] Hasan M. Z. and Kane C. L., Rev. Mod. Phys., 82

(2010) 3045.
[30] Niu Q., Phys. Rev. B, 34 (1986) 5093.
[31] Thouless D. J., Phys. Rev. B, 27 (1983) 6083.
[32] King-Smith R. D. and Vanderbilt D., Phys. Rev. B,

47 (1993) 1651.
[33] Bristowe N. C., Littlewood P. B. and Artacho E.,

J. Phys.: Condens. Matter, 23 (2011) 081001.
[34] Benameur M.-T. and Oyono-Oyono H., Gap-labelling

for quasicrystals (proving a conjecture by J. Bellissard),
in Proceedings of Operator Algebras and Mathematical
Physics (Constanta 2001), edited by Combes J. M. et al.
(Theta) 2003, pp. 11–22.

[35] Kaminker J. and Putnam I., Michigan Math. J., 51
(2003) 537.

[36] Machida K. and Nakano M., Phys. Rev. Lett., 55
(1985) 1927.

[37] Machida K. and Nakano M., Phys. Rev. B, 34 (1986)
5073.

[38] Bardeen J., Phys. Scr., T27 (1989) 136.
[39] Fukuyama H., J. Phys. Soc. Jpn., 41 (1976).
[40] Lee P., Rice T. and Anderson P., Solid State

Commun., 14 (1974) 703.
[41] Aidelsburger M., Lohse M., Schweizer C.,

Atala M., Barreiro J. T., Nascimbene S., Cooper

N. R., Bloch I. and Goldman N., Nat. Phys., 11 (2015)
162.

37008-p6


