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Artificial quasicrystals are nowadays routinely manufactured, yet only two naturally occurring examples
are known. We present a class of systems with the potential to be realized both artificially and in nature,
in which the lowest energy state is a one-dimensional quasicrystal. These systems are based on
incommensurately charge-ordered materials, in which the quasicrystalline phase competes with the
formation of a regular array of discommensurations as a way of interpolating between incommensurate
charge order at high temperatures and commensurate order at low temperatures. The nonlocal correlations
characteristic of the quasicrystalline state emerge from a free-energy contribution localized in reciprocal
space. We present a theoretical phase diagram showing that the required material properties for
the appearance of such a ground state allow for one-dimensional quasicrystals to form in real materials.
The result is a potentially wide class of one-dimensional quasicrystals.
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While many quasicrystals have been artificially created
since their first synthesis in 1984, only two naturally
occurring quasicrystals have been identified to date—both
found in the same Siberian meteorite [1–3]. In the quasi-
periodic, never-repeating, pattern of two or more unit
cells defining a quasicrystal (QC) [4,5], locally changing
a single cell may require adjustment of an infinite number
of other cells in order to maintain the quasiperiodicity [6].
This global property makes it nontrivial to grow a QC cell
by cell. Proposed mechanisms in two or higher dimensions
include recognizing vertex matching rules that imply
“forced tiles,” random tiling models, and relaxation proc-
esses from nonquasiperiodic systems [7].
In (quasi)one-dimensional (1D) systems, QCs consist of

a quasiperiodic sequence of long and short unit cells. The
global nature of 1D QCs is apparent from their correspon-
dence to projections of regular 2D crystals [4,8]. One
way to experimentally access properties of 1D QCs is to
consider instead a setup containing two periodic subsys-
tems that are incommensurate with respect to one another.
The sequence of subsystem species encountered as one
traverses the system is aperiodic, and can be mapped
onto a similar aperiodic or quasicrystalline sequence of
unit cells [see Fig. 1(a)]. Such incommensurate systems
have recently been employed in a number of experimental
studies of QCs, including optical waveguide arrays simu-
lating 1D crystals with incommensurate periodic on-site
potentials, cold-atom condensates in optical lattices, moiré
superlattices in graphene derivatives, and in theoretical
descriptions of incommensurate charge-density waves
[8–12]. While these are of much interest in their own right,
they only constitute quasicrystals by way of mathematical

analogy. One key difference with true quasicrystals for
example, is that incommensurate systems have no lower
bound on the spatial separation between sites of the two
subsystems; it is only the sequence which is quasiperiodic
(see also the Supplemental Material [13]).
In this Letter we describe a mechanism for generating

1D quasicrystals based on coupling two incommensurate
subsystems and allowing them to adjust to minimize their
overall free energy. We take as a specific example the case
of incommensurate charge-density waves, and we show
that, under specific conditions, it is energetically favorable
for the atomic lattice to adopt a quasiperiodic structure.
The resulting state is thus a true quasicrystal, transcending
the mere mathematical equivalence between 1D QCs and
incommensurate charge-density modulations on top of a
periodic atomic background. We show that the required
material properties are physically realistic. Finally, we
outline the criteria needed for this mechanism to apply
more generally.
Low-dimensional materials are prone to develop charge

order. In the ideal 1D case, a Peierls instability always
yields a spontaneous periodic modulation of the electron
density, accompanied by periodic displacements in the
atomic lattice with the same wave vector [16]. In real quasi-
1D (or higher-dimensional) materials, charge order typi-
cally occurs only if the electron-phonon coupling is
sufficiently strong [14,17]. In that case, the order arises
when the electronic susceptibility overcomes the cost of
populating phonon modes, so that

Z
dkjgðk;kþ qÞj2 fðϵkÞ − fðϵkþqÞ

ϵkþq − ϵk
≥ ℏωq; ð1Þ
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where gðk;kþ qÞ is the electron-phonon coupling, which
is generically momentum and orbital dependent. fðϵkÞ is
the Fermi-Dirac distribution for an electron with momen-
tum k and energy ϵk, and ℏωq is the energy of the phonon
mode that softens in the charge ordering transition. The
full susceptibility χðqÞ, defined by the left-hand side of
Eq. (1), has its maximum at ~q, which determines the wave
vector QðTCDWÞ ¼ ~q at which the charge order and atomic
displacements first form. In the presence of strong nesting,
guaranteed in 1D, ~q equals the nesting vector. In higher
dimensions it is determined by the momentum dependences
of both the electron-phonon coupling and the electronic
dispersion [14].
The evolution of the charge density wave vectorQðTÞ, as

temperature is lowered beyond the onset temperature
TCDW, can be modeled by a Ginzburg-Landau expansion
of the free energy [18,19],

F ¼ −
Z

dqχðqÞρ2ðqÞ

þ
Z

dxbρ4ðxÞ −
X
n;K

cn cosðK · xÞρnðxÞ: ð2Þ

The modulation on top of the average electron density is
written as ρðxÞ ¼ ψ cos½ϕðxÞ�, where for a density wave
without defects ϕðxÞ ¼ Q · x. For notational convenience
the quadratic part of the free energy has been written in
reciprocal space, where it is proportional to the full
electronic susceptibility χ. This term favors the formation
of charge order at wave vector ~q. The other terms are more
conveniently written in real space. Those proportional to
cn, with n > 2, represent the local coupling between
the atomic lattice and the charge modulations. These
favor charge modulations locally commensurate with the
lattice by giving a nonzero contribution to F whenever
nϕðxÞ ¼ K · x, with K a reciprocal lattice vector of the
atomic lattice [15,18].
At the transition temperature TCDW, the order parameter

amplitude ψ is small, so that the lower-order terms in
Eq. (2) dominate, and the order forms at wave vector
QðTCDWÞ ¼ ~q. As temperature is lowered, ψ increases, and
the terms proportional to cn begin to compete with the
second-order term. Because the coupling to the lattice has
an effect only for the parts of the density wave that are
locally commensurate, the charge order with ϕðxÞ ¼ Q · x
will not gain energy from the final terms for any incom-
mensurate value of Q. Instead, the charge-ordered state
can lower its energy by adopting a locally commensurate
structure ϕðxÞ ¼ K · x − δðxÞ, where δðxÞ introduces a
regular array of broadened phase slips (discommensura-
tions) [20], which render the average propagation vector
incommensurate even if the local structure is predomi-
nantly commensurate [15]. The evolution as the temper-
ature decreases further is characterized by a sharpening of
the initially broad discommensurations [15,19].

In many materials, QðTÞ starts out incommensurate at
the onset of the charge-ordered state, evolves towards a
close-by commensurate value, and locks in at a second
transition temperature TIC below which the charge order
remains commensurate. Well-known examples can be seen
in 2H-TaSe2 and tetrathiafulvalene tetracyanoquinodime-
thane (TTF-TCNQ) [21,22]. In other materials, the evolu-
tion of QðTÞ starts out in a similar manner, but remains
incommensurate to zero temperature. Examples include
K0.3MoO3, TbTe3, and NbSe2 [22–24]. A proliferation of
discommensurations can describe either type of behavior
depending on the value of the ratio cn=χð ~qÞ in the free
energy of Eq. (2), which determines the strength of the
coupling to the lattice relative to the maximum strength
of the full susceptibility. The presence of discommensura-
tions in these materials has been experimentally verified,
for example, in scanning tunneling microscopy experi-
ments on NbSe2 [25].
The discommensuration state takes advantage of all the

terms in the free energy of Eq. (2). Nevertheless, one can
imagine conditions under which it may not be the optimal
configuration of ϕðxÞ. Consider, for example, incommen-
surate charge order forming at TCDW with an incommen-
surate wavelength λ ¼ 2π= ~q lying close to halfway
between three and four lattice spacings [Fig. 1(a)]. In that
case, it is not a priori obvious whether the coupling to the
lattice will prefer the charge order to lock-in at period 3 or
4. Choosing one, and introducing discommensurations
such that the local electronic density modulations are
commensurate while the average propagation vector
remains incommensurate, necessarily results in a high
density of rapid phase changes [shown in Fig. 1(b)].
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FIG. 1 (color online). Possible charge orderings when the
electron density (blue) develops an instability with wave vector
Q incommensurate with the ion lattice (pink). Here we used a
wavelengthof2π=Q ¼ ffiffiffiffiffiffiffiffiffi

11.7
p

≈ 3.42 lattice spacings. (a)Perfectly
incommensurate charge order. Labeling the blue peaks A and the
pink ionsB, the sequence of A’s andB’s is a quasiperiodic tiling of
the units ABBB and ABBBB [14]. (b) Discommensuration state,
which is locally commensurate with period 3 but maintains the
average wave vector Q [15]. (c) A quasicrystal composed of a
quasiperiodic arrangement of period-3 and period-4 unit cells,
maintaining the average wave vector Q. This state is reached by
shifting each peak A onto the nearest ion B. Dotted lines show the
incommensurate state for comparison. In all cases, the ion positions
will adjust to the altered electronic charge distribution (not shown).
An alternative comparison between these states is provided in the
Supplemental Material [13].
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These sharp discommensurations involve high-momentum
components of ρðqÞ (higher harmonics of ~q), and are,
therefore, energetically costly with respect to the quadratic
term in F. An alternative way of distorting the incom-
mensurate charge order and gaining local lock-in energy,
while retaining the overall incommensurability, is depicted
in Fig. 1(c). This configuration is obtained by moving every
maximum in the charge-density wave directly onto the
atomic position closest to it. The result is a charge
modulation that is locally commensurate everywhere, but
with two local periodicities. The locally commensurate
patches are smoothly connected (although higher deriva-
tives are not smooth), and, therefore, do not involve the
high-momentum components characteristic of the discom-
mensurations. For a more detailed description of the
difference between this state and the discommensuration
state, see the Supplemental Material [13].
It is clear from the incommensurability that the pattern of

period-3 and period-4 modulations in the multiply com-
mensurate structure never repeats itself. In fact, it can be
shown, using a cut-and-project construction, that the
arrangement is quasiperiodic [14]. In reality, the ions will
be displaced towards the charge maxima simultaneously
with the displacement of the charge maxima towards the
ions. The structure shown in Fig. 1(c) will, therefore, not
just contain incommensurate charge modulations or a
quasiperiodic electronic structure, but will constitute a true
1D quasicrystal. At the onset temperature of the multiply
commensurate order, there will be a crystal-to-quasicrystal
phase transition breaking all translational symmetries of the
original lattice.
The x-ray diffraction pattern of a quasicrystal is char-

acterized by a dense array of sharp peaks [5,7]. As shown in
Fig. 2, the Fourier transform of the multiply commensurate
charge order indeed contains such an arrangement, centered
around the average incommensurate wave vector ~q. Real

quasi-1D materials have susceptibilities χðqÞ that decay
over a finite range of momenta. The clustered peaks around
~q can, therefore, also gain energy from the quadratic term
in F. This situation should be contrasted with that of the
Fourier transform of the discommensuration state, also
shown in Fig. 2. In that case, although the central peak
gains energy, the higher harmonics typically lie far away
in k-space, and cannot utilize the nonzero width of the
susceptibility. The difference in the extent to which these
structures profit from the quadratic term in F can render
the quasicrystal energetically favorable to the discommen-
suration state.
To quantify the relative stabilities of the quasicrystal

and discommensuration states, we consider again the free
energy of Eq. (2). We model the full susceptibility as
χðqÞ ¼ a=½σ2ðjqj − ~qÞ2 þ 1�, where the width 1=σ of the
peak is taken to be small but nonzero. The ratio b=a of
the quartic and quadratic component of F at q ¼ ~q
determines the overall magnitude of the order parameter
ψ , but does not affect the form of ϕðxÞ. Whether the
discommensuration or quasicrystalline state is favorable
is thus determined by the ratios ðψ4c4Þ=ðψ3c3Þ and
ðψ3c3Þ=ðψ2aÞ. In Fig. 3(a), we present the phase diagram
as a function of these two ratios. The energy of the
quasicrystalline state is compared to that of an array of
discommensurations with optimized density and widths.
A comparison of the energies of individual states, as a
function of ψc3=a for fixed ψc4=c3, is shown in Fig. 3(b).
The energy of the incommensurate state does not depend

on the coupling to the lattice, and is constant in ψc3=a.
The commensurate state, on the other hand, does not gain
any energy from the susceptibility term, but takes full
advantage of the lock-in term, and decreases linearly in
energy as ψc3=a increases. At high coupling to the lattice,
the commensurate state thus becomes favorable to the
incommensurate. The discommensuration state interpolates
between these two extremes, having its main Fourier
component at the incommensurate value but being locally
commensurate. It takes advantage of all terms in the

FIG. 2 (color online). Calculated x-ray diffraction pattern for
the discommensuration state (blue) and quasicrystal (pink) shown
in Fig. 1 (purple indicates overlapping peaks). The black line
depicts the approximation to the full susceptibility χ used to
calculate the phase diagram of Fig. 3. Both types of order have
their main peak at ~q, but the quasicrystal has a dense covering of
secondary peaks close to the main diffraction spot, which benefit
from the nonzero χ in that region. The units are arbitrary, but both
diffraction patterns have the same scale.

(a) (b)

FIG. 3 (color online). (a) The predicted phase diagram emerg-
ing from Eq. (2), for Q ¼ 2π=

ffiffiffiffiffiffiffiffiffi
11.7

p
and b ¼ 1. (b) The free

energies of the different ordered states as a function of ψc3=a for
fixed ψc4=c3 ¼ 1.2. The abbreviations used are QC: quasicrystal,
DCn: discommensuration state with commensurate areas of
period n, ICDW: incommensurate charge-density wave, and
Q ¼ 1=n: commensurate charge order with period n.
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free energy, and outperforms both the commensurate and
incommensurate states.
The quasicrystal also has its dominant Fourier compo-

nent at the incommensurate value. At intermediate values of
ψc3=a it additionally takes advantage of the spread in χðqÞ
and only pays a modest price for not being optimally
commensurate everywhere. In this regime, the quasicrystal
is favored over the discommensuration state, giving rise to
the extended area of stability shown in Fig. 3(a). At either
extreme of ψc3=a, however, the discommensurations win
out: the spectral weight of the dominant QC Fourier
peak is constant, so does not approach the weight of the
incommensurate state in the limit of zero lattice coupling.
The discommensuration state is, therefore, favorable to
the quasicrystal at very low values of ψc3=a. For strong
coupling to the lattice, the locally commensurate nature of
the quasicrystal allows it to gain lock-in energy, with the
overall energy gain a weighted average of the c3 and c4
terms. However, if these two coefficients are not equal, the
quasicrystal cannot gain as much energy as the discom-
mensuration state, which is always locally commensurate
with the most favorable commensurability. The discom-
mensuration state, therefore, also wins out over the quasi-
crystal at very high values of the coupling to the lattice.
Based on these considerations, the prerequisites for this

type of 1D quasicrystal to emerge in any real (natural
or artificial) material are (i) a quasi-1D charge-ordered
material with an incommensurate wave vector lying close
to halfway between two commensurate values, (ii) a sharp,
but not infinitely sharp, susceptibility, and (iii) a strong,
momentum-independent electron-phonon coupling. The
latter is necessary to ensure that the coupling of the charge
order to the lattice does not strongly favor any particular
commensurate value of the propagation vector.
Quasi-1D materials contain strongly bonded chains of

atoms with relatively weak interchain coupling. Their
Fermi surfaces typically contain nearly flat pieces, giving
a strongly peaked susceptibility. The charge-ordering wave
vector is therefore close to 2kF, and is generically incom-
mensurate. The question then arises as to why we are not
overwhelmed with naturally occurring quasicrystals in
quasi-1D materials. First, the charge modulation ρ is small
compared to the average charge density, implying that a
dense set of peaks neighboring ~q in the diffraction pattern
may not be straightforward to distinguish experimentally.
Second, in real materials it may be expected that the lock-in
energy is different at different commensurate values [19],
putting most materials close to the left side of Fig. 3(a).
Note, however, that the order parameter amplitude ψ
increases with decreasing temperature, and thus enhances
the value of ψc4=c3. Conversely, at the onset of ordering, ψ
is vanishingly small, and the free energy is dominated by
the second-order term. This implies that the charge-ordered
phase starts off at the origin of the phase diagram, and
moves upwards and to the right only as temperature

decreases below TCDW. Third, except in cases of extremely
strong electronic nesting, the momentum and orbital
dependence of the electron-phonon coupling is generically
essential for charge order to develop in real materials [14].
These points aside, the results of Fig. 3 suggest that a
targeted search may reveal previously unnoticed quasi-
crystalline phases at low temperatures in quasi-1D materi-
als with incommensurate charge order. Experimentally,
the quasicrystalline charge order could be identified, for
example, using microscopy to directly identify arrange-
ments of neighboring period-4 and period-3 cells, or
using diffraction probes to find a fractal distribution of
sharp peaks.
To conclude, we have shown that for an extended range of

material parameters quasi-1D systems minimize their free
energy by developing quasiperiodic tilings of two inequi-
valent unit cells. This provides a wide class of 1D materials
with the potential to become quasicrystalline. Candidate
materials, both natural and artificial, could be revealed by
a directed search for materials exhibiting incommensurate
charge order, with a wavelength close to halfway between
two commensurate values, whose electronic structures are
well nested, and whose electron-phonon couplings are
strong but momentum independent. The quasicrystalline
state also extends the set of possible low-energy configura-
tions of incommensurately charge-ordered systems, adding
to the known incommensurate and commensurate states
and their interpolation via discommensurations.
Existing proposals for quasicrystal growth mechanisms

have centered on single-cell additions at defect sites,
or local adjustments based on propagating defects [7].
The quasicrystalline state discussed here, on the other
hand, arises from a global adjustment of two periodic
but incommensurate parent structures. The required co-
ordination for this global effect in real space derives from
the fact that it is a localized peak of the susceptibility in
reciprocal space that determines the dominant wave vector
of the quasicrystalline state.
Because the free energy contains two incommensurate

periods, it is perhaps unsurprising that a ground state exists
that respects the lack of translational symmetry. Closely
related states have been found in both the quantum Hall
effect in the Tao-Thouless limit [26] and the formation of
Wigner lattices in the Hubbard model [27]. In the latter
case, the Wigner lattice is invoked to explain the optical
spectra of nearly quasicrystalline states in the 1D charge-
ordered material TTF-TCNQ [28,29]. Both systems, how-
ever, concern high-denominator rational commensurate
periods rather than the incommensurate situation consid-
ered here, and neither depends on the particular free-energy
arguments arising from Eq. (2).
The mechanism for forming quasicrystals considered in

this Letter has the potential to arise whenever two incom-
mensurate periodicities are simultaneously present in the
same system. If an appropriate coupling between the
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subsystems can be introduced in the presence of a global
constraint, a free energy similar to that of Eq. (2) may be
expected to apply, and a quasicrystalline state will generi-
cally emerge over an extensive portion of phase space.
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To bring to the fore the differences between the various charge-ordered phases discussed in the main text, it is
convenient to express the modulation on top of the average charge modulation in each state as:

ρ(x) = ψ cos (K · x− δ(x)) . (1)

Here, K is a wave vector commensurate with the lattice, which we will set to K = 2π/(3a) from here on. The
commensurate charge density wave (CCDW), incommensurate charge density wave (ICDW), discommensuration
state (DC), and quasicrystalline state (QC) can then be distinguished by considering the distinct behaviour of the
phase δ(x) in each. This is shown in Fig. 1 below.
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FIG. 1: (color online) Possible charge orderings discussed in the main text. For all cases the phase δ(x) defined in Eq. (1)
is shown divided by π, as a function of position in units of the lattice spacing a. With these conventions, the commensurate
phases are represented by straight lines with rational values for their slopes. The incommensurate phase is a straight line
with an irrational slope. The discommensuration phase consists of horizontal sections connected by a regular, periodic array
of discommensurations, which are vertical lines of height 2/3. The spacing of the discommensurations is such that the phase
returns to the dashed incommensurate line at every discommensuration. Finally, the quasicrystal consists of a quasiperiodic
sequence of horizontal (period 3) sections of width 3, and sections at the slope corresponding to commensurate order with
period 4, with width 4. The aperiodic sequence can be constructed by always choosing the section whose end-point stays
closest to the dashed incommensurate line.
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For the CCDW, δ(x) is zero. For the ideal ICDW, δ(x) is the straight line δ(x) = (Q − K)x, with Q the
incommensurate wave vector. The discommensuration phase is given by sections of zero slope connected by vertical
steps at regular intervals. The height of each step is such that the density wave jumps forward by precisely one
lattice spacing. For K = 2π/(3a), the step height is thus 2π/3. The width of the horizontal sections is such that the
average slope of the entire stepped structure is equal to Q. The quasicrystal also has average slope Q, but consists
of horizontal sections separated by sections with slope δ(x) = (K′ −K)x, where K′ is a second commensurate wave
vector: in this case 2π/(4a). The sections of zero and non-zero slope in this phase form a quasiperiodic sequence.

The DC phase often arises in real materials as the most energetically-favourable way of combining electronic density
modulations with a lattice coupling [1]. In practice, the discommensurations in these materials will not be perfectly
sharp. Instead, they broaden slightly and the connection in δ(x) with the neighbouring horizontal regions is made
smooth. We follow McMillan in accounting for this using a Fourier expansion with coefficients, controlling the
discommensuration width, selected so as to minimize the free energy of the DC state. The QC phase, on the other
hand, is created by starting from an ideal ICDW and then shifting the peaks of the electronic density modulation
directly onto the nearest atomic position. This creates a quasiperiodic sequence consisting of sections with one of two
well-defined commensurate wave vectors.

The QC phase and ICDW both have quasiperiodic elements. For the ICDW, the sequence of atomic positions and
charge maxima encountered as the material is traversed is quasiperiodic. This type of ‘quasiperiodicity’, however, is
generic to any superposition of two incommensurate structures, including even things like two parallel picket fences
seen from a distance. In contrast, the QC phase is quasiperiodic in each of its components individually. Moreover,
it also consists of precisely two unit cells. Each piece of period four within the QC state is locally indistinguishable
from any other piece of period four. In the ICDW, the atomic neighbourhood of each peak in the electronic structure
is perfectly unique. In that sense, it contains infinitely many unit cells, rather than two. We therefore classify the QC
state as a true one-dimensional quasicrystal, in contrast to the ICDW, which is only a generic quasiperiodic sequence
of charge maxima and atoms.

∗ Electronic address: flicker@physics.org
† Electronic address: vanwezel@uva.nl

[1] W. L. McMillan, Phys. Rev. B 12, 1187 (1975).


