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Spin ices, frustrated magnetic materials analogous to common water ice, have emerged over the past 15 years as
exemplars of high frustration in three dimensions. Recent experimental developments aimed at interrogating anew
the low-temperature properties of these systems, in particular whether the predicted transition to long-range order
occurs, behoove researchers to scrutinize our current dipolar spin ice model description of these materials. In this
work, we do so by combining extensive Monte Carlo simulations and mean-field theory calculations to analyze
data from previous magnetization, diffuse neutron scattering, and specific-heat measurements on the paradigmatic
Dy2Ti2O7 spin ice material. In this work, we also reconsider the possible importance of the nuclear specific heat
Cnuc in Dy2Ti2O7. We find that Cnuc is not entirely negligible below a temperature ∼0.5 K and must therefore be
taken into account in a quantitative analysis of the calorimetric data of this compound below that temperature.
We find that in this material, small effective spin-spin exchange interactions compete with the magnetostatic
dipolar interaction responsible for the main spin ice phenomenology. This causes an unexpected “refrustration”
of the long-range order that would be expected from the incompletely self-screened dipolar interaction and
which positions the material at the boundary between two competing classical long-range-ordered ground states.
This allows for the manifestation of new physical low-temperature phenomena in Dy2Ti2O7, as exposed by
recent specific-heat measurements. We show that among the four most likely causes for the observed upturn
of the specific heat at low temperature [an exchange-induced transition to long-range order, quantum non-Ising
(transverse) terms in the effective spin Hamiltonian, the nuclear hyperfine contribution, and random disorder],
only the last appears to be reasonably able to explain the calorimetric data.
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I. INTRODUCTION

Highly frustrated magnetism (HFM) arises when the lead-
ing effective spin-spin interactions are in strong competition
among themselves [1–3]. High frustration dramatically weak-
ens a material’s tendency towards conventional long-range
magnetic order. This opens up an avenue to the discovery
of spin liquids, intriguing states of matter where the magnetic
degrees of freedom are disordered by quantum mechanical
fluctuations even at absolute zero temperature [3–5]. It is
convenient to follow Anderson’s perspective [4] and divide
models of HFM into two classes. In the first, the lattice
architecture frustrates the predominant antiferromagnetic (AF)
nearest-neighbor interactions and the formation of a unique
collinear long-range-ordered Néel state. Popular examples of
such highly frustrated lattice structures include the kagome
and pyrochlore lattices in two and three dimensions, re-
spectively [1,3,5]. In the second class, one finds a number
of interactions of roughly the same scale that compete to
control the development of distinct magnetic correlations. A
well-known example of this second class is the J1-J2 model on
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the square lattice [4,6–8]. More recently, it has been suggested
that frustration based on competing interactions, as opposed to
the common geometrical antiferromagnetic nearest-neighbor
frustration, is at play in the kagome-based antiferromagnetic
kappellasite material [9].

The first class of HFM systems has attracted the most
attention from experimentalists because, unlike the second
class, it does not rely on a fine-tuning accident of nature
(e.g., J2 ∼ J1/2 in the J1-J2 model [6]) to be at a strong
frustration point to induce large quantum spin fluctuations. In
this class, there is no unique long-range-ordered state selected
at the mean-field level and the spectrum of soft modes is
dispersionless throughout the whole Brillouin zone [10–12].
Consequently, these systems are very soft even at the classical
level and show limited propensity towards ordering [13],
suggesting that magnetic materials involving such lattices are
attractive candidates in the search for a spin liquid state [3,5].
High frustration does not only enable large thermal and
quantum fluctuations. It also allows for random disorder, in
the form of off-stoichiometry or intersite mixing, for example,
to have dramatic effects on the low-temperature properties of
a system [13,14].

Spin ices, in which the magnetic moments obey an energetic
“ice rule” similar to that governing the proton positions in
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common water ice [15,16], have traditionally been viewed as
belonging to the first category of HFM systems [2,12,15,16].
The two textbook examples of spin ice materials are the
rare-earth pyrochlore oxides Ho2Ti2O7 (Ref. [17]) and
Dy2Ti2O7 (Ref. [18]) in which Ho3+ and Dy3+ are the mag-
netic ions. The key signature of spin ices [the formation of an
exponentially large number of nearly degenerate low-energy
states (called the spin ice manifold) at sufficiently low tem-
perature T ] does not require fine tuning [12]. Indeed, the spin
ice phenomenon is robust and consistent with the two dom-
inant spin-spin interactions: the nearest-neighbor exchange
J1 and the long-range dipolar interactions of strength D.
However, in this J1-D dipolar spin ice model (DSM) [19,20],
the imperfect screening of the magnetostatic dipolar 1/r3

tail [12,21] is theoretically expected to induce a transition
to long-range order at T ≈ 0.13D as found in Monte Carlo
simulations [22,23]. Experiments [17,18,24,25], on the other
hand, have so far not found evidence for a transition to long-
range order. It has generally been assumed that this is the result
of the dynamical arrest and freezing out of gapped spin-flip
excitations (“monopoles”) [26] at low temperatures [27,28],
as made clear by recent experiments aimed at studying the
low-temperature dynamical and thermodynamical properties
of spin ices [28–31]. It is therefore surprising and noteworthy
that one of these experiments on Dy2Ti2O7 (Ref. [30]) finds
an increase in the magnetic specific heat C(T ) below a
temperature T ∗ ∼ 0.5 K, as opposed to a rapid plunge of
C(T ) to zero around that temperature as found in all previous
specific-heat measurements on this compound [18,32–34]. The
rise of C(T ) observed in Ref. [30] results in a concurrent
continuous decrease of the thermal magnetic entropy with
no signature of a residual Pauling entropy plateau over any
extended temperature window. Moreover, this observed rise
in C(T ) is not in accord with the predictions of the original
DSM [20,22,23] or its refinement [35,36] that includes long-
range dipolar interactions as well as exchange interactions up
to third-nearest neighbor. Given the successes of this refined
DSM [35,36] in rationalizing a number of experimental aspects
of Dy2Ti2O7, the results of Ref. [30] beg the question that
motivated this study: “What is the microscopic origin of the
observed rise in C(T ) for T � 0.5 K?”

This is an important question because the C(T ) upturn could
suggest some heretofore unexposed physics going on deep in
the low-temperature spin ice regime of Dy2Ti2O7. For exam-
ple, this upturn could signal the emergence of quantum effects
and suggest that the previously assumed strictly classical [15]
Dy2Ti2O7 spin ice may be in fact entering a quantum spin ice
state at sufficiently low temperature, thus offering itself as an
unexpected realization of a quantum spin liquid [5].

To address the above question, we step all the way back
to reassess the premises defining the spin-spin couplings
of the DSM [20,35,36] and discuss what we consider the
most cogent way to proceed. In the Dy2Ti2O7 and Ho2Ti2O7

dipolar spin ice materials, the spin ice regime is a collective
paramagnetic state [13], a classical spin liquid of sorts [3]. In
that liquid regime, the thermal evolution of most thermody-
namic quantities is smooth and without sharp features (e.g.,
specific heat). This is the reason why the temperature and
magnetic field dependence of several quantities need to be
simultaneously fitted to parametrize the spin-spin coupling

of the DSM beyond the nearest-neighbor exchange. This
problem did not arise in the formulation of the simplest
original DSM [20] which contains only one independent
(nearest-neighbor) exchange coupling. This exchange could
be determined by fitting independently the temperature at
which the specific heat peaks or the height of that peak since
the dipolar strength D is a priori known from the saturation
magnetization of the material and the lattice spacing. Such a
fitting of multiple thermodynamic quantities is the procedure
that was followed in Ref. [36]. An important conclusion of
that study was that the so-determined Hamiltonian would most
likely display a transition to long-range order near 100 mK.
This prediction would seem to be in significant disagreement
with the recent experiment of Pomaranski et al. [30] if the
upturn of the specific heat at T ∼ 0.5 K were to be interpreted
as a harbinger of an impending transition to long-range order.

In this work, we follow an approach that differs in
two ways from the work of Ref. [36]. First of all, we
consider an experiment on Dy2Ti2O7 [37–39] performed with
a magnetic field applied along a direction such that one can
invoke symmetry considerations and settings that allow us to
determine two symmetry-distinct subleading (third-nearest-
neighbor) exchange parameters that would be difficult to
determine from measurements that do not exploit such an
astute experimental symmetry setup. Second, as spin-spin
correlations, and therefore their reciprocal space description as
probed by neutron scattering, are the observables most directly
linked to the details of the spin Hamiltonian, we scrutinize the
reciprocal space details of a neutron scattering intensity map
previously obtained on Dy2Ti2O7 spin ice [40].

By comparing detailed experimental information on the
spin-spin correlations contained in neutron scattering results
on Dy2Ti2O7 with that of Monte Carlo simulations, we show
in the following that the best set of couplings parametrizing its
spin Hamiltonian positions Dy2Ti2O7 near the phase boundary
between two competing classical long-range-ordered spin ice
states. We find that the recovery of the Pauling entropy is
a more intricate process than previously thought, with the
boundary region rich in unusual phenomena such as a nearly
energetically degenerate stacking of ordered spin planes.
Through a remarkable coincidence of nature, the compet-
ing distance-dependent exchange and dipolar interactions in
Dy2Ti2O7 “refrustrate” this material at low temperature1 and,
therefore, make it a new example of the second class of HFM
systems discussed above.

Such a competition between various classical ground states
may in principle allow for an enhanced level of quantum
fluctuations and contribute to driving dipolar spin ices,
traditionally viewed as strictly classical Ising systems [15], into
a U(1) quantum spin liquid state [5,41]. This is reminiscent of
the J1-J2 model at the J2 = J1/2 point where two classical
ground states are also degenerate [6]. Because the critical

1By “refrustrate” we mean that exchange interactions beyond
nearest neighbor compete with the meager tendency of the long-
range part of the dipolar interactions to lift the degeneracy of the
ice-rule states [12,21] with an associated transition at a temperature
Tc ∼ 0.13D [22,23] and further depress the ordering transition to an
even lower temperature.
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transition temperature for the exchange parameters determined
from the analysis of the neutron scattering data is far below
the upturn seen in the specific-heat data [30], we are unable
to describe the C(T ) data of Ref. [30] for T � 0.7 K with
those parameters, even after accounting for the non-negligible
nuclear contribution to the total specific heat below that
temperature. This leads us to reconsider how strong the
heretofore largely ignored quantum (non-Ising) terms in the
Hamiltonian may be for Dy2Ti2O7 (see, however, Ref. [41]
for a study that does consider possible quantum effects).
Motivated by recent works having found that various forms of
random disorder are present in magnetic rare-earth pyrochlore
oxides [31,42,43], we also explore what effect random disorder
may have on the low-temperature properties of this material.
We reaffirm that the quantum terms in Dy2Ti2O7 should be
very small indeed and unlikely to be responsible for the
development of a low-temperature quantum coherence (e.g.,
coherent hopping of spinons [44], i.e., spin ice monopoles [26])
that would be signaled by a rise in C(T ), similarly to that
recently reported in a quantum Monte Carlo simulation study
of a quantum spin ice model [45]. On the other hand, we show
that random disorder, in the form of intersite disorder [42,43]
(e.g., “stuffing”), could potentially explain the rise of C(T )
without dramatically affecting the neutron scattering intensity
pattern over the same temperature range.

The rest of the paper is organized as follows. In Sec. II,
we define the dipolar spin ice model that we study in
this paper along with the Monte Carlo simulation that we
employ to analyze the various experimental data that we
consider. Section III contains the essential results of our work.
Section III A presents the analysis of the [112] magnetic field
magnetization measurements used to constrain the exchange
parameters defining our dipolar spin ice model. Section III B
discusses the long-range-ordered phases that the dipolar spin
ice model displays within the constrained spin-spin coupling
constants determined in Sec. III A. Section III C reports the
analysis of previously published neutron scattering data on
Dy2Ti2O7 that allows us to position this compound in the phase
diagram determined in Sec. III B. In Sec. III D, we analyze
the recent specific-heat data in relation to the phase diagram
presented in Sec. III B. In Sec. III E, we make a detailed
comparison of the Monte Carlo results for the specific heat
and neutron scattering intensity obtained in the distinct parts
of the phase diagram and show that we are unable to reconcile
the experimental specific-heat measurements of Ref. [30]
with the spin-spin couplings identified in Sec. III B that
describe the main features of the neutron scattering data.
In Sec. III F, we argue that quantum (non-Ising) exchange
couplings that one might want to consider in the dipolar spin
ice model [41] are likely to be much too small to explain the
upturn in the specific heat below a temperature of T ∗ ∼ 0.5 K
or so in Dy2Ti2O7. On the other hand, the same subsection
explores a toy model of random disorder (in the form of stuffed
spins) that could possibly rationalize the specific-heat upturn.
Finally, we close the paper with a brief conclusion in Sec. IV.
With the aim of providing a streamlined reading of the key
results presented in the main text, we have packaged all the
technical details of the simulations, data analysis, and other
calculations supporting the key results discussed in the main
text in a series of appendixes.

J1 
J3b 

J3a 

J2 

FIG. 1. Set of interacting neighbors on the pyrochlore lattice.
The first- (J1), second- (J2), and two distinct third- (J3a and J3b)
nearest-neighbor pathways are indicated by red, blue, green, and
orange connections, respectively, on the pyrochlore lattice of corner-
sharing tetrahedra. A two-in/two-out state of two spins pointing into
the center of the tetrahedron and two spins pointing out from the
tetrahedron is shown in the upper-right-hand corner of the lattice. An
ice-rule obeying state is characterized by all tetrahedra being in a
two-in/two-out spin configuration, but with no other constraint on the
orientation of the spins.

II. MODEL AND MONTE CARLO METHOD

A. Model

In Dy2Ti2O7, the magnetic Dy3+ rare-earth moments
occupy the sites of the pyrochlore lattice shown in Fig. 1.
This structure can be described as a face-centered-cubic
(fcc) space lattice with a primitive basis that consists of a
tetrahedron [2] (four sites). The microscopic Dy3+– Dy3+

interionic magnetic and superexchange couplings are small
([10−2–10−1] K) compared to the energy splitting (� ∼
300 K) between the crystal-field ground-state doublet and
the first-excited doublet [2]. One can thus project these
interactions into a reduced Hilbert space comprised solely of
the single-ion crystal-field ground states [15], ignoring for the
moment unusually strong high-rank multipolar Dy-Dy inter-
actions [46,47]. Due to the specific spectral decomposition
of the crystal-field ground-state doublet [2,15], the effective
(projected) Hamiltonian can then be expressed as a classical
Ising model [15]. We return to this fundamental assumption
in Sec. III F. The “spins” in that Ising model interact via
distance-dependent “exchange” couplings Jij , between ions
i and j , as well as through the long-range magnetostatic
dipole-dipole interaction. The Hamiltonian for this generalized
dipolar spin ice model [20,22,35–37] (g-DSM) in an external
magnetic field H reads as

H = Dr3
nn

∑
i>j

Si · Sj

|r ij |3 − 3(Si · r ij )(Sj · r ij )

|r ij |5

+
∑
i>j

Jij Si · Sj − gμB〈J z〉
∑

i

S · H . (1)
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The scale of the dipolar interaction at the nearest-neighbor dis-
tance rnn is given by D = μ0(gμB〈J z〉)2/4πr3

nn = 1.3224 K
(Ref. [36]) using 〈J z〉 = 7.40 (Ref. [36]), rnn = 3.58 Å
(Ref. [25]) and the Dy3+ Landé g factor is g = 4

3 . Here,
Si is a classical unit vector representing the Dy3+ magnetic
moment at site i which is constrained by the crystal-field Ising
anisotropy to point along the local ẑi cubic [111] direction. We
thus have Si = σi ẑi with σi = ±1 as the Ising variable.2 For
sites i and j that belong to different sublattices ẑi · ẑj = − 1

3 ,
while ẑi · ẑj = 1 if they belong to the same sublattice. For most
of our paper, we consider first- (J1), second- (J2), and two
distinct third-nearest-neighbor interactions (J3a and J3b), but
take J4 into account to check the validity of our conclusions.
The intersite connectivity defined by the J1, J2, J3a , and J3b

couplings is illustrated in Fig. 1.

B. Monte Carlo method

For the most part of this paper, we employed Monte Carlo
simulations to investigate the thermodynamic properties of
the model defined by Eq. (1). In order to help interpret the
Monte Carlo results, we also used in Appendix B conventional
mean-field theory, formulated in reciprocal space, as described
in Ref. [48].

The Monte Carlo calculations were performed with pe-
riodic boundary conditions and using the Ewald summation
technique to handle the long-range dipolar interaction [23,48].
The systems simulated consisted of L3 cubic unit cells each
with 16 sites. Loop updates [22,23] were used when the single-
spin-flip acceptance rate fell below 1%. In order to ease the
investigation of the phase diagram discussed in Sec. III B, loop
Monte Carlo simulations were further supplemented by the
parallel tempering method [49] using 72 distinct temperatures
distributed between 0.05 and 0.7 K.

The neutron scattering structure factor to be compared with
experiments was calculated according to

S(q) = [f (|q|)]2

N

∑
ij

〈sisj 〉(ẑ⊥
i · ẑ⊥

j )eiq·r ij , (2)

where ẑ⊥
i is the component of the local Ising axis perpendicular

to the wave vector q and f (|q|) is the magnetic form
factor of Dy3+ (Ref. [50]). Points of particular interest are
q = (0 0 3) and q = ( 3

2
3
2

3
2 ) with [f (|0 0 3|)]2 = 0.8224 and

[f (| 3
2

3
2

3
2 |)]2 = 0.8627.

In Sec. III F, we explore the effects of local effective
magnetic degrees of freedom that may be generated by some
form of random disorder such as stuffing (magnetic ions on
the B site of the pyrochlore lattice, oxygen vacancies, or both).
To do so, we consider a minimal effective impurity model that
consists of impurity magnetic moments on the B sites of the
pyrochlore lattice, termed “stuffed” spins [42].3

2Here, we have chosen to write the expected effective Ising exchange
interactions for Dy3+ ions [47] as Si · Sj in order to keep with the
notation used in several previous works.

3Recent x-ray synchrotron work [43] has shown that a small
percentage of rare-earth (RE) ions occupying (“stuffing”) the B-site
nominally occupied by the tetravalent transition-metal ion (e.g., Ti4+)

FIG. 2. Schematic illustration of the [112] field magnetization
measurement with the structure of the pyrochlore lattice viewed as
alternating triangular and kagome planes. An applied field in the [112]
direction is shown as a brown arrow. An applied field along [1̄1̄1] is
shown in red. This field points along the local Ising axis of the green
spin vectors on the triangular planes (yellow sites).

As a proof of principle, we assume for simplicity that the
impurity spins are Ising type, with a local moment Lα pointing
along the line defined by the centers of the B-site tetrahedra
on the pyrochlore lattice [2]. The stuffed spin Lα is coupled
to its six nearest neighbors Si on the A sites with an effective
exchange interaction

H� = −�
∑
〈α,i〉

Lα · Si = �

3
σασi, (3)

where � is the coupling constant. Here, the index α runs
over all randomly stuffed spins, which are chosen randomly to
occupy a fraction p of the B sites, and σ = ±1.

III. RESULTS

A. [112] magnetic field experiment analysis

In this section, we begin to revisit the set of Jij values
describing Dy2Ti2O7 and, unlike in other g-DSM works
[35–37], we do not a priori assume that J3a = J3b. To do so,
we first analyze magnetization data measured in a magnetic
field near the [112] direction, with a small magnetic field
component along [1̄1̄1] (Ref. [38]). Figure 2 illustrates the
geometry associated with this experiment. The analysis of
this experiment allows us to establish constraints among the
Jij parameters and thus reduce the dimensionality of the
model parameter space that needs to be explored to describe
Dy2Ti2O7.

This “[112] experiment” is rather remarkable in that it
provides us with direct access to the third-nearest-neighbor
interactions J3a and J3b. In this experiment, the large [112]
component of the applied field saturates the magnetization
on three of the four face-centered-cubic (fcc) sublattices that
constitute the pyrochlore lattice. At the same time, a small

in the RE2Ti2O7 pyrochlore oxides is quite common, and found to
occur, for example, in Ho2Ti2O7, Er2Ti2O7, and Yb2Ti2O7.
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[1̄1̄1] magnetic field component can be tuned so that the vector
sum of the external applied plus the combined exchange and
dipolar internal fields lead to a decoupling of the remaining
fcc sublattice from the three fully polarized sublattices [37].

In Fig. 2, these decoupled magnetic moments reside on the
triangular lattice indicated by the yellow sites with a downward
green arrow. Since the nearest-neighbor distance on the fcc
sublattice corresponds to the third-nearest-neighbor distance
on the pyrochlore lattice, an analysis of the susceptibility for
the field component along [1̄1̄1] yields a relation between
J3a and J3b that is almost linear and can be approximately
described by (all in Kelvin),

J3b =
{−0.667J3a + 0.03 : J3a < 0.1,

−0.842J3a + 0.0474 : J3a > 0.1.
(4)

Furthermore, the applied experimental critical field in the [1̄1̄1]
direction that decouples the corresponding fcc sublattice from
the internal ice rules, enforced by the combined exchange plus
dipolar field, yields another linear relation between J1 and J2:

J2 = − 1
2J1 + 1.555. (5)

A derivation of these relations is given in Appendix A. In the
following three subsections, we make use of the constraints
defined by Eqs. (4) and (5) to analyze the ground state, spin-
spin correlations, and associated neutron scattering function
and thermodynamic properties of the model in the resulting
J1-J3a parameter space.

B. Phase diagram

We now proceed to explore the phases and ordering wave
vectors in the constrained J1-J3a parameter space where J2

and J3b have been eliminated via Eqs. (4) and (5). From
extensive experimental and theoretical work, we know that
J1 = 3.3 ± 0.2 K, and |J3| < 0.2 K (Refs. [16,36]). Further-
more, work on the simple DSM with J2 = J3a = J3b = 0
has shown [12,22] that, despite its highly frustrated nature,
(reciprocal) q-space mean-field theory [48] could be used to
identify the candidate ordered state that ultimately develops
if nonlocal loop dynamics are used to maintain equilibrium
down to the ordering temperature [22,23]. By combining a
mean-field theory survey of ordering wave vectors at the mean-
field critical temperature with a direct analysis of the actual
ordered states that appear in the Monte Carlo calculations (see
Appendix B for details of the calculations), we find that there
are two long-ranged-ordered ground states in the parameter
range appropriate for Dy2Ti2O7 (and as constrained by the
[112] experimental results above). From the Monte Carlo
results, the propagation vector of each ground state is (1 1 0)
and ( 1

2
1
2 0). The first state was previously identified for the

dipolar spin ice model with J2 = J3a = J3b = 0 (Ref. [22]). In
this state, parallel chains of spins order antiferromagnetically
when viewed along a cubic 〈100〉 axis [see Fig. 13(a)].
We call this the “single-chain state.” In the second state,
pairs of adjacent spin chains are aligned, but each pair is
antiparallel with the adjacent pairs and we refer to this as
the “double-chain state” [see Fig. 13(b)]. The double-chain
state is particularly interesting since the energy difference
between different stackings in the z direction of the (001)
plane of spins, shown in Fig. 13(c), is only O(100) mK, and

this state is thus quasidegenerate. Without the long-ranged
dipolar interaction, different stackings have exactly the same
(degenerate) energy. This is yet another manifestation of a self-
screening effect emerging in spin ice [12,20,21]. This stacking
degeneracy signals the “refrustration” of the DSM [20,22]
alluded to in the title. It arises from the mutual competition
of the (dimensionless) perturbative energy scales (J2/Jeff ,
J3a/Jeff , J3b/Jeff ; Jeff ≡ [5D − J1]/3) (Refs. [16,20]) which
mask the true ground-state order parameter at q = ( 1

2
1
2 0).

For example, the main intensity peak in S(q) at a parameter
point within the double-chain region at temperatures above the
transition temperature appears at q = ( 1

2
1
2

1
2 ), rather than at

the ground-state order wave vector q = ( 1
2

1
2 0). These results,

which are reminiscent of the phenomenology at play in the
three-dimensional ANNNI model [51], are further discussed
in Appendix B.

To determine the phase boundary, we are prompted by the
observation from the Monte Carlo simulations that the two
ordered states are formed by ferromagnetically ordered spin
chains. By considering these spin chains as the fundamental
units of the system, we determine the following equation for
the phase boundary:

J3a + J2

3
+ 0.02D = 0. (6)

In the boundary region, phase competition increases the
energy while decreasing the critical ordering temperature
towards either ground state. This is explicitly demonstrated
in Fig. 3, where the average energy is displayed as a
function of temperature and J3a as one crosses the boundary
at J3a

∼= 0.023 K for J1 = 3.41 K. While there is a clear
first-order transition away from the boundary, it is much
smoother at the boundary. The precise determination of
the order of the phase transitions is beyond the scope of
this work. Having determined the key candidate long-range-
ordered phases for Dy2Ti2O7, as well as the location of the
phase boundary separating the competing ground states, we

0.020
0.025

0.030
0.06

0.08
0.10

0.12
0.14

1.38
1.37
1.36

Energy [K]

J3a [K]
T [K]

FIG. 3. The average thermal energy as a function of T and J3a

near the boundary between the single- and double-chain states for
J1 = 3.41 K. The phase boundary is located at J3a ≈ 0.0228 K and
is marked by a red band. The phase transition is clearly first order
away from the boundary, while the critical temperature is suppressed
with the transition appearing to be close to continuous at the
boundary.
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FIG. 4. Neutron structure factor and zone boundary scattering in the (hhl) plane across the phase boundary. (a) Experimental neutron
scattering data at 0.3 K (Ref. [40]) with a section of the zone boundary (ZB) highlighted. (b) Deviation from constant scattering along the
boundary segment ZB in the J1-J3a plane calculated through Monte Carlo simulations using Eq. (7). The phase boundary according to Eq. (6),
in combination with Eq. (5), is shown as a white line. Note that the most “q-space intensity-flat” ZBS (dark blue) is centered along the phase
boundary. The corresponding value for the experimental data is σZBS = 0.11, in remarkably good agreement with the Monte Carlo result along
the phase boundary. (c)–(h) Monte Carlo results for S(q) in the vicinity of the single-chain (upper left region) to the double-chain transition
(lower right region) for J1 = 3.41 K at T = 0.5 K. The corresponding parameters in the J1-J3a space are marked by black dots. The intensity
shifts from (0 0 3) to ( 3

2
3
2

3
2 ) as one crosses from the single-chain region (c) to the double-chain region (h).

now proceed to position this material within this parameter
space.

C. Neutron scattering data analysis

As neutron scattering measurements provide direct in-
formation about the spin-spin correlations, an analysis of
available neutron scattering data is a natural starting point for
positioning Dy2Ti2O7 in the J1-J3a phase diagram introduced
in the previous subsection.

Before we begin presenting our results, we briefly comment
on pinch-point singularities in the neutron scattering pattern
of spin ice. The topic of pinch-point singularities in the
equal-time (energy-integrated) neutron scattering data of spin
ice had been the subject of much theoretical [21,52,53] and
experimental [54–56] discussion. Pinch points in dipolar
spin ice arise from the combination of the divergence-free
condition of the coarse-grained magnetization field due to
the two-in/two-out ice rules as well as the long-range dipole-
dipole interaction [21,53], even at high temperature well above
the formation of the spin ice manifold. As pinch points result
from these two generic phenomenologies, they are not, apart

from their ultimate disappearance [57], weighty signatures
of the competing subleading exchange interactions beyond
nearest neighbor that this study aims to expose. We therefore
henceforth omit pinch points in our analysis and discussion of
the neutron scattering data of Dy2Ti2O7.

The main result of our analysis is shown in Fig. 4 where
we consider the evolution of the neutron structure factor S(q)
upon crossing the single-/double-chain phase boundary and
compare our numerical results to existing experimental data.
We display in Fig. 4(a) the sub-Kelvin measurement of S(q)
reported in Ref. [40] and recorded at 0.3 K. We note two
distinguishing features: pronounced peaks of roughly equal
intensity at (0 0 3) and ( 3

2
3
2

3
2 ) and a ridge of rather flat

scattering intensity spanning the Brillouin zone boundary.
We refer to this feature as zone-boundary scattering (ZBS).
The same fundamental features can also be discerned in the
measurement recorded at 1.3 K in Ref. [40], but less clearly
because of the weaker correlations at this higher temperature.

We first analyze the ZBS, whose defining signature ob-
served here is a scattering intensity along the Brillouin zone
boundary that is close to constant. A previous study [36]
showed that ZBS in a dipolar spin ice, in particular Dy2Ti2O7,
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is an indication of competing Ising exchange interactions Jij

beyond nearest neighbor J1, originally the only exchange
coupling taken into account along with the long-range dipolar
interactions in the DSM [20]. A similar phenomenology has
been discussed in the context of the pyrochlore lattice with
classical Heisenberg spins subject to beyond nearest-neighbor
competing superexchange interactions [57].

As a quantitative measure of the ZBS feature in the Monte
Carlo calculations, we use the deviation from flatness

σ 2
ZBS = 1

Nq

Nq∑
i=1

[SMC(qi) − 〈SMC〉]2, (7)

along a zone-boundary (ZB) line segment indicated in the
experimental neutron scattering in Fig. 4(a). The average of
the scattering intensity along the segment is denoted 〈SMC〉
and the simulation was performed for a system size L = 8
with periodic boundary conditions, yielding Nq = 9 distinct q
points on the zone boundary.

We display in Fig. 4(b) a color map of σZBS in the
constrained J1-J3a parameter space and note that the deviation
from flatness is smallest along the phase boundary, indicating
that flat ZBS is confined to the J1-J3a boundary region between
the two competing ground states identified in Sec. III B.

The first main result of our study is that only in the vicinity of
the phase boundary [white line in Fig. 4(b)] is there significant
ZBS as well as peaks of roughly equal intensity at (0 0 3) and
( 3

2
3
2

3
2 ). These wave vectors, equivalent to (1 1 0) and ( 1

2
1
2

1
2 )

in the first Brillouin zone, are the main intensity peaks for
the single- and double-chain states, respectively. This result
can be deduced from Figs. 4(c)–4(h), where we display S(q),
calculated from Monte Carlo simulations, along a cut across
the phase boundary (the solid white line) at J1 = 3.41 K. Note
that the peak at (0 0 3) is pronounced in the single-chain
region above the phase boundary, while the peak at ( 3

2
3
2

3
2 )

dominates in the double-chain region below the boundary, as
expected. Only in Figs. 4(d) and 4(e), close to the boundary,
are the two peaks of similar intensity. Comparison with the
experimental S(q) data thus provides compelling evidence
that the appropriate set of exchange parameters for Dy2Ti2O7

puts the material quite close to the phase boundary between
the single- and double-chain ground states. Note that this
realization was much facilitated by the dimensional reduction
of the Jij parameter space using the above analysis of the [112]
magnetization experiment in Sec. III A.

Considering the extraordinarily slow relaxation observed in
experiments upon cooling [29,30], one could ask whether the
neutron scattering data at 0.3 K are adequately equilibrated
and therefore able to form the basis of a systematic analysis.
It is therefore necessary to consider what effects a possible
freezing of the sample may have on the properties of S(q)
that we consider here. In a Monte Carlo exploration of these
effects, we find that there is no significant change in the ZBS
and no fundamental reciprocal space redistribution in the peak
intensities due to freezing. The details of the Monte Carlo
results supporting this result are discussed in Appendix C. We
therefore conclude that relative (0 0 3) and ( 3

2
3
2

3
2 ) peak intensi-

ties and ZBS in the experimental neutron scattering data place
Dy2Ti2O7 firmly near the boundary between the two compet-
ing states, irrespective of the possibility that the spin dynamics

may have frozen at T > 0.3 K. Furthermore, and quite impor-
tantly, our analysis of the ratio of the peak intensity at (0 0 3)
and ( 3

2
3
2

3
2 ) discussed in Appendix C reaches the very same

conclusion already at T = 1.3 K, where Dy2Ti2O7 has barely
entered the spin ice regime and equilibration is not contentious.

D. Specific-heat analysis

The temperature dependence of the magnetic specific heat
and, most importantly, the magnetic entropy, is one of the
key indicators of the formation of the spin ice manifold. It
is therefore necessary to consider how the recent specific-heat
measurements [30] on Dy2Ti2O7 fit in with the spin interaction
model parametrized above to describe the main features of the
neutron scattering pattern.

In the previous section we showed that neutron scattering
data for Dy2Ti2O7 are well described by the dipolar spin
ice model with up to third-nearest-neighbor exchange. Our
analysis of the neutron scattering data indicates that the
material sits near the boundary between two ordered classical
states and that our results are in good agreement with a previous
analysis that did not rely on neutron scattering data [36].
On the boundary, we find that the system exhibits a Pauling
entropy plateau for temperatures 200 mK � T � 600 mK
(see Fig. 9). In possible contradiction with this conclusion
stands the recent specific-heat measurement employing very
long equilibration time scales [30] which finds a rise of their
raw Craw(T ) specific-heat data below the unexpectedly high
temperature T ∗ ∼ 0.5 K and a consequential lack of a Pauling
entropy plateau. We investigate whether the specific-heat data
can be modeled with our constrained J1-J3a parameter space.
However, before proceeding to do so, we revisit what is
the expected nuclear specific-heat contribution Cnuc(T ) to
the low-temperature (T � 1 K) specific-heat data reported in
Ref. [30]. We then assess whether the results for the electronic
specific heat (alone) are consistent with our conclusion based
on our neutron scattering analysis.

1. Nuclear specific heat in Dy2Ti2O7

Dy2Ti2O7 and Ho2Ti2O7 are the two prototypical dipolar
spin ice materials. The latter, with its low neutron absorption
cross section has been a favorite for neutron scattering
studies [17,56,58]. On the other hand, the very large hyperfine
contact interaction in Ho makes Ho2Ti2O7 less attractive
for specific-heat measurements, with the nuclear contribution
to the specific heat overshadowing the electronic part for
T � 1.5 K [58–60]. Conversely, Dy2Ti2O7, because of the
small hyperfine contact interaction of the only two nuclear
spin-carrying 161Dy and 163Dy isotopes in Dy2Ti2O7 with
natural Dy isotope abundance, has generally been viewed as a
much better suited compound for calorimetric measurements.

In their work, Pomaranski et al. [30] argued that the nuclear
contribution to their (presumed) equilibrated specific-heat
measurements down to 0.35 K is entirely negligible. To reach
that conclusion, the authors of Ref. [30] referred to the nuclear
specific heat Cnuc(T ) estimated for the Dy3Ga5O12 garnet
in Ref. [61]. This estimation, transferred to Dy2Ti2O7 using
the high-temperature series expansion form for Cnuc(T ) of
Ref. [61] is quantitatively incorrect since the low-temperature
static Dy3+ magnetic moment in Dy3Ga5O12 is about ∼4.5 μB,
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FIG. 5. Goodness of fit of Monte Carlo data compared to experimental specific heat. (a)–(d) RMS error deviation σC of the dipolar
spin ice model in a constrained J1-J3a parameter space compared to recently reported specific-heat measurements [30]. The experimental
specific-heat data displayed in (e) are the raw data minus the calculated nuclear portion Cexpt(T ) ≡ Craw(T ) − Cnuc(T ) (see Appendix D). The
label above each panel gives the temperature range of the fit. A dark blue color indicates a good fit, while white regions are off the scale.
(e) Specific heat divided by temperature for the experimental data (thick black line), a representative point in the upper basin (red open circles
and red line), a representative point in the lower basin (filled green up triangles and green line) and a point on the boundary (filled blue squares
and blue line). The corresponding J1-J3a points are marked by correspondingly colored stars in (d). (f) The minimal RMS error in the entire
J1-J3a plane as a function of the lower limit of the temperature range of the fit Tmin. Note the rapid increase in the RMS error below T ≈ 0.7 K,
indicating the rapid onset in the failure of the model to describe the experimental specific-heat data Cexpt(T ).

and thus significantly smaller than the ∼9.9 μB value in
Dy2Ti2O7. In practice, this means that the net hyperfine contact
interaction A〈J z〉, arising in the nuclear hyperfine term AI · J ,
where I is the nuclear spin and J is the total electronic spin,
was implicitly taken to be roughly 9.9/4.5 ∼ 2.2 times too
small in Ref. [30]. Since Dy3+ has very strong Ising easy-axis
anisotropy in Dy2Ti2O7, the nuclear partition function fully
factorizes out from the electronic one [62]. As the nuclear
specific heat scales as ∼A2〈J z〉2/T 2 for temperature T 	
A〈J z〉, we argue that the nuclear specific heat estimated at
T ∼ 0.5 K in Ref. [30] to be about 4.5 times too small.
Appendix D discusses in more detail the subtraction of the
nuclear specific heat Cnuc(T ) from the raw experimental
data Craw(T ), reported in Ref. [30], with the magnitude of
the correction displayed in Fig. 18. In what follows, we
refer to the experimental (electronic) magnetic specific heat
Cexpt(T ) to be compared with the Monte Carlo data, defined
as Cexpt(T ) ≡ Craw(T ) − Cnuc(T ).

2. Magnetic specific heat

Similarly to the analysis of the neutron scattering data, a
goodness of fit parameter is required to assess the ability of the
model to describe the experimental specific-heat data Cexpt(T )
against the Monte Carlo simulation data CMC(T ). In this study,
we calculate the specific-heat goodness of fit σC according to

σ 2
C =

NT∑
i=1

[CMC(Ti) − Cexpt(Ti)]2

T 2
i NT

, (8)

and we use NT = 42 distinct temperatures Ti between T =
0.45 and 4 K. The experimental data Cexpt(Ti)/Ti come from
three different sources: below T = 0.8 K from Pomaranski
et al. [30], between 0.8 and 1.4 K from Klemke et al. [33],
and above 1.4 K from Higashinaka et al. [34]. By applying a
cubic spline fit to the experimental data, suitable temperature
points Ti were selected.

We display in Fig. 5 the RMS deviation σC of Monte Carlo
data CMC(T ) from Cexpt(T ) (see Sec. II B), which we refer to
as RMS in Figs. 5(a)–5(d) and Fig. 5(f). The temperature
interval for the comparison is extended from [1–4] K in
Fig. 5(a) to [0.45–4] K in Fig. 5(d). We find a single wide
basin of low σC ∼ 0.01 for the [1–4] K high-temperature range
[Fig. 5(a)], but observe that the quality of the fit deteriorates
rapidly to σC ∼ 0.08 with two separate basins of lowest σC

developing when the temperature range is extended to include
the experimental upturn at T � 0.5 K [Fig. 5(d)].

If the upturn in the experimental specific heat were caused
by an impending ordering transition in the material at a critical
temperature Tc ∼ [0.25–0.30] K, we would expect that points
away from the phase boundary would naturally yield a better
fit to the experimental data since the transition temperature
is suppressed by phase competition in the vicinity of the
boundary, as was explicitly demonstrated in Fig 3. To further
analyze this, we display in Fig. 5(e) the specific heat for a point
in the upper basin (J1 = 3.30, J3a = 0.07), the lower basin
(J1 = 3.44, J3a = −0.02), and on the boundary (J1 = 3.38,
J3a=0.02). As expected, the specific heat at the two points
away from the boundary turn up at a higher temperature and
therefore yield a somewhat better match to the experimental
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data. However, note that as the temperature range of the fit is
extended below Tmin = 0.7 K there is really no point in the
parameter space that matches the experimental data well. In
Fig. 5(f), we plot the minimal RMS error (RMSmin) in the entire
J1-J3a plane as a function of the lower limit of the temperature
range of the fit Tmin.

The rapid increase of the RMS error below 0.7 K indicates
that the observed rise of the specific heat is not caused by an
impending ordering transition in the material since the model
of Eq. (1) should naively be able to describe such a transition
while maintaining a not too strongly temperature-dependent
RMS deviation between CMC(T )/T and Cexpt(T )/T .
The reason for this increase in the RMS deviation is that the
ordering transition for parameter points far away from the
boundary is strongly first order, as was shown in Fig 3. We
would therefore expect only small pretransitional fluctuations,
and a very rapid and sudden rise of the specific heat. The
Monte Carlo results for the two basins (red and green curves)
fall deeper than the experimental (black) curve, and rise more
rapidly, indicating that the experimental data are unable to
keep up with the first-order transition of the DSM with Jij

parameters corresponding to the upper or lower basin. In the
next section, we further elaborate on this point by making a
detailed comparison of the neutron scattering and specific-heat
data (see in particular Fig. 9).

E. Comparison of neutron data and specific heat

In the previous two sections we found that the neutron
scattering structure factor S(q) indicates an exchange pa-
rameter set close to the phase boundary between the two
relevant ordered phases, while the recent specific-heat data
are more compatible with a parameter set well within one
of the two ordered phases. To examine which alternative is
most likely, we begin by ruling out the existence of a region
in the parameter space that reconciles the S(q) and Cexpt(T )
measurements. We choose to characterize S(q) by the ratio
r ≡ S(0 0 3)/S( 3

2
3
2

3
2 ), which we found in Sec. III C to be

a revealing overall indicator of the spin-spin correlations in
Dy2Ti2O7. For the specific heat we consider the Cexpt(T )/T

RMS deviation σC . We divide the J1-J3a space into a grid of
points for which we calculate the ratio r and σC . We choose
to calculate the neutron scattering ratio r at T = 1.3 K since
we know that there are no experimental equilibration issues at
this temperature. The specific-heat deviation σC was evaluated
for the [0.45–4] K temperature interval in order to include the
experimentally observed upturn in the specific heat. In Fig. 6,
we plot r versus σC for all the points in the J1-J3a space. In
order to accommodate both experiments, the r coordinate for
a point should be close to the experimental value r ∼= 1.13
at T = 1.3, while σC should be small. In Fig. 6, we have
indicated the experimental value of r = 1.13 with a red band,
and a good specific heat match (σC < 0.2) with a blue band. We
note that there are points within the red band: these correspond
to parameter values in the boundary region. We also note that
there are no points within the blue band, emphasizing the
conclusion of the previous section that there is no parameter
set able to match the recent specific-heat data well, irrespective
of the quality of fit to the neutron scattering data. The two
branches of the scattered points that reach a minimum σC
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FIG. 6. Ratio of neutron intensity versus goodness of specific-
heat fit in Monte Carlo. The J1-J3a space has been parametrized on a
mesh. For each point, the structure factor ratio r ≡ S(0 0 3)/S( 3

2
3
2

3
2 )

at T = 1.3 K is displayed against the specific-heat deviation from
experiment [30], σC for the [0.45–4] K temperature interval. The
horizontal red band is centered at the experimental ratio of r ∼= 1.13,
while the vertical blue band indicates the region of a good match with
the experimental data (σC < 0.2). Note that there are no points close
to the intersection of the two bands. Such points would represent
parameter sets that model both the experimental neutron scattering
and specific-heat data well.

of about 0.04 correspond to points in the upper and lower
basins, discussed in the previous section. Hence, the present
model is unable to simultaneously describe the specific heat
[Cexpt(T )] and neutron scattering [S(q)] experiments. We have
performed extensive Monte Carlo simulations to verify that
this conclusion still holds if we add a nonzero fourth-nearest-
neighbor interaction J4 and relax the [112] experiment-based
constraints well beyond the optimal Eqs. (4) and (5), as detailed
in Appendix A. For Fig. 6 we have considered parameters in
the range (all in units of Kelvin) 2.8 < J1 < 4.0, |J3a| < 0.15,
and |J4| < 0.15, with corresponding J2 and J3b values given
by Eqs. (5) and (4), respectively. Note that the conclusion
of this analysis also holds if we calculate the neutron ratio
r at T = 0.3 K and compare our Monte Carlo result to the
experimental value at this lower temperature.

To further assess the likelihood of a parameter set in the
upper or lower basin versus a parameter set on the boundary,
we explicitly calculate S(q) for the three parameter points
indicated by stars in Fig. 5(d). In addition, we show results
for the parameter set determined in Ref. [36], referring to
this particular parameter set as the “g-DSM∗.” A summary of
the naming convention and parameter values we examine are
given in Table I. In Figs. 7(a)–7(d) we display the neutron

TABLE I. Named parameter sets. The first three sets are indicated
by stars in Fig. 5(d). In all cases, the dipolar constant D = 1.3224 K
and all parameter values are given in Kelvin.

Model J1 J2 J3a J3b

Upper 3.30 −0.0949 0.07 −0.0167
Boundary 3.38 −0.1349 0.02 0.0167
Lower 3.44 −0.1649 −0.02 0.0433
g-DSM∗ 3.41 −0.14 0.025 0.025

024402-9



P. HENELIUS et al. PHYSICAL REVIEW B 93, 024402 (2016)

T=0.5 K

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

1

2

3

4
boundary

0.50

0.75

1.00

1.25

1.50

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

1

2

3

4
upper

0.5

1.0

1.5

2.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

1

2

3

4
lower

0.5

1.0

1.5

2.0

2.5

(a) (b)

(c) (d)

(e)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

1

2

3

4
g DSM

0.25

0.50

0.75

1.00

1.25

1.50

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

1

2

3

4
g DSM

0.5

1.0

1.5

T=0.3 K(f)

experimental

FIG. 7. Monte Carlo simulation results for the neutron structure factor S(q) at T = 0.5 K calculated for the four parameter sets in Table I
in panels (a)–(d). The maps can be compared to the experimentally measured structure factor at T = 0.3 K in panel (e) (Ref. [40]). Points of
interest are the broad intensity maxima centered around q = (0 0 3) and q = ( 3
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2 ) and the ZBS pattern. Note that the experimental intensity

maximum at q = ( 3
2

3
2

3
2 ) is more closely matched by the structure factor for the g-DSM∗ parameter set calculated at T = 0.3 K, shown

in panel (f).

scattering structure factor for these four parameter sets. The
results can be compared to the experimental structure factor,
nominally measured at T = 0.3 K. The experimental data
agree remarkably well with the structure factor calculated for
the point on the boundary and the g-DSM∗ parameter set,
while there are major differences between the experimental
data and the results for the parameter values in the upper
and lower basins. Also note that the Monte Carlo result for the
g-DSM∗ parameter set at T = 0.3 K, shown in Fig. 7(f) appears
even closer to the experimental result than Fig. 7(a). This is
surprising since, as argued in Sec. III C, one could expect the
sample to freeze around T = 0.5 K. We therefore take Fig. 7 as
further strong evidence that the appropriate parameter set for
Dy2Ti2O7 is located close to the phase boundary. We arrive at
the very same conclusion by considering Fig. 8, which makes
the same comparison as Fig. 7, but at the elevated temperature
T = 1.3 K, where the sample is well equilibrated.

We conclude this section by examining the low-temperature
behavior of the specific heat and entropy of the four parameter
points examined in the previous paragraph. Using the Monte
Carlo method, we calculate C(T )/T and integrate this function
to obtain the entropy S(T ). The result is shown in Fig. 9.
Consider first the upper panel showing the specific heat. The
specific heat for the points in the upper and lower basins rises
very abruptly due to the strong first-order transition and lack
of pretransitional fluctuations, as discussed in the previous
subsection. The transition temperature is in the 0.30–0.32 K
interval, immediately below the last experimentally measured

temperature of 0.34 K in Ref. [30]. This suggests that if
specific-heat measurements could be carried out to slightly
lower temperature than the one considered in Ref. [30], one
could experimentally resolve whether the upturn is indeed
caused by an ordering transition as described by the g-DSM.
In the lower panel of Fig. 9, we find that the Pauling plateau
is not developed over any significant temperature interval for
the parameter points in the upper and lower basins, while it is
clearly visible in the 0.2–0.6 K range for the points close to
the boundary (including the g-DSM∗).

While we find that there is no parameter set that is
compatible with both neutron scattering data and the recent
specific-heat measurements down to 0.34 K, we do find
that neutron scattering data down to nominally 0.3 K and
specific-heat data above 0.7 K are both consistent with a
parameter set placing Dy2Ti2O7 near the boundary between
two competing long-range-ordered ice-rule obeying states.
While the low-temperature rise in the specific heat could
indicate a parameter set in the upper or lower basin, we find
this unlikely since our analysis shows that these parameter
points yield spin-spin correlations that are incompatible with
neutron scattering data already at 1.3 K.

While it was not obvious before initiating this study, we
have discovered that the g-DSM∗ parameter set of Ref. [36]
almost satisfies our J1-J2 and J3a-J3b constraints, and is also
located very close to the phase boundary. It therefore appears
that the J3a = J3b constraint assumed in Ref. [36] is almost
realized in Dy2Ti2O7, although this was not a priori evident.
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One should note that the main goal of Ref. [36] was to
investigate to what extent a model of finite-size clusters of
magnetic moments can describe the neutron scattering in the
spin ice regime of Dy2Ti2O7. It was not aimed at determining
an optimal exchange parameter set for this compound. That
notwithstanding, the present analysis confirms that the g-
DSM∗ parameter set of Ref. [36] appears fairly appropriate for
Dy2Ti2O7. For example, one notes that the g-DSM∗ parameter
set has also been found to accurately model a [111] field
experiment [36], as well as the specific heat for a number
of diamagnetically diluted samples of Dy2−xYxTi2O7 [63] for
temperatures above T ∼ 0.5 K.

To summarize: The fact that the parametrization of the
g-DSM obtained on the basis of the main generic neutron scat-
tering features does not match the recent carefully equilibrated
specific-heat measurements [30] in the lower temperature
range 0.35–0.7 K leads to the second main result of our
study: the upturn in the specific heat is a strong indication
that, at temperatures below 0.7 K, some new physics becomes
relevant which cannot be readily exposed by the model of
Eq. (1). Exploring two such possible causes is the topic of the
next subsection.

F. Quantum effects and random disorder

From our analysis of the neutron scattering data, we
conclude that the recently observed upturn in the specific heat
is not caused by an impending ordering transition within the
g-DSM. We therefore consider what would seem the next most
likely causes of the specific-heat upturn below T ∼ 0.5 K:
quantum effects and random disorder.
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1. Quantum effects and non-Ising exchange

An intriguing possibility is that quantum effects could be
responsible for the increasing specific heat below 0.5 K as
found at low temperatures in simulations of a spin- 1

2 XXZ
model on the pyrochlore lattice [45]. In this context, Ref. [41]
considers the effects of a hexagonal “ring exchange” tunneling
term on the g-DSM, and finds that if the tunneling amplitude
g is greater than the classical ordering temperature Tc for
g = 0, a quantum spin liquid state may be stabilized. Given
our conclusion that Dy2Ti2O7 is located at the phase boundary
between two classical ordered states, where the critical
temperature is suppressed to about Tc ∼ 70 mK (see Fig. 3), it
is perhaps conceivable that quantum (non-Ising) terms become
relevant at higher temperatures than previously thought. We
note that a simple spin- 1

2 XXZ model results in a tunneling

strength g = 12 J 3
±

(Jzz)2 , where Jzz and J± are the longitudinal
(Ising) and transverse (XY) exchange couplings [64]. The
Monte Carlo work of Ref. [45] finds that the specific heat in
such a model starts to increase below a crossover temperature
T ∗ ∼ g. To assess whether g is large enough in Dy2Ti2O7

to cause the upturn in the specific heat at a temperature
T ∗ ∼ 0.5 K, we analyze the expected scale of the quantum
corrections to the Ising part of the Hamiltonian (1).

One possible route to transverse couplings comes from
quantum corrections to the effective Hamiltonian through
virtual crystal-field excitations [65]. Due to the large gap
� ∼ 300 K to the first-excited crystal-field level and the
Jeff ≡ [5D − J1]/3 ∼ 1 K scale of the interactions acting
within the full crystal-field manifold, quantum corrections
can be expected to appear perturbatively at a temperature of
order J± ∼ J 2

eff/� ∼ 3 mK and are therefore not detectable
at a temperature of 0.5 K. Off-diagonal terms can also
appear through the interaction of high-rank multipoles [46,47]
involving the J = 15

2 angular momentum components within
the 6H15/2 ground-state electronic manifold of Dy3+. Due
to the dominant | ± 15

2 〉 composition of the ground-state
crystal-field doublet [15,16], the largest contributions to the
transverse S± effective spin- 1

2 operators would originate from
rank-15 multipolar interactions between the Dy3+ ions [47].
The most significant source of such multipolar interactions are
superexchange processes mediated through the neighboring
oxygen ions [47]. However, these superexchange processes
predominantly generate interactions between multipoles of
rank seven or less [46,47,66]. Such multipole interactions
will thus only connect the subleading spectral components
of the crystal-field ground-state doublet CmJ

|J = 15
2 ,mJ 〉,

mJ 
= ± 15
2 . From the experimentally observed large magnetic

moment μ ∼ 10 μB of Dy3+ in Dy2Ti2O7, we can infer that
these small CmJ

components are at most CmJ
∼ 10% of the

leading CmJ =±15/2 ≈ 1 component [47].
With Jzz ∼ 4Jeff and J⊥ ∼ 4(CmJ

)2Jeff/(C15/2)2, where
the prefactor 4 arises from moving from the Ising Sz

i = ±1
convention in this work to the S = 1

2 convention of Ref. [64],
we therefore expect g to be at the scale g ∼ 0.05 mK. Thus,
despite the much suppressed critical temperature Tc ∼ 70 mK
that we exposed above (see Fig. 3), we argue that quantum
effects are unlikely to be responsible for the rise in the
specific heat detected at a temperature T ∗ ∼ 0.5 K given

that Tc/g ∼ 104, hence far up in the classical dipolar spin
ice regime, unlike in the proposal of Ref. [41]. While we
expect that further calculations would lead to a more accurate
estimation of J⊥, and thus of g, it would seem unlikely to lead
to a rescaling of g by four orders of magnitude.

After having argued that the rise of Cexpt(T ) below T ∗ ∼
0.5 K cannot be explained by a classical dipolar spin ice
model that consistently describes the neutron scattering data,
we have now argued that the same rise cannot originate from
the development of a quantum coherent regime below T ∗.

2. Random disorder

Another potential origin for the rise of the electronic
specific heat at T � 0.5 K is a Schottky-type response induced
by random disorder. It was recently demonstrated that disorder,
in the form of local magnetic impurities, may explain the long-
time relaxation in Dy2Ti2O7 (Ref. [29]). Possible physical
realizations of disorder include stuffed spins [42,43] or local
Dy3+ moments with easy-plane anisotropy due to oxygen
vacancies affecting the crystal field [31] or the concomitant
magnetic Ti3+ magnetic impurities. We now illustrate that
such a generic phenomenon could explain the rise of C(T ) for
T � 0.5 K.

The quantitative microscopic description of the effects of
disorder in highly frustrated magnetic materials is a complex
and rich problem [13,14]. In the present case, the complexity
of such a task is further compounded by the fact that all
pertinent forms of random disorder (e.g., oxygen vacancies,
stuffing, etc.) have not yet been fully identified and their
effects quantified in Dy2Ti2O7. It appears that the problem of
dilution of the magnetic Dy3+ and Ho3+ ions by nonmagnetic
Y3+ in Dy2Ti2O7 and Ho2Ti2O7 is the simplest case of
random disorder, with a description in terms of a mere
site-diluted version of a dipolar spin ice model accounting
well for the specific-heat data for T � 0.5 K in Dy1−xYxTi2O7

and Ho1−xYxTi2O7 [63] (see, however, the recent work in
Ref. [67]). On the other hand, we expect the microscopic
description of oxygen vacancies or rare-earth ions stuffing
the pyrochlore B site normally occupied by nonmagnetic
transition-metal ions, and its ultimate quantitative description
via a controlled numerical calculation, to be significantly more
complicated. Indeed, one would expect that deformation of the
superexchange pathways and modifications of the local crystal
field would occur. This would result in a randomization of the
Jij exchange couplings and of the dipolar coupling (D → Dij )
as well as possibly induce non-Ising (transverse) exchange
terms coupling the other components of the effective spin- 1

2

describing the crystal-field doublet of Dy3+. In this work,
we consider a minimal model of dilute random disorder in
Dy2Ti2O7. Our goal is not to develop a quantitative description
of the role of disorder on the low-temperature properties of
Dy2Ti2O7. Rather, we wish to illustrate that the generic effects
of dilute random disorder with a realistic energy scale � could
perhaps naturally explain the rise of Cexpt(T ) for T � T ∗.

With this agenda spelled out, we now proceed and consider
the effects of stuffed spins in the model defined by Eq. (1)
for Dy2Ti2O7. The stuffed spins are coupled to the Dy3+ py-
rochlore backbone through Eq. (3), the � model. We perform
loop Monte Carlo simulations for varying stuffing percentages
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FIG. 10. Effects of impurities on specific heat and neutron scattering. Specific heat C(T )/T for the � model with
(a) � = 0.5 K, (b) � = 1.0 K, and (c) � = 2.0 K with the percentage of stuffed spins p = 1%, 2%, 3%, and 4%. The upper panel shows the total
specific heat, while in the lower panel the specific heat of the clean system (p = 0) has been subtracted from the disorder average of the upper
panel revealing the impurity contribution. The neutron structure factor S(q) for the disorder-free (p = 0) g-DSM model [36] at T = 0.5 K is
shown in (d) and with p = 4% stuffed spins included in (e). The last panel (f) shows the ratio of the structure factor for the clean (d) and stuffed
(e) systems.

p and coupling constants � and display the results in Fig. 10.
Disorder averages have been performed over 32 independent
disorder configurations since the variation between different
configurations is quite small. Figures 10(a)–10(c) contain the
specific-heat data for � = 0.5, 1.0, and 2.0 K, respectively.
Results for stuffing percentage p = 1%, 2%, 3%, and 4%
along with the experimental result are shown in the upper
subpanels, while in the lower subpanels we have subtracted
the specific heat for the clean g-DSM model, exposing the
impurity contribution to the specific heat. We see that, at
least for � = 0.5 and 1.0 K, the impurity contribution is
roughly linear in p, indicating predominantly independent
impurities. The impurity contribution also shifts to higher
temperature as � is increased, as we would expect from a
simple two-state Schottky model. In this case, the scaling is
more complicated since each impurity spin interacts with the
electronic spin on the six nearest neighbors, and we would
expect the stuffed spin to effectively renormalize the local
couplings. Again, our goal is not to perform an exhaustive
study of this specific model. Rather, we wish to illustrate
that such a simple effective local impurity model can cause
an upturn in rough qualitative agreement with the measured
specific heat with a stuffing ratio at the 1% level and a realistic
� = 1 K energy scale. Interestingly, we also note that this
level of stuffing does not produce a very strong response
in the neutron structure factor. In Figs. 10(d) and 10(e), we
display the calculated S(q) for the g-DSM model with p = 0%

and 4% stuffing, respectively. The disorder average has here
been performed over 96 disorder configurations. The effects
are rather hard to discern in an energy-integrated scattering
profile (i.e., equal-time correlations computed through the
present classical Monte Carlo simulations) with the ratio of
the two scattering intensity profiles, plotted in Fig. 10(f),
showing a change of about 10%. With the recent realization
that stuffing of the heavy rare-earth (RE) ions (RE = Yb,
Er, Ho) is at play in Yb2Ti2O7, Er2Ti2O7, and Ho2Ti2O7

(i.e., RE3+ replacing Ti3+) [42,43], it would appear plausible
that some level of stuffing may also occur in Dy2Ti2O7

given that the ionic radius of Dy3+ is only ∼1% larger than
Ho3+ [68]. Further experimental investigations are required
to assess whether or not this is the case. While 1% stuffing
is possibly a bit too high for Dy2Ti2O7 samples, our results
do show that effective local random magnetic disorder in
the g-DSM associated with an energy scale � ∼ 1 K can in
principle capture the essential features observed in calorimetric
measurements without creating a significant contradiction with
available neutron scattering data.

IV. CONCLUSION

In summary, this study gives a natural interpretation of the
main features of the structure factor S(q) observed in neutron
scattering measurements on the Dy2Ti2O7 spin ice material in
terms of competing phases. Remarkably, we find that neutron

024402-13



P. HENELIUS et al. PHYSICAL REVIEW B 93, 024402 (2016)

scattering experiments on a single crystal of Dy2Ti2O7 place
the material at the most interesting point in the phase diagram,
i.e., precisely near the boundary between competing single-
and double-chain long-range-ordered phases. This region
displays unusual properties including masked ground-state
order and extremely slow magnetic relaxation associated with
the coarsening of stacking defects. We expect the equilibration
of these defects to be a further mechanism, beyond the
mere dynamical arrest associated with the ice-rule formation,
impinging on the approach to equilibrium of Dy2Ti2O7.

The observation of such accidental competing ground states
suggests that Dy2Ti2O7 could be extremely sensitive to random
disorder or quantum fluctuations. Furthermore, our analysis of
the recently observed upturn in the specific heat [30] shows that
this is caused by terms not present in the classical generalized
dipolar spin ice model. Quantum corrections appear to be much
too small in magnitude to become noticeable at temperatures
as high as T ∗ ∼ 0.5 K where recent thermally equilibrated
specific-heat measurements [30] find an upturn, even after
correcting for the nuclear specific heat. We therefore believe
that random disorder, either in the form of low level of
stuffing [43] or oxygen vacancies [31], or both, is the most
likely source of the upturn. There is also an interesting
scenario in which random disorder could, by lowering the
local symmetry of the crystal field, destroy the local Ising
nature of the moments and induce quantum fluctuations in
the nearby Dy3+ moments. A study that would assess the
level of Dy3+ stuffing onto the B site otherwise occupied by
Ti4+ in Dy2Ti2O7, as was done in Ref. [43] for Ho2Ti2O7,
Er2Ti2O7, and Yb2Ti2O7, would therefore be highly desirable.
More well-equilibrated experimental studies of a variety of
samples will be required to determine the exact nature of
such impurities and their specific role on the low-temperature
thermodynamic properties of Dy2Ti2O7. As a corollary, our
work suggests that a (fairly) well-defined Pauling plateau may
be observed in well-equilibrated measurements on samples
of high-stoichiometric purity. Perhaps the most important
conclusion of our work is the following one: Notwithstanding
the fact that the two disorder-free models that are partially
able to describe the specific-heat data between 0.35 and 0.7 K
are inconsistent with the main neutron scattering features,
both models predict a phase transition to long-range order
near 0.30 K. Consequently, it would seem imperative to push
the low-temperature limit of well-equilibrated calorimetric
measurements down to, say, 250 mK. This work predicts that
the disagreement with the best classical dipolar spin ice model
for Dy2Ti2O7 would then become vividly manifest, with such
an experiment providing important clues as to the ultimate
low-temperature fate of the spin ice state in this archetypal
spin ice material.

ACKNOWLEDGMENTS

It is a pleasure to thank our experimental colleagues D.
Pomaranski and J. Kycia (specific heat), Sakakibara and
Hiroi ([112] experiment), and T. Fennell (neutron scattering)
for sharing their data and for stimulating discussions. We
also acknowledge N. Shannon and P. McClarty for useful
discussions. This work was supported in part by the NSERC
of Canada and the Canada Research Chair program (M.G.,

Tier 1). P.H. is grateful for the computer support of PDC-
HPC (Ferlin) at KTH and the financial support by the
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APPENDIX A: PARAMAGNETIC CONSTRAINTS FROM
[112] MAGNETIZATION MEASUREMENTS

The constraints that we invoke between the Jij couplings
to analyze the specific-heat and neutron data in the main
part of the paper result from considerations of an experiment
in which a strong magnetic field is applied near the cubic
[112] direction [37–39]. The main effect of the field is to
maximally polarize the moments along their local [111] Ising
directions on three of the four fcc sublattices that comprise
the pyrochlore lattice and which form kagome layers. The
spins on the remaining sublattice form triangular layers [2],
as illustrated in Fig. 2. Spins on these triangular layers interact
with each other only through the dipolar and third-nearest-
neighbor interactions J3a and J3b since they reside on the
same fcc sublattice [69]. While the spins on the “triangular
sites” are perpendicular to, and thus decoupled from, the
[112] field component, they are still subject to an internal
field hint from the polarized spins on the kagome layers.
This internal field enforces the ice rules so that the spins
in the triangular layers point “in” along the [1̄1̄1] direction
(see Fig. 2). Experimentally, this internal “ice-rule” enforcing
field can be canceled by rotating the applied external field
away from the [112] direction [37,39,70], so that it acquires
a component h[1̄1̄1] in the [1̄1̄1] direction parallel to the Ising
axis of the “triangular spins” (see Fig. 2). By tuning this [1̄1̄1]
field component, one eventually reaches a critical field value
h[1̄1̄1]

c when the [1̄1̄1] field component cancels out the ice-rule
enforcing field hint. The experimentally measured value of
the cancellation field is h[1̄1̄1]

c ≡ −hint = −0.28 ± 0.02 T (the
negative sign arises because the applied field has to oppose
the ice-rule enforcing field hint which is along [1̄1̄1]) [38,39].
Theoretically, the cancellation field can be expressed in terms
of our model Hamiltonian (1) of the main text, as

h[1̄1̄1]
c (T)μDykB = 2

3J1 + 4
3J2 − 2.972D, (A1)

keeping exchange couplings Jij up to third-nearest-neighbor
exchange interactions. Since J3a and J3b connect spins on the
same sublattice they do not contribute to the internal field hint.
The dipolar contribution −2.972D was computed using the
Ewald summation method [23]. Using the above equation we
obtain Eq. (4) of the main text:

J2 = − 1
2J1 + 3

4h1, (A2)
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where h1 = μDykBh[1̄1̄1]
c (T) + 2.972D. Inserting h[1̄1̄1]

c =
−0.28 ± 0.02 T (Ref. [39]), μDy = 9.87μB, and D = 1.322
(Ref. [36]) we find that h1 = 2.07 ± 0.13 K. In Fig. 6, the full
range of h1 within the experimental uncertainty was allowed,
while for the other figures the optimal value of h1 = 2.07 K
was used.

A second constraint can be obtained for the third-nearest-
neighbor interactions J3a and J3b by considering the sus-
ceptibility of the spins on the triangular layers. Again,
experimentally, the field component in the [1̄1̄1] direction can
either be varied by a rotation of the applied field or by varying
the vertical [1̄1̄1] field. The susceptibility of the spins on the
triangular planes (which form an fcc lattice) can therefore be
measured as a function of that tunable [1̄1̄1] field component.
The susceptibility depends only on J3a , J3b, and D in our
model Hamiltonian. Through this manipulation [37–39] of the
applied magnetic field, it is thus possible to directly probe
the effect of the third-nearest-neighbor exchange parameters
on the thermodynamic properties of Dy2Ti2O7 in a strong
magnetic field near the [112] direction. We also note that, at
the decoupling field h[1̄1̄1]

c , the above experiment results in
an Ising face-centered-cubic magnet, which is normally not
possible since a unique global easy-axis direction cannot be
defined for a system with cubic global symmetry.

In the experiment of Ref. [39], the susceptibility as a
function of the [1̄1̄1] field component was measured at four
different temperatures: T = 0.29, 0.41, 0.70, and 1.08 K.
With the field component in the [1̄1̄1] direction set precisely
to the cancellation field value h[1̄1̄1]

c , the magnetic moments
on the triangular layer undergo a transition to long-range
ferromagnetic order at Tc

∼= 0.26 K (Refs. [37,38]). As a
result, the [1̄1̄1] susceptibility associated with this transition
is divergent at Tc when the [1̄1̄1] field h[1̄1̄1] is at its canceling
value h[1̄1̄1]

c . When fitting the experimental susceptibility to our
simulation data, the system needs to be sufficiently far away
from the critical temperature to avoid strong finite-size effects
in the simulations. However, the higher the temperature, the
less “structure” the susceptibility has due to the decreasing
correlation length, with the fit consequently becoming less
constrained. Based on these two concerns, we select the data
of Ref. [39] measured at 0.70 K.

We calculate the [1̄1̄1] susceptibility in Monte Carlo
simulations using a system size L = 4, and evaluate the
goodness of fit according to

σ 2
χ = 1

Nh

Nh∑
i=1

[
χMC

(
h

[1̄1̄1]
i

) − χexpt
(
h

[1̄1̄1]
i

)]2
, (A3)

where χMC(h[1̄1̄1]
i ) and χexpt(h

[1̄1̄1]
i ) are the Monte Carlo and

experimental susceptibilities, respectively, determined at the
applied [1̄1̄1] field component h

[1̄1̄1]
i . The RMS deviation

σχ is calculated for a total of Nh = 38 different values of

h
[1̄1̄1]
i ranging from −0.3184 to −0.2418 T. We display σχ in

Fig. 11(a) as a function of J3a and J3b. In order to illustrate
the nature and quality of the fit at a representative point, the
experimental susceptibility χexpt is displayed along with χMC

calculated at J1 = 0.10 K and J3b = −0.04 K in Fig. 11(c). We
also calculate and plot in Fig. 11(b) the difference between the
maximum of the Monte Carlo and experimental susceptibilities

FIG. 11. Determination of the J3a-J3b constraining equation.
Deviations of the susceptibility for the fcc sublattice (defined by the
spins on triangular planes), calculated in the Monte Carlo simulations,
from the experimental data [39] as a function of J3a and J3b. In
(a), the RMS deviation σχ , calculated according to Eq. (A3), is
shown, while in (b) the absolute value of the height difference,
determined using Eq. (A4), is displayed. The dashed black lines
show the parameter range used in Fig. 6 of the main text, while the
optimal relationship lies precisely between the two lines. In (c), the
susceptibility measured in the experiment and calculated in the Monte
Carlo simulation at J3a = 0.10 K and J3b = −0.04 K [indicated
by a white star in panel (a)] is shown on an absolute scale as a
representative example.

precisely at the cancellation field

� = ∣∣χMC − χexpt
(
h

[1̄1̄1]
i = h[1̄1̄1]

c

)∣∣. (A4)

As we see in Figs. 11(a) and 11(b), the optimal fit falls on
a slightly bent curve. The appearance of such a line can
be understood within a mean-field interpretation. Since the
susceptibility at a given temperature depends on the sum of the
interactions, a decrease in the value of J3a can be compensated
for by an increase in the value of J3b. This would keep the
susceptibility constant and lead to a line with negative slope.
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The optimal relations between J3a and J3b that result from
this analysis are (all values in Kelvin)

J3b =
{−0.667J3a + 0.03 : J3a < 0.1,

−0.842J3a + 0.0474 : J3a > 0.1,
(A5)

which is Eq. (4). As a precaution, we also explored the
parameter range beyond the above optimal equations and
allowed J3b to lie within ±0.02 K of the optimal relation
(quite a large range) as shown by the dashed lines in Figs. 11(a)
and 11(b). This extended parameter space was used to generate
Fig. 6 of the main text.

The constraint Eqs. (A2) and (A5) derived above apply to
the case of a sufficiently large [112] magnetic field component
such that, for the temperature T = 0.7 K considered to fit
the data, one can safely ignore the thermal fluctuations of the
spins on the kagome layers. For the temperatures relevant to
this [112] experiment, this is readily achieved for a [112] field
component larger than about 2 T [37–39]. One may then ask
whether the constrained Jij couplings extracted through such
in-field experiment would be significantly renormalized com-
pared to the bare Jij needed to describe the zero-field specific
heat and neutron scattering data? To address this issue, we
first note that with an excited crystal-field doublet at an energy
of order 300 K above the ground-state doublet, one can safely
neglect the field-induced admixing between the ground doublet
and excited doublet for a [112] field of order of 2 T. This field
strength corresponds to a Zeeman splitting of about 20 K for
a magnetic moment of 10 μB (ignoring geometrical factors
arising from projection of the local 〈111〉 Ising direction of the
spins on the triangular layer with the [112] direction). Second,
as the g tensor for the crystal-field Dy3+ ion in Dy2Ti2O7

is strictly Ising type [15], the projection of the microscopic
interionic Hamiltonian into the crystal-field doublet would
not be modified by field-induced perturbative corrections to
the crystal-field ground-state doublet wave functions. Finally,
one notes that in the case of the Er3+ and Yb3+ Kramers
ions in Er2Ti2O7 and Yb2Ti2O7, the anisotropic spin-spin
coupling parameters describing the interactions between all
the components of the effective S = 1

2 spin determined in
large magnetic field [71,72] can be successfully used to
describe, without any adjustable parameters or field-induced
renormalization of the couplings, the zero-field properties
of these compounds [73–75]. On the basis of those three
arguments, we would thus expect that the constrained Jij

parameters for Dy2Ti2O7 determined in a [112] field of 2 T
do not suffer from important field-induced renormalization
compared to the zero-field values that we ultimately seek.

APPENDIX B: PHASE DIAGRAM CALCULATIONS

In order to determine the possible ordered state(s) that may
arise in the system, we first apply mean-field theory [48]
and then carry out Monte Carlo simulations. We employ
mean-field theory to perform a general survey of the entire
parameter range and follow up with a direct inspection of
the low-temperature ordered states found in the Monte Carlo
calculation.

Considering the entire Brillouin zone, we find the mean-
field ordering wave vector to be in the (hk0) plane for the
entire parameter space relevant for for Dy2Ti2O7, namely,

h
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FIG. 12. Mean-field ordering wave vector. Map of the mean-
field ordering wave vector q in the constrained J1-J3a param-
eter space, where the system selects a wave vector along the
(hh0) direction. The broad red band across the middle indicates
the single-chain phase with q = (1 1 0). In the lower part of the
figure, the order is close to the double-chain ordering wave vector
q = ( 1

2
1
2 0). The phase boundary according to Eq. (6) is shown as a

dashed black line.

3.1 K < J1 < 3.5 K and −0.1 K < J3a < 0.1 K. We also
find that h = k and show in Fig. 12 the mean-field ordering
wave vector at the mean-field critical temperature T MF

c along
the (hh0) direction as a function of J1 and J3a . We note a
horizontal band of (1 1 0) order below which there is a gradual
shift through incommensurate h values to, ultimately, a region
with ordering at ( 1

2
1
2 0). At this point, it is important to

realize that the equal-moment constraint does not apply to
the mean-field theory, but limits the admissible ordering wave
vectors of the real material and our model. Furthermore, we
note that this constraint applies also to states with mean-field
ordering wave vectors that are commensurate with the Monte
Carlo simulation cells, such as, for example, a wave vector
( 3

4
3
4 0) (Ref. [76]). Inspecting the low-temperature states in

the Monte Carlo simulation we find that the gradual shift from
ordering wave vector (1 1 0) to ( 1

2
1
2 0), observed at T MF

c in
mean-field theory, is replaced by a direct transition between
these two ordered states, as illustrated in Fig. 3. We now
discuss the nature of the two phases with ground-state ordering
wave vectors (1 1 0) and ( 1

2
1
2 0) found in the Monte Carlo

simulations. These correspond to the upper and lower basins
of Figs. 5(c) and 5(d) in the main text, respectively. We first
focus on the ordered structures at T = 0 before considering
finite-temperature behavior.

As previously found for the simple dipolar spin ice model
with J2 = J3a = J3b = 0 (Ref. [22]), the state at (1 1 0), or
equivalently (0 0 1), corresponds to the “single-chain” state. In
this state, parallel chains of spins order antiferromagnetically
when viewed along a cubic 〈100〉 axis [see Fig. 13(a)].
Inspection of the Monte Carlo spin configuration of the novel
state with propagation vector ( 1

2
1
2 0) reveals a pattern where

pairs of adjacent chains have spins aligned parallel but pointing
in the opposite direction of the adjacent pairs on either side [see
Fig. 13(b)]. This period doubling in the x-y plane is the direct
space origin of why the ordering wave vector is reduced from
(1 1 0) to ( 1

2
1
2 0). We thus refer to this as the “double-chain”

state.
To gain a better understanding of how the competition

between these two states arises from third-nearest-neighbor
interactions [77], we invoke yet another description of the
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(a)

(b)

(c)

[001]

[110]

J’
J

J´
J

J´
J

FIG. 13. Spin configuration in the ordered state. View along
spin chains in the [110] direction. A red circle denotes an entire,
ferromagnetically ordered, chain pointing out of the page, while
a blue circle denotes a chain pointing into the page. A black
bond segment indicates an exchange coupling J ′ = J3b while a
green bond segment denotes coupling J = J3a + J3b + J2/3. The
semitransparent red bar indicates a layer of spin chains, commonly
viewed along the [001] direction, such as in Figs. 1(f) and 1(g) of the
main text. The single-chain state is shown in (a), while a double-chain
long-range-ordered state is depicted in (b). An example of a random
stacking of the double-chain state is shown in (c).

magnetic sites of the pyrochlore lattice. After having viewed
it as a collection of alternating kagome and triangular layers
in the previous section, we now view it as an array of two
sets of one-dimensional spin chains along the [110] and [11̄0]
directions [see Fig. 14(a)]. In the long-ranged-ordered states
observed in the Monte Carlo simulation the spins on each indi-
vidual [110] and [11̄0] chains are ferromagnetically correlated,
and we therefore treat these chains as elementary units. In a
plane perpendicular to the respective direction of the chains,
the two sets of chains form two triangular lattices, which are
decoupled from each other if only exchange couplings J1,
J2, J3a , and J3b are considered. Therefore, we first consider
a triangular lattice formed by spin chains along the [110]
direction and ignore (for the moment) the long-range dipolar
interactions. Each chain couples to two of its nearest neighbors
with the same z coordinate with exchange coupling J ′ = J3b,
while the chain couples to the other four nearest neighbors
with exchange coupling J = J3a + J3b + J2/3, as illustrated
in Figs. 13 and 14(b). Both couplings are determined using the
convention used in Ref. [36] with ẑi · ẑj explicitly included. As
stated above, two third-neighbor coupled sites belong to the
same sublattice with ẑi · ẑj = 1, while two second-neighbor

FIG. 14. Spin chains. (a) The pyrochlore lattice is represented as
a collection of spin chains along the [110] (black atoms and bonds)
and [11̄0] (yellow atoms and bonds) directions. Dashed black bonds
couple different chains together. (b) Further-neighbor interactions J2

(blue dashed line), J3a (green dashed line), and J3b (orange dashed
line) couple different [110] chains together. Two neighboring chains
in the same (001) plane are coupled by J ′ ≡ J3b (per spin) while a
pair of neighboring chains on two adjacent (001) planes are coupled
by J ≡ J3a + J3b + J2/3 (per spin).

sites reside on two different sublattices so that ẑi · ẑj = − 1
3 .

The negative sign does not appear in the definition of J thanks
to an additional negative sign coming from the alternating
directions of spins, represented in their local components
along ẑi , along a “ferromagnetically” ordered chain in the
global [110] direction. In summary, the (001) planes of [110]
spin chains have intraplane nearest-neighbor coupling J ′ and
interplane coupling J .

We thus end up mapping the competing states observed
in the Monte Carlo simulations of the three-dimensional
pyrochlore lattice to a two-dimensional triangular lattice, for
which the ground-state phase diagram can be obtained by
straightforward energy arguments. For J ′ < J , the planes
of spin chains form ferromagnetic sheets whose directions
alternate between planes. This state corresponds to the
single-chain phase [Fig. 13(a)]. For J ′ > J , the [110] spin
chains within the same (001) plane form an antiferromagnetic
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state, corresponding to the double-chain state [Fig. 13(b)].
The interplane coupling is frustrated and these planes are
decoupled with different stackings of the antiferromagnetic
planes being degenerate [Fig. 13(c)]. Moreover, due to the
antiferromagnetic ordering of the spin chains within a given
(001) plane, the long-range dipolar interaction is well shielded
for an arbitrary stacking of the planes (i.e., with a propagation
vector along [001]). In Fig. 13, the structure of the single- and
double-chain states is shown from the spin-chain perspective.

The boundary between the two phases is determined by
the condition J = J ′ if the long-range dipolar interaction is
not included. The dipolar interaction D shifts the boundary
marginally by a small constant. By determining this constant
numerically using the Ewald summation method, we obtain
Eq. (6) for the boundary:

J3a + J2

3
+ 0.02D = 0. (B1)

This equation, in combination with Eq. (5), was used to draw
the phase boundary in Figs. 4(b) and 5(a)–5(d) as well as for
Figs. 12 and 17. Note the small 0.02 prefactor in front of the
dipolar contribution term D, which a posteriori justifies the
discussion above in terms of approximately independent sets
of [110] and [11̄0] chains.

Finally, we consider some experimentally observable finite-
temperature consequences of the stacking degeneracy of the
double-chain state. From Figs. 4(f)–4(h) it is clear that the
signature of the double-chain phase in the Monte Carlo
calculation of the neutron scattering S(q) occurs at ( 1

2
1
2

1
2 ), and

not at the mean-field ordering wave vector ( 1
2

1
2 0). In order to

rationalize the temperature evolution of S(q) we again first turn
to a mean-field analysis. In Fig. 15, we show S(q) calculated
in mean-field theory at J1 = 3.41 K and J3a = −0.04 K,
a point deep in the double-chain region. The temperature
is expressed in terms of the critical mean-field temperature
T MF

c = 2.9614 K, for these (J1, J3a) values. Note how the main
response stays at ( 1

2
1
2

1
2 ) until extremely close to the transition

temperature T = 1.0001T MF
c , where the weight finally shifts

to the ordering wave vector ( 1
2

1
2 0). The true order parameter is

therefore effectively hidden by the near degeneracy of different
stackings in the z direction down to very close to the transition
temperature. In the Monte Carlo simulation, the ordering
proceeds in a different manner. At high temperature, the Monte
Carlo results for S(q) agree perfectly with mean-field theory as
it should [48]. Below T ≈ 10 T MF

c , differences start to emerge.
At the transition temperature T MC

c ∼ 0.13 K, the Monte Carlo
system freezes into a state of long-range order in the x-y (110)
plane, but with random stacking in the ([001]) z direction [see
Fig. 13(c)]. Only by using parallel tempering Monte Carlo
methods with a very fine-temperature mesh (see Sec. II B)
could the true perfectly stacked double-chain ground state
[Fig. 13(b)] be resolved in the simulation performed with 1024
(L = 4) spins.

APPENDIX C: NEUTRON SCATTERING ANALYSIS

We begin by analyzing how a possible freezing of the sam-
ple would affect the neutron scattering structure factor S(q).
From numerous experiments, is is clear that thermal equilibra-
tion is adequately fast above 0.7 K, while the samples rapidly

FIG. 15. Mean-field neutron scattering structure factor S(q) in
the double-chain region. The various panels show the structure factor
S(q) in the (hhl) plane calculated in mean-field theory as the mean-
field critical temperature T MF

c = 2.9614 K is approached from the
paramagnetic phase for the set of constrained exchange couplings
with J1 = 3.41 K and J3a = −0.04 K, a point deep in the double-
chain region in the phase diagram of Fig. 12. The weight shifts from
( 1

2
1
2

1
2 ) to the true ordering wave vector ( 1

2
1
2 0) at T = 1.0001 T MF

c ,
extremely close to the transition temperature.

fall out of equilibrium below that temperature [30,33,34].
Considering the typical time duration of neutron scattering
data accumulation at a given temperature (∼100–101 h) we
assume that the experimental neutron scattering data were
well equilibrated down to 0.7 K, while below this temperature
we cannot say with certainty whether the sample was fully
equilibrated, partially equilibrated, or frozen.

The effects of freezing can be explored in a Monte Carlo
simulation. Below 0.7 K, the number of single spin flips
required to equilibrate the sample increases exponentially
and loop updates are generally needed to speed up the
thermalization [22,23]. We thus study the effects of freezing
by measuring S(q) at successively lower temperatures by
using only single spin-flip updates and keeping the number
of updates at each temperature constant to mimic a fixed
experimental equilibration time scale. To this end, we use 105

MC steps at each temperature. With this choice, the simulated
system effectively freezes slightly below a temperature of
0.6 K. In Fig. 16, we display S(q) where the columns represent
T = 0.7, 0.5, and 0.3 K, moving left to right. The first,
second, and fourth rows represent a parameter point in the
single-chain region, on the boundary, and in the double-chain
region, respectively. One clearly sees that, as the system
freezes, as assessed by the vanishing Monte Carlo spin-flip rate
(not shown), the neutron scattering pattern also freezes. Most
importantly, there is no change in the ZBS and no fundamental
reciprocal space redistribution in the peak intensities. We
therefore conclude that the pattern recorded at T = 0.3 K looks
like the pattern at the last temperature the sample was properly
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FIG. 16. Simulation of structure factor as the system freezes. Simulation of neutron structure factor using 105 MC steps consisting of only
attempted single spin flips for a system of 1024 spins (L = 4). The three columns stand for T = 0.7, 0.5, and 0.3 K. The top row represents
a point in the single-chain region (J1 = 3.3 K, J3a = 0.07 K), the second row a point close to the boundary (J1 = 3.41 K, J2 = −0.14 K,
J3a = J3b = 0.025 K, Ref. [36]), and the bottom row a point in the double-chain region (J1 = 3.44 K, J3a = −0.02 K). Only few updates
are accepted below T = 0.6 K causing little further change in the structure factor below this temperature. This indicates that the structure
factor in a frozen material is an imprint of the pattern at the temperature at which the sample froze. The third row represents the same
parameter point as the second row, but now with loop updates employed to achieve complete equilibration at all temperatures. Also in
this case the scattering patterns at T = 0.5 and 0.3 K are quite similar. The displayed structure factor in the first, second, and last rows is an
average over 400 different simulations that have frozen in different configurations, modeling the spatial variations in a macroscopic sample
used in the experiments and which neutron scattering measurements average out.
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FIG. 17. Ratio of structure factor for single-chain and double-
chain order. The ratio r ≡ S(0 0 3)/S( 3

2
3
2

3
2 ) in the constrained

J1-J3a plane calculated in the Monte Carlo simulations, without the
Dy3+ form factor. The phase boundary is marked by a dashed red
line, and the r = 1 contour is indicated by a thin black line, which
overlaps the phase boundary in all panels. For all temperatures, the
ratio is therefore unity at the phase boundary, while it is greater than
one in the single-chain region above the boundary and less than one
in the double-chain region below the boundary. The blue lines in (b)
and (d) indicate the ratio for the experimental neutron scattering data
at T = 1.3 and 0.3 K.

thermally equilibrated, independently of the dynamical state
of the experimental data nominally measured at 0.3 K.

Next, we perform a more detailed analysis of the intensity
maxima in the structure factor. As noted in the main text, the
single-chain phase neutron scattering response S(q) occurs at
the ordering wave vector (1 1 0) or, equivalently, at (0 0 3)
in the experimental neutron scattering data where the second
Brillouin zone is probed. On the other hand, the double-chain
phase response occurs at the ordering wave vector ( 1

2
1
2

1
2 ),

or equivalently ( 3
2

3
2

3
2 ) in the experiments, rather than at

( 1
2

1
2 0) because of the aforementioned random stacking of

ordered spin planes. In order to quantify this observation,
we show in Fig. 17 the ratio r ≡ S(0 0 3)/S( 3

2
3
2

3
2 )

at temperatures T = 2.0, 1.3, 0.8, and 0.3 K (without the
Dy3+ magnetic form factor) computed using Monte Carlo
simulations. Interestingly, r is precisely unity at the boundary
determined by Eq. (6) and is shown as a dashed red line in
the four panels of Fig. 17. In the single-chain region, above
the phase boundary, r > 1, while r < 1 in the double-chain
region independently of the temperature. The experimental
ratio, after dividing out the Dy3+ form factor, is r ∼= 1.18
at T = 1.3 K and r ∼= 1.29 at T = 0.3 K and is marked
by a dark blue line in Figs. 17(b) and 17(d), respectively.
The present neutron scattering experiments therefore position
Dy2Ti2O7 very close to, but slightly above, the ground-state
phase boundary line, that is in the single-chain region of the
phase diagram. Note that the experimental ratio at T = 0.3 K
locates Dy2Ti2O7 closer to the phase boundary than does

the ratio at T = 1.3 K. However, small differences in the
measured value of r have a large effect on the position of
the corresponding contour line in Fig. 17(d). To determine the
location of Dy2Ti2O7 in the phase diagram with high precision,
one would need a sequence of high-resolution and well-
equilibrated experimental neutron scattering measurements of
S(q) at several temperatures between 0.3 and 1.3 K. Also,
note the remarkable implication of the analysis above: neutron
scattering experiments performed at a high temperature allows
one to “anticipate” the ground state of the material (excluding
quantum, and other disruptive low-T phenomena) simply by
analyzing the peak ratio r .

APPENDIX D: NUCLEAR SPECIFIC HEAT

Whereas it is common knowledge that the nuclear contribu-
tion dominates over the electronic part of the specific heat of
holmium-based compounds at T � 1.5 K [58–60], the nuclear
specific heat of Dy2Ti2O7 has generally been ignored. Here,
we show that, for a quantitative analysis, this is not justified
below T ≈ 0.5 K. Since the main nuclear contribution to the
specific heat comes from the interaction of the deep-lying 4f

electrons and the nucleus, this interaction is considered not
to be directly affected by the ionic environment [78]. While
the crystal field can alter the symmetry of the crystal-field
doublet, one expects that if the magnitude and symmetry of
the moment 〈J z〉 are similar in two different compounds, the
effective hyperfine field A〈J z〉 interaction should be expected
to be roughly the same. In Dy2Ti2O7, the Ising [47] magnetic
moment of each ion is nearly saturated, with 〈J z〉 ≈ 7.4,
which is close to the J = 15

2 value for Dy3+. We therefore
use the results of a calorimetric investigation of the nuclear
interactions in metallic Dy, which also has a fully developed
electronic moment [78]. Following this investigation we write
the nuclear hyperfine (hf) Hamiltonian as

Hhf = ÃI z + P
[
(I z)2 − 1

3I (I + 1)
]
, (D1)

with Ã ≡ A〈J z〉 where A and P are the contact hyperfine term
and electric quadrupole constants, respectively. Assuming the
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FIG. 18. Nuclear contact contribution (black curve), quadrupolar
(red curve), and total Cnuc/T (green curve) nuclear contribution to the
specific heat. The blue curve shows the raw experimental Craw/T data
while the purple curves shows the residual electronic data Cexpt(T )/T

data.
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natural abundance of Dy, the relevant magnetic isotopes are
18.88% 161Dy and 24.97% 163Dy, both with nuclear spin I =
5
2 . We use the parameters Ã161 = 0.0399 K, P161 = 0.0093
K, Ã163 = 0.0559 K, and P163 = 0.0098 K from Ref. [78].
These values are also roughly (±10%) from those determined
in various Dy-based insulating salts [62,79–82]. The hyperfine
partition function is given by Zhf = ∑I z=+5/2

I z=−5/2 e−βHhf , and the
calculation of the nuclear contribution to the specific heat
is straightforward. The result is shown in Fig. 18, where
we display the total nuclear specific heat as well as the
separate contact hyperfine and electric quadrupolar terms.

Notice that the electric quadrupolar term, which becomes
somewhat noticeable below T ≈ 0.2 K, reduces the total
nuclear contribution. It is clear that there is a significant
nuclear contribution to the total Craw(T )/T specific heat below
T ≈ 0.5 K, and the nuclear specific heat causes part of the
shoulder that starts to develop already at T ≈ 0.7 K. Given
this non-negligible hyperfine contribution, it would be very
interesting to see the result of a well-equilibrated measured
specific-heat measurement on a 162Dy enriched sample used
for neutron scattering studies [33,40,55] since there should be
no nuclear specific heat for such a sample.
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[76] H. E. Viertiö and A. S. Oja, Interplay of three antiferromagnetic
modulations in the nuclear-spin system of copper, Phys. Rev. B
48, 1062 (1993).

[77] For fixed J1, tuning J3a and J3b through the constraints of Eq. (4)
drives a transition between the two ground states.

[78] A. C. Anderson, B. Holmström, M. Krusius, and G. R.
Pickett, Calorimetric investigation of the hyperfine interactions
in metallic Nd, Sm, and Dy, Phys. Rev. 183, 546 (1969).

[79] A. H. Cooke and J. G. Park, Nuclear spins and magnetic
moments of 161Dy, 163Dy, 171Yb and 173Yb, Proc. Phys. Soc.,
London, Sect. A 69, 282 (1956).

[80] H. H. Wickman and I. Nowik, The hyperfine structure of 161Dy
in Dysprosium salts, J. Phys. Chem. Solids 28, 2099 (1967).

[81] G. Brunhart, H. Postma, D. C. Rorer, V. L. Sailor, and L.
Vanneste, Absolute spin assignments of Dy161 and Dy163 neutron
resonances and the hyperfine coupling constants in Dy163,
Z. Naturforsch., A: Astrophys., Phys., Physikalisch. Chem. A26,
334 (1971).

[82] C. A. Catanese and H. E. Meissner, Magnetic ordering in
Dy(OH)3 and Ho(OH)3, Phys. Rev. B 8, 2060 (1973).

024402-23

http://dx.doi.org/10.1103/PhysRevLett.108.037202
http://dx.doi.org/10.1103/PhysRevLett.108.037202
http://dx.doi.org/10.1103/PhysRevLett.108.037202
http://dx.doi.org/10.1103/PhysRevLett.108.037202
http://dx.doi.org/10.1103/PhysRevLett.98.157204
http://dx.doi.org/10.1103/PhysRevLett.98.157204
http://dx.doi.org/10.1103/PhysRevLett.98.157204
http://dx.doi.org/10.1103/PhysRevLett.98.157204
http://dx.doi.org/10.1103/PhysRevB.83.094411
http://dx.doi.org/10.1103/PhysRevB.83.094411
http://dx.doi.org/10.1103/PhysRevB.83.094411
http://dx.doi.org/10.1103/PhysRevB.83.094411
http://dx.doi.org/10.1103/PhysRevB.92.180405
http://dx.doi.org/10.1103/PhysRevB.92.180405
http://dx.doi.org/10.1103/PhysRevB.92.180405
http://dx.doi.org/10.1103/PhysRevB.92.180405
http://dx.doi.org/10.1107/S0567739476001551
http://dx.doi.org/10.1107/S0567739476001551
http://dx.doi.org/10.1107/S0567739476001551
http://dx.doi.org/10.1107/S0567739476001551
http://dx.doi.org/10.1088/1742-6596/320/1/012001
http://dx.doi.org/10.1088/1742-6596/320/1/012001
http://dx.doi.org/10.1088/1742-6596/320/1/012001
http://dx.doi.org/10.1088/1742-6596/320/1/012001
http://dx.doi.org/10.1103/PhysRevLett.109.167201
http://dx.doi.org/10.1103/PhysRevLett.109.167201
http://dx.doi.org/10.1103/PhysRevLett.109.167201
http://dx.doi.org/10.1103/PhysRevLett.109.167201
http://dx.doi.org/10.1103/PhysRevX.1.021002
http://dx.doi.org/10.1103/PhysRevX.1.021002
http://dx.doi.org/10.1103/PhysRevX.1.021002
http://dx.doi.org/10.1103/PhysRevX.1.021002
http://dx.doi.org/10.1103/PhysRevLett.109.097205
http://dx.doi.org/10.1103/PhysRevLett.109.097205
http://dx.doi.org/10.1103/PhysRevLett.109.097205
http://dx.doi.org/10.1103/PhysRevLett.109.097205
http://dx.doi.org/10.1103/PhysRevB.87.184423
http://dx.doi.org/10.1103/PhysRevB.87.184423
http://dx.doi.org/10.1103/PhysRevB.87.184423
http://dx.doi.org/10.1103/PhysRevB.87.184423
http://dx.doi.org/10.1103/PhysRevB.88.220404
http://dx.doi.org/10.1103/PhysRevB.88.220404
http://dx.doi.org/10.1103/PhysRevB.88.220404
http://dx.doi.org/10.1103/PhysRevB.88.220404
http://dx.doi.org/10.1103/PhysRevB.48.1062
http://dx.doi.org/10.1103/PhysRevB.48.1062
http://dx.doi.org/10.1103/PhysRevB.48.1062
http://dx.doi.org/10.1103/PhysRevB.48.1062
http://dx.doi.org/10.1103/PhysRev.183.546
http://dx.doi.org/10.1103/PhysRev.183.546
http://dx.doi.org/10.1103/PhysRev.183.546
http://dx.doi.org/10.1103/PhysRev.183.546
http://dx.doi.org/10.1088/0370-1298/69/3/112
http://dx.doi.org/10.1088/0370-1298/69/3/112
http://dx.doi.org/10.1088/0370-1298/69/3/112
http://dx.doi.org/10.1088/0370-1298/69/3/112
http://dx.doi.org/10.1016/0022-3697(67)90185-0
http://dx.doi.org/10.1016/0022-3697(67)90185-0
http://dx.doi.org/10.1016/0022-3697(67)90185-0
http://dx.doi.org/10.1016/0022-3697(67)90185-0
http://dx.doi.org/10.1103/PhysRevB.8.2060
http://dx.doi.org/10.1103/PhysRevB.8.2060
http://dx.doi.org/10.1103/PhysRevB.8.2060
http://dx.doi.org/10.1103/PhysRevB.8.2060



