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We develop in detail a model of the charge order in NbSe2 deriving from a strong electron-phonon coupling
dependent on the ingoing and outgoing electron momenta as well as the electronic orbitals scattered between.
Including both dependencies allows us to reproduce the full range of available experimental observations on
this material. The stability of both experimentally-observed charge-ordered geometries (1Q and 3Q) is studied
within this model as a function of temperature and uniaxial strain. It is found that a small amount of bulk strain
suffices to stabilize the unidirectional order, and that in both ordering geometries, lattice fluctuations arising from
the strong electron-phonon coupling act to suppress the onset temperature of charge order, giving a pseudogap
regime characterized by local order and strong phase fluctuations.
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I. INTRODUCTION

The Peierls instability is well known to give rise to charge
density wave (CDW) order in quasi-one-dimensional materials
[1]. In dimensions higher than one, the electronic suscep-
tibility does not generically diverge, and the development
of CDW order requires either a nested Fermi surface or an
enhancement of the momentum-dependent electron-phonon
coupling. Niobium diselenide (2H -NbSe2) is an early example
of a quasi-two-dimensional material demonstrating a charge
density wave transition [2]. It is part of the extensive family of
transition metal dichalcogenides, which includes many more
bulk charge-ordered materials, such as TaS2, TaSe2, NbS2,
and TiSe2 [3–6]. The charge order in these compounds, and in
NbSe2 in particular, has been suggested to serve as a model
system for the charge order recently observed in cuprate high-
TC superconductors, including Bi2Sr2CaCu2O8+x (Bi2122)
[7–9], Ba1−xNaxTi2Sb2O [10], and YBa2Cu3O7 (YBCO)
[11,12].

The comparison is of particular interest, since a CDW
in dimensions higher than one not only breaks translational
symmetry but also the rotational symmetry of the underlying
lattice, selecting a preferential direction in space. Aside from
forming a CDW with one fixed wave vector (‘1Q CDW’)
it is then possible to form multiple coexisting CDWs. In
the layered cuprate superconductors, with a square lattice
of copper atoms, the charge order may be either a 1Q or a
2Q CDW, with the latter consisting of 1Q CDWs along both
in-plane lattice directions. These two phases can even compete
with one another [13]. In comparison, the well-known 3Q
CDW in the layered hexagonal material NbSe2, consisting of
three superposed density waves at relative angles of 2π/3,
has recently been shown to compete with 1Q order in locally-
strained regions on the material’s surface [14].

In the absence of nesting, understanding the influence
of electron-phonon coupling is paramount to understanding
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both the origin of charge order and the competition between
different geometries of CDW states. In two recent papers, the
present authors outlined a model describing the charge-ordered
phases of niobium diselenide [15,16]. The present paper
extends these results and provides the calculational details
of the model, showing how both the momentum and orbital
dependence of the electron-phonon coupling co-operate to
drive the onset of charge order in NbSe2 and how their interplay
with the electronic structure directs the competition between
single-Q and multi-Q CDWs.

Niobium diselenide

The 2H polytype of niobium diselenide has a layered,
hexagonal crystal structure, space group P 63/mmc (D4

6h),
with two niobium atoms per primitive unit cell [2,3,17]. The
unit cell, shown in Fig. 1, includes two ‘sandwiches’ each
consisting of two layers of selenium atoms enclosing a single
layer of niobium atoms. In the lower sandwich, three of the
six interstices in the hexagonal niobium layer have selenium
atoms above and below them, while in the upper sandwich
the other three interstices are selected. The large anisotropy,
signaled by a small ratio of interlayer to intralayer coupling,
suggests that quasi-two-dimensional models can be expected
to capture the important physics [3,18].

NbSe2 undergoes a phase transition to a 3Q incommensu-
rate CDW state at 33.5 K. From neutron diffraction and high-
resolution x-ray scattering the CDW wave vectors are known
to sit along the �M directions at QCDW = (1 − δ) 2

3�M, with
δ ≈ 0.014 [17,19,20]. The 1Q CDW phases found in locally-
strained regions by recent scanning tunneling microscopy
(STM) experiments have a slightly modified wave number
of QCDW = (1 − δ) 2

3�M, with δ ≈ 0.143 [14].
The Fermi surface of NbSe2, shown in Fig. 2, does not

contain strongly-nested regions. This has lead to a number
of proposals for alternative driving mechanisms underlying
the CDW formation, including nested saddle points in the
electronic dispersion [21], local field effects [22], or a combi-
nation of weak nesting with strongly momentum-dependent
electron-phonon coupling [18,23]. The latter claim found
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FIG. 1. Left: the crystal structure of 2H -NbSe2. Niobium atoms
are shown in blue and selenium atoms in red. Each primitive unit
cell contains two formula units, since the positions of the seleniums
differ between the two pictured ‘sandwiches.’ Right: the Brillouin
zone with high-symmetry points indicated. The image is stretched
disproportionately along �A for clarity—in fact the crystal’s c/a

ratio is approximately 18.1/6.5 [2,3].

some support in the observation that inelastic x-ray scattering
indicates that the longitudinal acoustic phonons in NbSe2 are
softened over a broad range of momenta around the CDW
wave vector [23,24]. This is in contrast to the sharp Kohn
anomaly characteristic of one-dimensional and well-nested
CDW materials.

A CDW gap is seen to open in angle resolved photo-
emission spectroscopy (ARPES) experiments, but only at
select points on the Fermi surface, located on the inner
pockets surrounding the K point. The material therefore
remains metallic below the CDW transition and displays Fermi
arcs reminiscent of those seen in high-TC superconductors
[11,25–27]. As in the cuprates, the presence of Fermi arcs
signals a pseudogap phase, in which the density of states
is reduced for a sizable span of temperatures above TCDW,
while strong local fluctuations of the atomic positions can be
observed within the same temperature range [28].

In addition to the nature of the pseudogap phase, puzzling
aspects of the NbSe2 phenomenology include the question of

FIG. 2. The Fermi surface of NbSe2 within the �MK plane.
The Brillouin zone is marked in red, with high symmetry positions
indicated. In blue are the three experimentally-observed CDW wave
vectors [2,11,26]. CDW gaps have been observed to open on parts
of the inner Fermi surface pockets surrounding the K points, in the
three regions approximately connected by the CDW wave vectors
[25,26].

why only one band develops a CDW gap, uncertainty over the
size of the CDW gap, with estimates ranging from 0 meV [25]
to 35 meV [29], and an observed asymmetry in the particle
and hole states near the CDW gap [14], leading to an offset of
the gap with respect to EF [30]. The present authors recently
outlined a model based on a strongly momentum- and orbital-
dependent electron-phonon coupling to explain all of these
unusual features of the NbSe2 CDW state, as well as providing
a quantitative explanation of how the wave vectors of the 3Q
and 1Q CDW instabilities are selected [15,16].

The present paper extends the results of this previous
work as well as providing details of the calculations involved.
In Sec. II we carry out a tight-binding fit to establish the
NbSe2 band structure and its orbital make-up, from which
we derive an analytic form for the electron-phonon coupling
in Sec. III. In Sec. IV we combine these ingredients into
a microscopic model, which we use to quantify the extent
of Fermi surface nesting, and its contribution to driving the
CDW transition relative to the momentum dependence of
the electron-phonon coupling. In Sec. V we compare the
predictions of the microscopic model regarding the gap shape
and size to known experimental results, and in Sec. VI we
present the mean-field phase diagram as a function of both
temperature and uniaxial strain. Finally, in Sec. VII we include
fluctuations beyond the mean field using the mode-mode
coupling approximation (MMA) and use this to describe the
pseudogap regime which emerges above the charge ordering
transition. We consider the stability of the pseudogap phase
under uniaxial strain as well as the geometry of its dominant
CDW fluctuations. We provide a discussion of the results in
Sec. VIII.

II. THE ELECTRONIC STRUCTURE OF NbSe2

The primitive unit cell of NbSe2 is shown in Fig. 1 to contain
two niobium and four selenium atoms. The partially-filled
electronic shells include the Se 4p orbitals as well as the 4d

orbitals of the Nb atoms, giving 22 relevant orbital degrees of
freedom per unit cell. A tight binding model for the electronic
band structure using these orbitals can be found by solving the
Schrödinger equation:

Ĥ |n〉 = EnŜ|n〉, (1)

where the overlap matrix S is introduced because of the
nonorthogonality of orbitals on neighboring atoms. In terms
of the local orbital wave functions |φn〉, the operators Ĥ and
Ŝ are given by the 22 × 22 matrices:

Hnm = 〈φm|H |φn〉
(2)

Snm = 〈φm|φn〉
with Hnm the hopping amplitudes and Snm the orbital
overlaps.

The hopping integrals and overlap integrals are included
up to first-nearest neighbors and are related to each other
according to the expressions found by Slater and Koster
[31]. Each orbital can additionally be assigned a chemical
potential, which is independent from that of orbitals that are
different under the imposed lattice symmetries. Altogether, the
result is a tight-binding expression with 33 independent free
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FIG. 3. The result of the 22-band tight-binding fit to the electronic
band structure. The crosses indicate the data being fit to, taken from
ARPES for the two red bands crossing EF [26], and LDA calculations
for the remaining 20 bands in blue [11]. The red bands were given
larger weight in the fitting procedure.

parameters, which were varied in a Monte Carlo routine to fit
two sets of data. First, the ARPES data from Rahn et al. [26]
provide accurate information about the two bands crossing the
Fermi level. For the remaining bands, an earlier local density
approximation (LDA) calculation by Rossnagel et al. [11] was
used. The results of the fit are given in Fig. 3.

The orbital make-up of the bands can be deduced from the
eigenvectors found in the tight-binding fitting procedure. The
two bands crossing EF were found to consist primarily of the
two niobium d3z2−r2 orbitals (one for each layer in the unit
cell) throughout the Brillouin zone. As shown in Fig. 4, these
states contribute at least 60% of the orbital character across
both bands, in agreement with earlier reports [18].

FIG. 4. The contribution of the niobium d3z2−r2 orbitals to the two
bands crossing EF. The upper, red curve shows the contribution within
the lower-energy band making up the inner pocket around the K point,
while the lower, blue curve shows the same for the higher-energy
band or outer pocket. The average contribution of approximately
60% d3z2−r2 orbitals across both bands is in agreement with earlier
calculations [18] and constitutes the dominant orbital character for
these bands.

Projecting the states crossing EF onto just the two d3z2−r2

orbitals, they become exactly equal-weight superpositions,
with the lower-energy band being the symmetric combina-
tion of the two involved orbitals and the upper band the
antisymmetric combination. That these superpositions must
have precisely equal weights throughout the Brillouin zone is
a consequence of the fact that the d3z2−r2 orbitals see identical
atomic environments up to first-nearest neighbor. This can be
made explicit by writing out the tight-binding Schrödinger
equation (1) including only the two bands crossing EF:(

H11 − EnS11 H12 − EnS12

H12 − EnS12 H11 − EnS11

)(
α|1〉
β|2〉

)
= 0. (3)

Here the states |1〉 and |2〉 represent the d3z2−r2 orbitals in the
upper and lower sandwich layers within a unit cell, so that
H11 = H22 and S11 = S22. The elements Hnm and Snm can
be chosen to be real in the absence of time-reversal symmetry
breaking. Solving the eigenvalue problem of Eq. (3) then yields
equal-weight superpositions α = ±β = √

1/2, regardless of
any k-space structure of either the hopping or overlap integrals.
Including terms up to fifth-nearest neighbor in-plane and
second-nearest neighbor out of plane, the two-band tight-
binding fit to the bands seen to cross EF in the ARPES data
results in an expression identical to that proposed by Rahn
et al. [26].

III. ELECTRON-PHONON COUPLING FROM THE
ELECTRONIC BANDSTRUCTURE

In order to quantitatively model how the electronic band
structure influences the CDW formation and vice versa, it
is essential to consider both the orbital and momentum
dependence of the electron-phonon coupling. This can be done
using the expression for the electron-phonon coupling given
by Varma et al. [32], which has been well tested in the case
of transition metal compounds with a predominantly d-orbital
character at the Fermi level:

gμ,ν

k,k′ ∝ vμ

k [A†
kSkAk′]μ,ν − [A†

kSk′Ak′]μ,νvν
k′ . (4)

Here an overall (purely imaginary) prefactor has been omitted,
and vμ = ∂ξ

μ

k /∂k is the electron velocity in band μ with
dispersion ξ

μ

k . The matrix A
μ,ν

k is the matrix of eigenvectors
solving the generalized eigenvalue problem of Eq. (3), and
the vector nature of g accounts for its coupling to atomic dis-
placements in three real-space directions. The CDW in NbSe2

is known from x-ray diffraction experiments to correspond to
the softening of a longitudinal acoustic phonon, with negligible
softening of the transverse modes [23,24]. Henceforth we
consider only the longitudinal part of the electron-phonon
coupling.

For the case of NbSe2, the two-band tight-binding fit implies
the specific forms of the A and S matrices:

Ak = 1√
2

(
1 1
1 −1

)
, Sk =

(
αk βk
βk αk

)
(5)

with α and β both real. The expression for the electron-phonon
coupling therefore simplifies to:

g±,±
k,k′ ∝ (αk ± βk)vk − (αk′ ± βk′)vk′

g±,∓
k,k′ = 0, (6)
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where the positive sign corresponds to the lower-energy inner
pocket and the negative sign to the outer pocket. Across the
Brillouin zone, the tight-binding fit indicates that β ≈ 2α,
which implies that the size of the electron-phonon coupling
is around three times larger in the inner band than the outer.

To see how this strong orbital dependence of the electron-
phonon coupling influences the predicted CDW ordering
within the tight-binding model of the electronic structure,
consider the general action describing coupled electrons and
phonons:

S =
∑
kν

ψ
†
k,νG

−1
k,νψk,ν +

∑
q

ϕ†
qD

−1
q ϕq

+
∑
kqμν

g
μ,ν

k,k+qϕqψ
†
k+q,νψk,μ. (7)

Here μ and ν are electronic band indices, while Gk,ν and Dq

are propagators for the electron field ψk,ν and phonon field ϕq ,
respectively. They can be written in the standard forms:

Gk,ν = (
iωn − ξν

k + μ
)−1

Dq = −2�q

(i�n)2 − �2
q

(8)

with fermionic Matsubara frequencies iωn and bosonic fre-
quencies i�n. The bare phonon dispersion is �q.

Integrating out the electrons from Eq. (7) yields an effective
action, which, to quadratic order in the phonon fields, is given
by:

Seff[ϕ] =
∑

q

ϕ†
q

(
D−1

q + 1

2
D2(q)

)
ϕq, (9)

where D2(q) is the experimentally-accessible generalized
static electronic susceptibility, defined as:

D2(q) = −
∑
k,μ,ν

g
μ,ν

k,k+qg
ν,μ

k+q,k

f
(
ξ

μ

k

) − f
(
ξν

k+q

)
ξ

μ

k − ξν
k+q

, (10)

where f (ξμ

k ) is the Fermi-Dirac distribution function. No-
tice that this expression reduces to the more-commonly
encountered bare electronic susceptibility χ (q) if gk,k+q is
approximated to be independent of momentum.

Figure 5 compares the intraband contributions to the
generalized susceptibility from the two bands crossing EF

in NbSe2. Since the interband electron-phonon coupling was
found in Eq. (6) to be zero, the two intraband contributions can
be thought of as two independent electronic susceptibilities,
each operative in its own electronic band. Figure 5 then
shows that the orbital and momentum dependence of the
electron-phonon coupling results in a susceptibility that is at
least three times larger in the lower-energy band (the inner
pocket) than in the higher-energy band (the outer pocket)
at values of the momentum transfer corresponding to the
CDW wave vector. Since the CDW gap size is proportional
to the susceptibility in each band, the orbital and momentum
dependence of the electron-phonon coupling leads to large
differences in gap magnitudes for the two bands crossing EF

and provides an explanation for the experimental observation
that the CDW gap is confined primarily to a single band
[25,26].

FIG. 5. The intraband contributions to the generalized static
electronic susceptibility D2 originating in the two bands crossing EF.
The upper, red, curve corresponds to the lower-energy band making
up the inner pocket around the K point, in which the CDW gap has
been found experimentally. The magnitude of the electron-phonon
coupling is set to give the mean-field (RPA) phase transition at
33.5 K, and the Fermi-Dirac distributions are evaluated at the same
temperature.

Returning to the expression for the effective action in
Eq. (9), the term in parentheses can be interpreted to represent
the inverse propagator for phonons renormalized by the
presence of electron-phonon interactions. The renormalized
phonon frequency is then written as:

�2
RPA(q) = �2

q − �qD2(q,�). (11)

The label ‘RPA’ indicates that this constitutes the random
phase approximation or mean-field form of the renormalized
phonon energy. As temperature is lowered, the generalized
susceptibility becomes more sharply peaked, giving a more
pronounced dip in the renormalized phonon dispersion. Once
�RPA touches zero energy at a given momentum, the atomic
structure becomes unstable and a CDW develops at the wave
vector corresponding to the momentum of the soft mode.

To see what wave vector is predicted for the CDW order
in NbSe2 by the present tight-binding model, we employ a
phenomenological fit to x-ray diffraction experiments for the
bare phonon frequency �q [24]. Figure 6 shows the resulting
renormalized phonon frequency, when setting the overall
magnitude g of the electron-phonon coupling such that a CDW
instability develops at the experimentally-observed transition
temperature of 33.5 K. The plot across the Brillouin zone
shows that the phonon mode first softens to zero along �M.
The momentum-space cut in this direction, whose evolution
with temperature is displayed in Fig. 7, reveals that the
instability in fact occurs precisely at the known ordering
vector of the 3Q CDW state, as seen for example in neutron
scattering [17,19] or x-ray diffraction experiments [20,23,24].
The presence of a broad plateau of partially-softened phonon
frequencies surrounding the CDW wave vector, similar to that
seen experimentally [23,24], is a direct result of the strong
electron-phonon coupling in NbSe2, or, equivalently, of the
absence of a truly nested electronic structure.
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FIG. 6. The RPA-renormalized phonon frequency as a function
of momentum transfer q. The magnitude of the electron-phonon
coupling has been set to give the RPA phase transition at 33.5 K,
and the phonon frequencies shown are evaluated at that critical
temperature.

IV. THE EXTENT OF NESTING IN NbSe2

To quantify the extent to which electron-phonon coupling,
as opposed to nesting of the electronic structure, drives
the CDW transition in NbSe2, it is convenient to consider
temporarily a simplified form of the electron-phonon coupling,
which is a function only of the magnitude of the momentum
transfer: gk,k+q → g|q|. In this case, the generalized suscepti-
bility is simply the product of the square of the electron-phonon
coupling with the bare electronic susceptibility:

D2(q) =
∑
μ,ν

(
g

μ,ν

|q|
)2

χμ,ν(q)

χμ,ν(q) = −
∑

k

f
(
ξ

μ

k

) − f
(
ξν

k+q

)
ξ

μ

k − ξν
k+q

. (12)

FIG. 7. The phonon dispersion along the high-symmetry direc-
tion �M at various temperatures. The magnitude of the electron-
phonon coupling has been set to give the RPA phase transition at
33.5 K. The T = ∞ curve shows the bare phonon dispersion. At
TRPA = TCDW = 33.5 K the soft phonon mode can be seen to select
out the experimentally-observed wave vector QCDW.

FIG. 8. The bare electronic susceptibility, χ (q), for three special
cases. Blue: the susceptibility resulting from a single 1D band
with cosine dispersion and nesting vector 2

3 �M. Red: the sum of
susceptibilities in the two-band fit to the NbSe2 band structure with
constant and equally-weighted interband and intraband scattering.
This corresponds to the generalized susceptibility D2(q) if both the
momentum and orbital dependence of the electron-phonon coupling
are ignored. Black: the bare susceptibility of only the single NbSe2

band developing CDW gaps. In all cases a temperature of T = 33.5 K
was used along with a 5 meV numerical regularization in the
expression for the bare susceptibility. The curves have been offset
vertically relative to each other for clarity.

In this expression it is clear that the denominator in the
susceptibility χ causes a divergence whenever the Fermi
surface is nested.

The bare susceptibility χ defined by Eq. (12) is shown in
Fig. 8 for three special cases. The bottom (blue) curve is based
on a prototypical well-nested one-dimensional dispersion with
a single band. The upper (red) curve employs the tight-binding
fit to the two bands crossing EF in NbSe2 and shows the sum
of both intraband and interband susceptibilities. It corresponds
to a generalized susceptibility for NbSe2 if equally-weighted
interband and intraband couplings are artificially imposed
(gμ,ν

|q| ≡ 1). The central (black) curve is the bare susceptibility
for the lower-energy NbSe2 band only. The final case is
expected to most-closely approximate the actual electronic
susceptibility of NbSe2, as the orbital dependence of the
electron-phonon coupling was shown in the previous section
to be dominated by the intraband contribution from the inner
electron pocket. The case of equally-weighted interband and
intraband susceptibilities has been extensively used in previous
studies of NbSe2 [14,22,26].

The nested 1D band structure can be seen in Fig. 8 to yield
a true divergence of the susceptibility at the nesting vector,
which in this case was chosen to be 2

3�M. Both band structures
based on the NbSe2 tight-binding model, on the other hand,
give rise to rather flat susceptibilities. Ignoring the orbital
dependence of the electron-phonon coupling, and taking an
equal-weight sum of interband and intraband susceptibilities,
yields a total susceptibility with a maximum at a momentum
value which clearly differs from the observed CDW ordering
vector. The susceptibility arising from just the inner band peaks
at the correct momentum, but compared to the true divergence
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FIG. 9. Least-squares parabolic fit to the simplified electron-
phonon coupling g|q| around QCDW. The red data points are based on
the bare and renormalized phonon frequencies measured by inelastic
x-ray scattering [24], combined with the bare electronic susceptibility,
as described in the text.

of the 1D case, NbSe2 can qualitatively be said to lack nesting
in its electronic structure.

This statement can be made quantitative by considering
how the predicted CDW ordering vector varies with changes in
the electron-phonon coupling. Within the approximation that
the electron-phonon coupling depends only on the transferred
momentum, the renormalized phonon frequency of Eq. (11)
becomes:

�2
RPA = �2

q − �q

∑
μ,ν

(
g

μ,ν

|q|
)2

χμ,ν(q,�). (13)

Given the flat electronic susceptibility χ of Fig. 8, the
experimentally-observed softening of the phonon in NbSe2

[23,24] can only be reproduced by �RPA if the electron-phonon
coupling g|q| is itself peaked at the observed CDW wave vector.
In fact, Eq. (13) can be used to deduce the dependence of the
electron-phonon coupling on momentum transfer, given the
dispersions of both the softened and bare phonons.

The bare phonon dispersion can be approximated by
that measured experimentally at high temperatures, while
a maximally-renormalized phonon dispersion is realized
at the CDW transition temperature [23,24]. Together
with the temperature-dependent susceptibility χ calculated
from the electronic band structure, this results in the form
of the electron-phonon coupling g|q| shown in Fig. 9. Around
its maximum, the obtained momentum dependence is well
described by a parabolic fit of the form:

g|q| = −a

(
1 − |q|

qpeak

)2

+ gmax. (14)

The best-fit values gmax = 132 meV and a = 628 meV were
used, while qpeak was restricted to the experimentally-observed
value of qpeak = 0.657|�M| [20]. The electron-phonon cou-
pling obtained in this way is approximately independent of
temperature.

Given a specific functional form for the electron-phonon
coupling g|q|, the CDW ordering vector, as predicted by
Eq. (13), is the momentum transfer at which the renormalized

FIG. 10. The CDW ordering vector QCDW obtained from the
mean-field renormalized phonon dispersion �RPA, assuming that the
electron-phonon coupling can be described by the simplified form g|q|,
with a variable peak position. Blue: the ordering vector for a 1D band
structure with nesting vector 2

3 �M. Red: the ordering vector for the
two-band tight-binding fit to the NbSe2 electronic structure, imposing
that the bare susceptibility is an equal-weight sum of interband and
intraband contributions. Black: the ordering vector based on the bare
susceptibility of only the lower-energy band crossing EF in the NbSe2

band structure. The susceptibilities corresponding to all three cases
are shown in Fig. 8. The gray dots depict the line QCDW = qpeak.

phonon dispersion �RPA first touches zero energy. This fact
can now be used to quantify the amount of nesting present
in the band structure of NbSe2 by considering the change of
the predicted CDW wave vector QCDW as the electron-phonon
coupling’s peak momentum qpeak is varied.

In a truly nested system, the bare electronic susceptibility
has a divergence, which dominates the convolution of g|q|
and χ in Eq. (13) and which determines the value of QCDW

independent of the momentum dependence of the electron-
phonon coupling. Conversely, in the presence of a band
structure without any nesting, the bare electronic susceptibility
will be an approximately-flat function of momentum, and the
predicted CDW wave vector QCDW will be determined entirely
by the shape of the electron-phonon coupling.

Taking the parabolic fit to the electron-phonon coupling
found in Fig. 9 and varying the value of the peak posi-
tion, the dependence of QCDW on qpeak, as predicted by
the softening of �RPA, can be mapped out. The electronic
susceptibility can again be taken from either a well-nested
band structure, from an equally-weighted sum of interband
and intraband contributions in the two-band tight-binding
model for NbSe2, or from the single band in the NbSe2

tight-binding structure which dominates its electron-phonon
coupling. In the case of a one-dimensional band structure,
the resulting prediction for QCDW is the flat blue line in
Fig. 10, reflecting the fact that one-dimensional systems are
always well nested. If instead the total susceptibility based on
equally-weighted interband and intraband contributions from
the tight-binding band structure of NbSe2 is employed, the
result is the red curve in Fig. 10. Around QCDW = 2

3�M
it closely follows the diagonal line QCDW = qpeak (where
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QCDW = |QCDW|) indicating that the susceptibility has little
momentum dependence, and the electron-phonon coupling
dominates in selecting the CDW propagation vector. Finally,
using the tight-binding band structure of NbSe2, but including
only the lowest-energy band crossing EF, the ordering vector
depends on the electron-phonon coupling as shown by the
black line in Fig. 10 and lies in between the previous two
extreme cases.

The quantity α = 1 − ∂QCDW/∂qpeak, evaluated at the point
where qpeak equals the experimentally-observed CDW wave
vector, can be used to quantify the influence of nesting as
compared to that of electron-phonon coupling. It equals one
for the perfectly-nested one-dimensional system and zero in
the case of a perfectly momentum-independent electronic
susceptibility. The orbital dependence of the electron-phonon
coupling was shown in the previous section to lead to a
dominant size of the coupling within the lowest-energy band.
It may therefore be expected that, within the present approx-
imation, the black curve in Fig. 10, taking into account only
the lowest-energy band, is the most relevant representation
of the bare electronic susceptibility in NbSe2. It is charac-
terized by the nesting parameter α = 0.55, indicating that
neither the electronic structure nor the momentum dependence
of the electron-phonon coupling can be neglected. Having used
the reduced form g|q| to investigate the extent of nesting, we
now return to the full expression g

μ,ν

k,k+q of Eq. (4) for the
remainder of this paper.

V. THE CDW GAP

To obtain a prediction for the momentum and energy
dependence of the CDW gap in NbSe2 based on the electronic
tight-binding model and the momentum- and orbital-resolved
electron-phonon coupling, we now establish a gap equation in
line with the Bogoliubov-de Gennes philosophy. In contrast to
its more familiar use within the theory of superconductivity,
the gap matrix for CDW order is written in a basis of operators
at different values of the momentum rather than of particle
and hole operators. The reason is that a charge ordered pattern
with propagation vector QCDW enlarges the real space unit
cell of its host material, and correspondingly reduces the
size of its first Brillouin zone, making states with momenta
k and k + mQCDW equivalent (m integer). In the case of
a multi-Q CDW with multiple ordering vectors Qj

CDW, the
equivalence even extends to states at k + ∑

j mj Qj

CDW, with
mj a set of independent integers. This results in a basis for
the Bogoliubov-de Gennes gap equation containing different
entries for all distinct momentum values in the original
Brillouin zone which become equivalent in the reduced
Brillouin zone.

In the case of NbSe2 the experimentally-observed CDW
wave vector is incommensurate and close to QCDW =
0.657 �M. Strictly speaking, this implies that there are
infinitely many momentum values in the original reduced
Brillouin zone which become equivalent under addition of the
CDW ordering vector. As can be seen in STM experiments on
NbSe2 [14], however, the CDW order is actually organized in
patches which are locally commensurate with the underlying
lattice and have local ordering vectors QCDW = 2/3 �M. We

FIG. 11. Diagrammatic depiction of the Bogoliubov-de Gennes
gap equation. Double straight lines indicate self-consistently renor-
malized electronic propagators, while double wavy lines represent
phonon propagators within the mean-field (RPA) approximation.
Double dashed lines depict the anomalous Green’s functions, which
change the crystal momentum by a CDW wave vector. The self energy
contribution in the central part of the top right diagram corresponds to
a diagonal entry in the matrix of Eq. (15), while the gap functions for
the off-diagonal entries correspond to the central part of the bottom
diagram.

therefore consider a Bogoliubov-de Gennes gap matrix in a
basis of momentum values k, k ± Q1, k ± Q2, k ± Q3, and
k ± (Q1 − Q2). This set of nine entries encapsulates all distinct
momentum values in the original Brillouin zone which are
equivalent to the point k in the reduced Brillouin zone. The
Bogoliubov-de Gennes equation is given diagramatically in
Fig. 11, which corresponds to the gap matrix:

�=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�k � � � � � � 0 0
� �1 � 0 � 0 � � �

� � �1̄ � 0 � 0 � �

� 0 � �2 � 0 � � �

� � 0 � �2̄ � 0 � �

� 0 � 0 � �3 � � �

� � 0 � 0 � �3̄ � �

0 � � � � � � �12̄ 0
0 � � � � � � 0 �1̄2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(15)

The indices on the diagonal elements indicate the momentum
value at which the entry is to be evaluated. The element �12̄, for
example, represents the self energy function �(k + Q1 − Q2).
Each � in the expression should be considered to have two
indices, corresponding to the row and column labels, which
indicate the momentum scattered from and to. For example,
entry (2,3) represents the gap function �

k+Q1
k−Q1

.
To express the gap and self energy functions in terms of

electron and phonon propagators, it is convenient to employ the
so-called Lehmann representation. In this formalism, element
(n,m) of the Bogoliubov-de Gennes gap matrix is written as:

�n
m(k,ε + iδ)

= − 1

π

∑
q

(
gk+Qn,k−q+Qn

gk−q+Qm,k+Qm

(
�q

�RPA

)

×
∫

dε′Im
[
Gn

m(k − q,ε′ + iδ)
]

·
{

nB(�RPA) + 1 − f (ε′)
ε − ε′ − �RPA + iδ

+ nB(�RPA) + f (ε′)
ε − ε′ + �RPA + iδ

})
(16)
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with the corresponding Feynman diagrams contained in
Fig. 11. The generalized susceptibility in this case reads:

D2 = − 1

π

∑
k

|gk,k+q|2
∫

dε′Im
[
G1

1(k,ε′ + iδ)
]

× Re

[
f (ε′) − f (ξk−q)

ε′ − ξk−q − i�

]
. (17)

For the remainder of this section, we neglect the diagonal
(self energy) terms in the matrix of Eq. (15), so that the calcula-
tion effectively takes place in the random phase approximation,
and the gap equation depicted in Fig. 11 can in principle
be solved self-consistently. To simplify the calculation, we
assume the CDW gap to be static and only consider its value
at ε = 0. We furthermore assume �k

k+Qm
= �k

k−Qm
= �k

k+Qn
,

for all m,n ∈ {1,2,3}, which we numerically confirmed to be
a valid approximation within the first iteration. Describing all
these elements with the single gap function �(k) allows the
remaining elements to be expressed by different instances of
the same function, so that for example �

k+Q1
k−Q1

= �
k+Q1
k+2Q1

=
�(k + Q1). Finally, we set the complex phase of the CDW
gap to zero.

The gap function can be expanded in terms of periodic
functions with the same symmetry as the lattice [26], which
up to fifth order results in the expression:

�k = t0 + t1(2 cos (ζ ) cos (η) + cos (2ζ ))

+ t2(2 cos (3ζ ) cos (η) + cos (2η))

+ t3(2 cos (2ζ ) cos (2η) + cos (4ζ ))

+ t4(cos (ζ ) cos (3η) + cos (5ζ ) cos (η)

+ cos (4ζ ) cos (2η))

+ t5(2 cos (3ζ ) cos (3η) + cos (6ζ )). (18)

Here the definitions ζ = 1
2kx and η =

√
3

2 ky have been used.
The values of the six coefficients in this expansion are then
calculated by searching for a self-consistent solution to the
gap equation at six high-symmetry points in the first Brillouin
zone. These points, and the resulting momentum-dependent
gap function, are displayed in Fig. 12. Of the tested high-
symmetry points the gap function was found to have a nonzero
value only at K, in agreement with the observation in ARPES
experiments that a CDW gap opens only in the Fermi sheets
closest to the K points [25].

Having found the momentum-dependent gap function, we
can examine the effect of the CDW formation in NbSe2 on
its electronic band structure and density of states. The former
quantity is accessed experimentally in ARPES measurements,
where the measured intensity is proportional to the electronic
spectral function A(k,ω), which within the Lehmann represen-
tation is related to the renormalized electronic Green’s function
in the presence of a gap by the expression [33,34]:

G(k,iωn) = − 1

π

∫
dε

Im[G(k,ε + iδ)]

iωn − ε

=
∫

dε
A(k,ε)

iωn − ε
. (19)

Figure 13 shows the calculated ARPES intensity at the
Fermi energy as a function of momentum throughout the

FIG. 12. The self-consistent solution �(k) to the CDW gap
equation, expanded to fifth order in periodic functions with the
symmetry of the lattice. The points at which the function was
evaluated in order to determine self-consistency of the solution are
indicated.

Brillouin zone. The outer pockets around the K points do
not develop a significant gap, while on the inner pockets a
gap opens up along the MK lines. This is seen more clearly
in Fig. 14, which shows the calculated intensity as a function
of both energy and momentum along several high-symmetry
lines. The opening of the gap on the inner pocket can again
be clearly distinguished along the MK line. Notice that to
make these figures, the spectral function was multiplied by
a Fermi-Dirac distribution function, reflecting the fact that
ARPES can only measure occupied electronic states. Both
representations of the spectral function can be compared
directly to experimentally-obtained ARPES intensity maps
[25]. To obtain good quantitative as well as qualitative agree-
ment between the calculation and experimental observations,
a constant self energy of 7 meV was included in these plots.

Figure 15 shows the computed density of states and
compares it to that obtained from scanning tunneling spec-
troscopy (STS) measurements, where the derivative of the

FIG. 13. The calculated ARPES intensity at EF in the presence of
the self-consistent CDW gap, plotted throughout the Brillouin zone.
An electronic gap can be seen to suppress the intensity on regions of
the inner band around the K pockets, as highlighted by the yellow
circle.
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FIG. 14. The calculated ARPES intensity in the presence of the self-consistent CDW gap along various high-symmetry lines. The CDW
gap can be seen to open in the band closest to K along the MK line.

measured current with respect to the applied bias voltage is
proportional to the local density of states [14]. The theoretical
prediction matches the experimental observation close to
the Fermi energy. In particular, both suggest a particle-hole
asymmetric CDW gap centered around 12 meV above EF

[14,15]. To obtain a quantitative fit with the experimental data,
we employed a 4 meV shift of the chemical potential, which is
well within the ±16 meV uncertainty in the band structure fit
[26]. The kinks in the experimental results around ±35 meV
are due to the inelastic tunneling of electrons at these energies,
exciting a phonon mode in the NbSe2 surface [14].

Notice that the only free parameter in the model is the
overall strength of the electron-phonon coupling. Its value
was optimized to simultaneously match both the experimental
ARPES and STS results. That good fits to all experimental
data can be produced simultaneously by a single choice of the
free parameter, as shown in Figs. 13–15, indicates the signif-
icant contribution of the orbital- and momentum-dependent
electron-phonon coupling in determining the momentum-
resolved CDW gap and hence the physical characteristics of
the CDW state.

FIG. 15. Comparison of the modeled density of states to exper-
imental results. Blue points: dI/dV measured in STS experiments
[14]. Black: the density of states calculated from the tight-binding fit
to the electronic structure, without a CDW gap. Red: the calculated
density of states including the self-consistent CDW gap.

VI. UNIAXIAL STRAIN

It was recently shown using scanning tunneling microscopy
(STM) that regions of 1Q charge order appear on the surface
of NbSe2 alongside the usual 3Q CDW phase [14]. It was
suggested that the 1Q regions may be stabilized by local strain
on the sample’s surface. The fact that both 1Q and 3Q order
can be observed side-by-side on the same sample suggests that
the 3Q order is in fact close to a quantum critical point and
can be destroyed by relatively little strain [14,16]. To quantify
this hypothesis, we now compare the free energy of the 3Q
ordered state to that of the single Q pattern, as a function of
externally-applied uniaxial strain.

The free energy F is related to the effective action through
the relation:

exp (−βF ) =
∫

Dϕ exp (−Seff[ϕ]). (20)

The effective action in this expression follows from the
general expression of Eq. (7) by integrating out the electronic
degrees of freedom. It can be expanded in powers of the
electron-phonon coupling, with the expansion coefficients
shown diagrammatically in Fig. 16. The result up to fourth
order is given in the static limit by:

Seff[ϕ] =
∑

q

ϕ†
q

(
�q + 1

2
D2(q)

)
ϕq

+ 1

3

∑
qp

ϕqϕpϕ−p−qD3(q,p)

+ 1

4

∑
pql

ϕqϕpϕlϕ−l−p−qD4(q,p,l), (21)

FIG. 16. The Feynman diagrams for the coefficients in the
expansion of Eq. (21).
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where we introduced the static nonlinear susceptibilities:

D3(q,p) =
∑

k,μ,ν,ρ

g
μ,ν

k,k+qg
ν,ρ

k+q,k+q+pg
ρ,μ

k+q+p,k

[
f

(
ξ

μ

k

)
(
ξ

μ

k − ξν
k+q

)(
ξ

μ

k − ξ
ρ

k+p+q

) + cyclic permutations

]

D4(q,p,l) =
∑

k,μ,ν,ρ,σ

g
μ,ν

k,k+qg
ν,ρ

k+q,k+q+pg
ρ,σ

k+q+p,k+q+p+lg
σ,μ

k+q+p+l,k

·
[

f
(
ξ

μ

k

)
(
ξ

μ

k − ξν
k+q

)(
ξ

μ

k − ξ
ρ

k+q+p

)(
ξ

μ

k − ξσ
k+q+p+l

) + cyclic permutations

]
. (22)

The apparent divergences in these expressions are canceled by
the cyclic permutation over band indices and can be removed
analytically [13].

To investigate the relative stability of the different ordering
geometries that have been experimentally observed in NbSe2,
the general displacement fields ϕq can be replaced by variables
which are nonzero only for momentum values q = ±Qj , with
Qj all possible CDW wave vectors. Writing ϕi = ϕ(Qi) and
neglecting the functional integral in Eq. (20) then implies:

βF = Seff = −r
∑

i

|ϕi |2 − aϕ1ϕ2ϕ3

+ 1

2
b

⎛
⎝∑

i

|ϕi |4 + c
∑
i 
=j

|ϕi |2|ϕj |2
⎞
⎠. (23)

Notice that in this expression, the free energy has implicitly
been minimized with respect to the relative phases of the
displacement fields, resulting in the appearance of a minus
sign in the cubic term. The expansion coefficients can be
written explicitly in terms of the phonon energy, the electronic
susceptibility, and the diagrams shown in Fig. 17 as:

r = −�q + D2

a = 2(D3a + D3b)
(24)

b = D4a + 2D4b

bc = 4(D4d + 2D4c).

FIG. 17. The Feynman diagrams remaining in the free energy
expansion after attention has been restricted to the CDW vectors Qi .
The labels Q and Q′ indicate different CDW wave vectors.

The free energy can be further simplified by focusing
explicitly on the two experimentally-observed geometries of
3Q and 1Q order. The 3Q state is described by setting ϕj = ϕ

for all j , while the 1Q state is characterized by only a single
nonzero displacement field, ϕ1 = ϕ. The expressions for the
free energies then reduce to:

βF3Q[ϕ] = −3rϕ2 − aϕ3 + 3
2b(c + 1)ϕ4

βF1Q[ϕ] = −rϕ2 + 1
2bϕ4. (25)

In all cases considered in this paper, both b and b(c + 1) are
positive, and no higher order terms in the expansion need to
be considered.

Minimizing the functionals of Eq. (25) with respect to ϕ

gives the free energy of each particular configuration. In the
case of the 1Q CDW the result is:

βF min
1Q =

{−r2/2b,

0,

r > 0
r � 0 . (26)

The temperature dependence of the free energy is dominated
by that of the coefficient r in front of the quadratic term.
It is then clear from the expression above that 1Q order
may develop as a function of temperature through a second-
order phase transition at r = 0 when approaching from the
disordered regime with r < 0.

For the 3Q case the situation is altered by the cubic term.
The free energy of the ordered system then becomes:

βF min
3Q = −[a4 + 24ra2b(c + 1) + 96r2b2(c + 1)2

+ a(a2 + 16rb(c + 1))
3
2 sgn(ac + a)]

/[64b3(c + 1)3]. (27)

Again assuming that only the temperature dependence of r

is relevant near the transition, naively we would expect two
possible transitions: either the 3Q order develops through a
second-order phase transition at r = 0, or it emerges from a
first order phase transition when b(c + 1) = −a2/18r . In fact
the second-order transition is always intercepted by a ‘weakly
first-order’ transition [35]. To see this, consider the disordered
state with r < 0. Upon cooling, r rises towards zero. However,
just before the temperature is low enough for r to vanish and
the second-order phase transition to be realized, it must be the
case that r → 0−. In this limit, for any nonzero a, the term
a2/r diverges and passes through the value −18b(c + 1), at
which point a first-order transition sets in. The second-order
3Q transition can therefore never occur.

For completeness, one should also consider the possibility
of a 2Q CDW state rather than the 1Q and 3Q phases considered
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FIG. 18. The effect of uniaxial strain on lattice distances. Com-
pression of the atomic lattice along one of the CDW propagation
vectors leads to an expansion along the directions of the remaining
CDW propagation vectors. The distances are indicated to first order
in d .

so far. The free energy corresponding to that case would be:

βF2Q[ϕ] = − 2rϕ2 + b

2
(c + 2)ϕ4. (28)

Comparing this expression to the 1Q case, it immediately
follows that F min

1Q = (c + 2)F min
2Q . The 1Q geometry is thus

energetically favorable to the 2Q geometry for any c > −1,
and a 2Q phase never forms.

Including the dependence on uniaxial strain, as well as
temperature, in the free energies of Eqs. (26) and (27), breaks
the sixfold symmetry of the disordered and 3Q states. One way
in which the asymmetry manifests itself is through a difference
in the phonon frequencies along stretched and compressed
directions within the crystal. Assuming the volume of the unit
cell to be conserved, an expansion of the lattice in one direction
will be accompanied by a corresponding compression in
the orthogonal direction. The uniform-volume assumption
corresponds to a Poisson’s ratio of unity; this is unlikely
to be realistic but may still be used as a reasonable first
approximation. Further assuming the phonon energies to
depend linearly on changes in the atomic spacing, at the
small displacements considered here, the strain dependence
can be included in the free energy functionals by making
the substitutions �1 → �1(1 + σ ) and �2,3 → �2,3(1 − σ

2 ).
Here σ is a dimensionless strain parameter, and the relation
between the displacements along different CDW propagation
directions is shown graphically in Fig. 18.

The effect of strain on the quadratic coefficients in the free
energy expansion arises from the different effect it has on the
phonon dispersion in different directions, which leads to the
inequivalent terms:

r1 = −�q(1 + σ ) + D2
(29)

r2,3 = −�q

(
1 − σ

2

)
+ D2.

Since the diagrams in Fig. 16 contain no dependence on
internal phonon lines, they do not depend on the phonon
frequency �q. Besides the quadratic coefficients, therefore,
no other terms in the free energy are affected by the applied
uniaxial strain.

Combining both the temperature and strain dependence of
the free energy leads to the phase diagram displayed in Fig. 19.
To obtain this diagram, the magnitude of the electron-phonon

FIG. 19. The phase diagram arising from the mean-field free
energy expansion, as a function of temperature and strain. Dashed
lines bounding the 1Q regions indicate second-order phase transitions
whereas the solid line bounding the 3Q region indicates a weakly-
first-order transition.

coupling g has been chosen such that the zero-strain phase
transition occurs at the experimentally-observed transition
temperature TCDW = 33.5 K. The propagation vectors for
the 3Q and 1Q phases are set equal to the experimentally-
established values Q = 0.657 �M and Q = 2/7 �M, respec-
tively [14]. The different rates of increase of the transition
temperature with increasing positive or negative strain in
Fig. 19 are due to the fact that a compression (positive strain)
σ along the Q1 direction causes only a σ/2 stretch (negative
strain) in the directions of the other two possible CDW wave
vectors.

While the 3Q geometry is stable at zero strain, it only
takes around 0.01% anisotropic change in the bare phonon
energy to break the symmetry down to 1Q. An estimate for the
corresponding lattice strain would require knowledge of the
in-plane Grüneisen parameter,−∂ ln �q/∂ ln a, with in-plane
lattice parameter a. In the layered hexagonal materials MoS2,
BN, and graphite, this parameter is known to be of order
unity throughout most of the first Brillouin zone [36,37].
Assuming the trend holds for NbSe2, the phase diagram of
Fig. 19 indicates that around 0.01% uniaxial strain of the
atomic lattice suffices to stabilize the 1Q geometry. This may
be compared to the upper bound of around 0.45% lattice
strain estimated for the 1Q-ordered, locally-strained regions in
the STM experiment [14]. The quantitative discrepancy will
shortly be shown to be due to the neglect of lattice fluctuations
in the mean-field approximation used up to this point.

The 3Q CDW phase in NbSe2 is thus found to be
intrinsically close to a quantum phase transition into a 1Q-
ordered state. This result suggests that besides occurring in
spontaneously-formed locally-strained regions on the surface
of samples used in STM studies [14], the 1Q CDW may
also be stabilized in bulk crystals under the application
of only a moderate uniaxial strain. The quantum critical
region separating the two ordering geometries should be
experimentally accessible in the same way.
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FIG. 20. The Feynman diagrams beyond those of Fig. 16, which
contribute to the free energy expansion within the mode-mode
coupling approximation (MMA). The top diagram provides the
dominant contribution in the case of NbSe2.

VII. THE CDW PSEUDOGAP

Including the momentum and orbital dependence of the
electron-phonon coupling in a mean-field theory based on a
tight-binding fit to the electronic band structure, as used up
to this point, has elucidated various ground state properties of
the CDW order in NbSe2. It cannot, however, be expected to
give a full description of the high-temperature physics. It is
well known that in the presence of strong electron-phonon
coupling, the entropy associated with fluctuating atomic
displacements significantly contributes to the properties of
CDW materials at finite temperatures [38]. In NbSe2 such
fluctuations may be expected to be present, because of the
experimentally-established pseudogaplike properties of the
disordered state just above the CDW transition temperature.
In close analogy to the pseudogap state of high-temperature
superconductors, these include the formation of Fermi arcs
as seen in ARPES experiments [25] and the stabilization
of locally-ordered regions surrounding defects in the bulk
disordered state seen in STM experiments [30].

Fluctuations in the phonon field are neglected in the RPA
approximation employed up to this point, and to include them
we need to go beyond the mean field diagrams of Fig. 16 in
the evaluation of the free energy coefficients. The lowest-order
contributions including fluctuations of the phonon field are
shown diagrammatically in Fig. 20. Taking into account only
these additional terms in the free energy expansion is known
as the mode-mode coupling approximation (MMA) [38–40].

The bottom-right diagram in Fig. 20 is of order g6, while
the other contributions are of order g4. In some cases, such
as that of spin density waves in two-dimensional metals, the
presence of Landau damping can suppress a factor of g2 in this
term and put it on equal footing with the other two [41]. In the
present case of CDW order, however, it is simply a sixth-order
term in the electron-phonon coupling and may be neglected
[38,40].

In the bottom-left diagram of Fig. 20 the internal phonon
line constitutes a vertex correction. Such corrections may
be dismissed for vertices with large momentum transfer by
appeal to Migdal’s theorem, which guarantees they will be
proportional to an additional ratio of electronic to ionic mass
[42,43]. For the case of NbSe2, the momentum transfer of
interest is that along the CDW wave vector with |QCDW| ≈
2/3�M, and this diagram may therefore be neglected as well.

The remaining, top, diagram in Fig. 20 can be thought of as a
renormalization of the phonon propagator, but in contrast to the
mean-field expression it includes a self-energy for one of the

particles in the virtual electron-hole pair. As noted before, this
self energy can be calculated separately using the expression
depicted diagrammatically in Fig. 11. The analytic form of
the expression is given in the Appendix. In the self-energy
diagrams, the phonon lines may be interpreted to represent the
RPA-renormalized phonon propagators found before, while
the renormalized electron lines can be found self-consistently
by the inclusion of the self energy:

D(q,i�n) = −2�q

(i�n)2 − �2
q + �qD2(q,i�)

G(k,iωn) = (iωn − ξk − �k + μ)−1. (30)

Owing to the independence of the two bands crossing the Fermi
level, only intraband contributions need to be considered, and
band indices are dropped for clarity.

Using the definitions of Eq. (30), the expressions for the
electronic self-energy � and the generalized susceptibility D�

2
in the presence of the fluctuations described by the MMA
terms can be cast into a convenient form using the Lehmann
representation of Eq. (19):

�(k,ε + iδ)

=
∑

q

|gk,k−q|2
(

�q

�RPA

) ∫
dε′A(k − q,ε′)

×
{

nB(�RPA) + 1 − f (ε′)
ε − ε′ − �RPA + iδ

+ nB(�RPA) + f (ε′)
ε − ε′ + �RPA + iδ

}

D�
2 (q,i�)

=
∑

k

|gk,k−q|2
∫

dεA(k,ε)Re

[
f (ε) − f (ξk−q)

ε − ξk−q − i�

]
. (31)

In this expression, �RPA are the RPA-renormalized phonon
energies, which can be found by considering the poles of
D(q,i�n). A self-consistent value for the electronic self energy
can be found by solving the system of Eqs. (30) and (31).
Starting from the ansatz of a purely-real �(0) = 7 meV, a full
iteration of the self-consistent equations yields only a small
correction to the self energy, suggesting this ansatz provides a
reasonable approximation of the true self-consistent solution.

We take into account the phonon fluctuations and their
associated self energy results in the renormalized phonon
dispersion shown in Fig. 21. The overall strength of the
electron-phonon coupling g has been chosen such that
the MMA-renormalized dispersion touches zero energy at
the experimentally-observed CDW transition temperature
TCDW = 33.5 K. Calculating the RPA-renormalized phonon
dispersion using the same value for g would result in a far
more heavily renormalized (lower energy) phonon frequency.
The RPA in fact predicts an ordering transition at 416 K with
this value of g. The effect of the fluctuations encoded by the
additional MMA diagrams is therefore to suppress the CDW
order.

Physically, the suppression of the CDW transition to
lower temperatures can be interpreted in terms of phase
fluctuations [44,45]. At the mean field transition tempera-
ture TRPA = 416 K, the CDW order parameter acquires a
nonzero amplitude, signaled by the finite expectation value√

〈|ϕ|2〉 > 0. The displacement field has a phase as well as
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FIG. 21. The renormalized phonon dispersion along the high-
symmetry direction �M as calculated within the mode-mode coupling
(MMA) approximation, at various temperatures. The 33.5 K data
were calculated with a higher density k-space mesh and are indicated
by open circles. The interpolating solid line in that case is a guide
to the eye, while for other temperatures it connects all available data
points. The magnitude of the electron-phonon coupling for all lines
has been set to give the MMA phase transition at T = 33.5 K.

an amplitude, however, and fluctuations of the phase cause
the order parameter itself to average to zero: 〈ϕ〉 = 0. In the
calculation of the phonon dispersion, these fluctuations and
their detrimental effect on the CDW order are taken into
account by the MMA diagrams. Only at the much lower
temperature TMMA = 33.5 K are the fluctuations sufficiently
damped to allow for long-range order with 〈ϕ〉 > 0.

This result can be extended to include the effects of uniaxial
strain in the same way that strain was introduced at the mean
field level. Within the mode-mode coupling approximation,
only the coefficient of the quadratic term in the free energy
obtains additional contributions beyond RPA. As in Eq. (29),
that coefficient can be written as a combination of the energy
�q required to excite a phonon in a given direction and
the electronic susceptibility D2. In this case, however, the
MMA contribution to the electronic susceptibility shown in
the middle of Fig. 20 includes an internal phonon line and
thus becomes direction dependent as well. It can be found by
first considering the anisotropic electronic self energy, which
is obtained from Eq. (31) after replacing the phonon energy by
either one of the strained versions �q(1 + σ ) or �q(1 − σ/2).
Inserting the anisotropic self energy into the expression for
D2 in Eq. (31) then results in an anisotropic version of the
electronic susceptibility, which finally can be substituted into
the coefficient for the quadratic term in the free energy.

Combining the result of the minimization procedure out-
lined above with that using the mean-field approximation re-
sults in the temperature-strain phase diagram shown in Fig. 22.
The overall strength of the electron-phonon coupling g is
chosen so as to give a phase transition temperature TMMA equal
to the experimentally-observed value of TCDW = 33.5 K. The
figure also shows the mean-field transition temperatures TRPA

found using the same value of the electron-phonon coupling.
The RPA and MMA transition temperatures were calculated
independently, rather than within a single framework. That
is, within the random phase approximation, the transition

FIG. 22. The calculated phase diagram as a function of tem-
perature and uniaxial strain. The pseudogap regime indicates the
temperatures below the point at which the mean-field (RPA) renor-
malized phonon dispersion first touches zero energy but above the
CDW phase transition as calculated within the mode-mode coupling
(MMA) approximation. Dashed lines indicate second-order phase
transitions whereas solid lines indicate weakly-first-order transitions
within the respective approximations. The onset of the pseudogap
phase is expected to be a crossover rather than a true phase transition.

temperature is predicted to be TRPA, and the free energy
expansion breaks down below that temperature. Within the
mode-mode coupling approximation, nothing happens at TRPA,
and long-range order sets in at the much lower temperature
TMMA. Physically, we expect the region between these two
temperatures to constitute a pseudogap regime, in which local
fluctuations of the phase of the order parameter, present in
the MMA, prevent the emergence of long-range order, even
though the amplitude of the order parameter which is present
already within RPA has a nonzero expectation value.

Notice that the presence of fluctuations has the additional
effect of stabilizing the 3Q ordered phase at low temperatures
up to lattice strains of around 0.1%, as opposed to 0.01%
in the mean-field calculation of Fig. 19. The MMA value is
consistent with the upper bound of about 0.45% lattice strain
estimated for the 1Q-ordered, locally-strained regions in the
STM experiment [14].

The picture of charge order in NbSe2 arising out of a locally-
fluctuating state is consistent with several recent experimental
observations [28]. First of all, in the pseudogap regime above
TCDW, the closed loops forming the 2D Fermi surface can be
seen to break up into arcs [25]. These gaps develop from the
true CDW gap below the transition temperature, and seem to
persist to temperatures well above the experimental limit of
119 K [25]. The presence of this pseudogap in the absence of
any long-range CDW order indicates that the CDW amplitude,
which is directly proportional to the gap size, retains a nonzero
value at high temperatures even though the order parameter
itself has disappeared.

Secondly, scanning tunneling experiments have shown that
static, local CDW order surrounds defects on the surface of
NbSe2 up to temperatures of at least 96 K [30]. The defects
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in these images are interpreted as stabilizing CDW order
locally, and suppressing temporal fluctuations. They do so,
however, in an uncorrelated manner, maintaining the overall
absence of long-range order. Following the minima of the
renormalized phonon dispersions in Fig. 21 as a function
of temperature gives an indication of the expected thermal
evolution of the CDW vector QCDW characterizing the local
order in the fluctuating islands of the pseudogap phase [16].
The regions of stability surrounding defects are expected to
grow continuously as temperature decreases, until at TCDW they
overlap sufficiently for separate regions to become correlated.
Besides the islands of static order stabilized by defects and
seen by STM, there must also exist dynamically-fluctuating
short-ranged order which is invisible on the long timescales
required by STM. It may be assumed that the correlation length
characterizing the dynamical fluctuations is comparable to that
of the static islands. This is corroborated by the observation
within x-ray diffraction of a finite but nonzero correlation
length for the CDW order at high temperatures, which becomes
truly long-ranged only at TCDW [28].

The CDW pseudogap in NbSe2 is thus interpreted as a
regime with nonzero amplitude of the CDW order parameter
and its associated electronic gap but with long-range phase
coherence suppressed by local phase fluctuations. The fluc-
tuations originate in the atomic displacement field, and may
be suppressed around defects, leading to observable islands
of static order well above the CDW transition temperature.
The amplitude of the CDW order parameter itself, and hence
also the electronic gap and local order, will disappear at the
mean field transition temperature, which, based on the phase
diagram of Fig. 22, is expected to be of order 400 K.

VIII. DISCUSSION

In this paper we presented in detail a model for the charge
density wave order in 2H -NbSe2, extending previous work
investigating the gap and pseudogap regimes [15] and the
stability of the 1Q and 3Q geometries under uniaxial strain
[16]. Employing a strong electron-phonon coupling which
depends both on the ingoing and outgoing electron momenta,
and on the orbital character of the bands scattered between, we
found quantitative agreement between the model predictions
and a number of experimental observations.

This model accounts for the presence of a CDW gap
in only one of the two bands crossing the Fermi level by
relative strength of its intraband electron-phonon coupling as
compared to all other couplings. We found that the generalized
electronic susceptibility, which includes the effect of the full
electron-phonon coupling, is peaked at the experimentally-
observed CDW wave vector, removing the seemingly-
mysterious situation of an incommensurate CDW arising from
a practically-flat bare electronic susceptibility. We quantified
the contribution of electronic nesting to the selection of the
CDW wave vector by calculating the value of its nesting
parameter, ranging from zero (no nesting) to one (perfect
quasi-1D nesting), finding the value α = 0.55. This value
indicates that for any realistic description of the CDW phase
in NbSe2, both the electronic structure and the momentum and
orbital dependent electron-phonon coupling are indispensable
ingredients.

By explicitly calculating the momentum dependence of
the CDW gap, taking into account the shapes of the elec-
tronic dispersion and the electron-phonon coupling, we found
quantitative agreement with experimental observations of the
electronic density of states around EF [14], as well as the
gapped electronic bands seen in ARPES experiments [25].
The fact that fixing only a single fitting parameter leads to
simultaneous agreement with all available data connected to
the CDW gap structure emphasizes once more the importance
of the interplay between electronic structure and electron-
phonon coupling [15]. From the density of states, it can be
seen that the CDW gap in NbSe2 is offset by about 12 meV
from EF, which explains the difference in reported gap sizes
throughout the literature [14]. The distribution of the gap in
momentum space indicates that it is concentrated mainly in the
region where the inner pocket surrounding the K point crosses
the MK line. This feature explains why the CDW phase appears
to be associated in ARPES experiments with Fermi arcs [25].
The fact that these arcs persist in the experiment even at high
temperatures can be explained by the inclusion of fluctuations
of the atomic displacements. Such fluctuations tend to suppress
CDW order, and a pseudogap regime is found between the
predicted mean-field transition temperature and the actual
CDW transition in the presence of fluctuations. The pseudogap
regime is characterized by having a nonzero value for the order
parameter amplitude, and hence the gap size, but without long-
range phase coherence. This state is characterized by Fermi
arcs in the electronic structure, and short-ranged, locally-
fluctuating order in the charge density, in agreement with all
available relevant experimental observations [25,28,30].

Finally, we included the effect of externally-applied uniax-
ial strain by means of an anisotropic contribution to the phonon
energy [16]. The resulting phase diagram indicates that NbSe2

is naturally close to a quantum phase transition between the
observed 3Q CDW order at zero strain and a unidirectional
1Q phase at about 0.1% applied strain. In addition to the
spontaneously-formed regions of locally-strained 1Q CDW
order which have been observed on the surface of NbSe2

samples in STM experiments [14], this result suggests that
the transition into unidirectional order, and the corresponding
quantum critical region, may be accessible in experiments
employing bulk uniaxial strain.

Both the similarity of the locally-fluctuating high-
temperature phase to the pseudogap phase observed in cuprate
high-TC superconductors, and the natural vicinity of the mate-
rial to a quantum critical transition between different ordering
geometries, make NbSe2 an ideal model system for the study of
strongly-correlated, charge-ordered materials. The fact that all
of the experimentally-accessible properties in both the charge-
ordered and pseudogap regimes can be understood quantita-
tively within a single one-parameter model based on a strong,
momentum- and orbital-dependent, electron-phonon coupling,
opens the way for comparison to related material families.
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APPENDIX: ELECTRONIC SELF ENERGY

The expression for the electronic self-energy displayed diagrammatically in Fig. 11 can be written as:

�(k,iωn) = −
∑

q

∑
�n

|gk,k−q|2G(k − q,iωn − i�n)D(q,i�n). (A1)

Here D is the RPA-renormalized phonon propagator and G is the fully-renormalized electronic propagator which itself depends
on the self-energy �. This expression can be expanded and written in terms of the spectral function as:

�(k,iωn) = −
∑

q

∑
i�n

(
|gk,k−q|2 −2�0(q)

(i�n + �RPA(q))(i�n − �RPA(q))

∫
dε′ A(k − q,ε′)

iωn − i�n − ε′

)
. (A2)

The summation over Matsubara frequencies can then be carried out to yield:

�(k,iωn) =
∑

q

|gk,k−q|2
(

�0

�RPA

)∫
dε′A(k − q,ε′)

{
nB(�RPA) + 1 − f (ε′)

iωn − ε′ − �RPA
+ nB(�RPA) + f (ε′)

iωn − ε′ + �RPA

}
. (A3)

Wick rotating iωn → ε + iδ and inserting the seed �(0) for the self energy, the result, �(1), after one iteration of the self-consistent
calculation, is given by:

�(1)(k,ε) = − 1

π

∑
q

∫
dε′|gk,k−q|2 �(0)′′

(ε′ − ξk−q − �(0)′)2 + (�(0)′′ − δ)2

× �0

�RPA

{
nB(�RPA) + 1 − f (ε′)
ε − ε′ − �RPA + iδ

+ nB(�RPA) + f (ε′)
ε − ε′ + �RPA + iδ

}
. (A4)
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Krüger, A. Mazur, and J. Pollmann, Phys. Rev. B 64, 235119
(2001).

[12] J. Chang, E. Blackburn, A. T. Holmes, N. B. Christensen,
J. Larsen, J. Mesot, R. Liang, D. A. Bonn, W. N. Hardy,
A. Watenphul, M. v. Zimmermann, E. M. Forgan, and S. M.
Hayden, Nat. Phys. 8, 871 (2012).

[13] A. Melikyan and M. R. Norman, Phys. Rev. B 89, 024507 (2014).
[14] A. Soumyanarayanan, M. M. Yee, Y. He, J. van Wezel, D. J.

Rahn, K. Rossnagel, E. W. Hudson, M. R. Norman, and J. E.
Hoffman, Proc. Natl. Acad. Sci. USA 110, 1623 (2013).

[15] F. Flicker and J. van Wezel, Nat. Commun. 6, 7034 (2015).

[16] F. Flicker and J. van Wezel, Phys. Rev. B 92, 201103(R)
(2015).

[17] D. E. Moncton, J. D. Axe, and F. J. DiSalvo, Phys. Rev. Lett.
34, 734 (1975).

[18] N. J. Doran, J. Phys. C: Solid State Phys. 11 (1978).
[19] D. E. Moncton, J. D. Axe, and F. J. DiSalvo, Phys. Rev. B 16,

801 (1977).
[20] Y. Feng, J. van Wezel, J. Wang, F. Flicker, D. M. Silevitch, P. B.

Littlewood, and T. F. Rosenbaum, Nat. Phys. 11, 865 (2015).
[21] T. M. Rice and G. K. Scott, Phys. Rev. Lett. 35, 120 (1975).
[22] M. D. Johannes, I. I. Mazin, and C. A. Howells, Phys. Rev. B

73, 205102 (2006).
[23] F. Weber, S. Rosenkranz, J.-P. Castellan, R. Osborn, R. Hott, R.

Heid, K.-P. Bohnen, T. Egami, A. H. Said, and D. Reznik, Phys.
Rev. Lett. 107, 107403 (2011).

[24] F. Weber, R. Hott, R. Heid, K.-P. Bohnen, S. Rosenkranz, J.-P.
Castellan, R. Osborn, A. H. Said, B. M. Leu, and D. Reznik,
Phys. Rev. B 87, 245111 (2013).

[25] S. V. Borisenko, A. A. Kordyuk, V. B. Zabolotnyy, D. S. Inosov,
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