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Multifold fermions are generalizations of twofold degenerate Weyl fermions with three-, four-, six-, or
eightfold degeneracies protected by crystal symmetries, of which only the last type is necessarily nonchiral. Their
low-energy degrees of freedom can be described as emergent relativistic particles not present in the standard
model of particle physics. We propose a range of experimental probes for multifold fermions in chiral symmetry
groups based on the gyrotropic magnetic effect (GME) and the circular photogalvanic effect (CPGE). We find
that, in contrast to Weyl fermions, multifold fermions can have zero Berry curvature yet a finite GME, leading to
an enhanced response. The CPGE is quantized and independent of frequency provided that the frequency region
at which it is probed defines closed optically activated momentum surfaces. We confirm the above properties
by calculations in symmetry-restricted tight-binding models with realistic density functional theory parameters.
We identify a range of previously unidentified ternary compounds able to exhibit chiral multifold fermions of all
types (including a range of materials in the families AsBaPt and Gd3Cl3C), and provide specific predictions for
the known multifold material RhSi.

DOI: 10.1103/PhysRevB.98.155145

I. INTRODUCTION

Weyl fermions are chiral, massless spin-1/2 particles obey-
ing the Weyl equation [1]. Predicted shortly after the for-
mulation of the Dirac equation, Weyl fermions have yet to
be discovered as fundamental particles. However, condensed
matter analogues of Weyl fermions have been proposed and
experimentally realized in the so-called Weyl semimetals
(WSMs) [2–5], in which they exist as two-band crossings
of linearly-dispersing bands. The crossings points—known
as Weyl nodes—are perturbatively stable on dimensional
grounds [6,7], a fact that carries with it a topological in-
terpretation: each node carries a monopole of Berry curva-
ture, and hence a gap can only be opened when nodes of
opposite charge annihilate. The Berry curvature causes those
fermions with crystal momenta close to a node to behave as if
they are in the presence of an effective magnetic monopole.
These monopoles are responsible for many exotic physical
properties of Weyl semimetals, including protected surface
Fermi arcs [8] connecting the bulk nodes and unconventional
magnetoresistance [9,10].

Weyl excitations exist in Helium-3 [11,12] and in solid
state systems, where they were first predicted [7,13] and
realized in the TaAs family of materials [14,15]. The cor-
responding Weyl nodes and the associated Fermi arcs were
identified with angle-resolved photoemission spectroscopy
(ARPES) and quasiparticle interference (QPI) in surface tun-
neling measurements [14–21].

The topological stability of Weyl nodes allows them to be
present in any crystal symmetry group, provided that either
time-reversal or inversion symmetry (or both) is broken [2].
In particular, the existence of Weyl nodes does not require a
chiral crystal structure (one with only orientation-preserving
symmetries). In chiral crystals, however, Weyl nodes of op-
posite charge need not be coincident in energy. Furthermore,
Weyl nodes in chiral crystals may occur at time-reversal
invariant momenta (TRIMs1) [22,23]. Recent work has iden-
tified that a wider variety of topologically charged fermions
beyond the Weyl paradigm can appear in condensed matter
systems, unconstrained by Lorentz invariance and the spin-
statistics connection [24–28]. In the chiral space groups, there
exist three-, four-, and sixfold band degeneracies protected by
crystal symmetries, which we refer to collectively as multi-
fold fermions [22,28–31]. In this work, we investigate how
multifold fermions may be probed in electrical and optical
experiments. We will focus on the unique interplay between
topological charge and magneto-electric and polarization-
dependent response.

As with bands emanating from a Weyl node, bands meet-
ing in a multifold degeneracy in a chiral group can be
assigned (generically nonzero) Chern numbers, defined by
the flux of the Berry curvature through a closed surface in

1We apologize for this abuse of grammar.
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FIG. 1. Chiral optical responses and multifold fermions. (Top) Schematics of the physical effects considered in this work and the response
functions that describe them. (a) The gyrotropic magnetic effect (GME), a current response parallel to the direction of an applied low-frequency
magnetic field. The GME is the low-frequency limit of natural optical activity, the rotation of the plane of linearly-polarized light upon
transmission through a gyrotropic material. (b) The circular photogalvanic effect (CPGE) is the photo generation of a current which changes
sign under a change in the polarization of the incident light, and which is proportional to the light’s intensity. The CPGE is quantized to an
integer (given by a combination of Chern numbers) multiple of β0 = πe3

h2 for chiral multifold fermions. (c) Schematic dispersion relations for
chiral multifold fermions. The threefold node harbors effective spin-1 quasiparticles. The Chern numbers of the bands are C = −2, 0, 2 from
low to high. The sixfold node is a symmetry-protected doubling of the spin-1 node. The first fourfold node is a symmetry-protected doubling
of a standard spin-1/2 Weyl node, and the bands have Chern numbers C = −1, −1, 1, 1 from low to high. The second node realizes effective
spin-3/2 quasiparticles. The Chern numbers of the bands are C = −3, −1, 1, 3 from low to high.

momentum space. Certain nonchiral space groups are able
to exhibit eightfold and alternative sixfold crossings, but the
bands cannot be assigned Chern numbers, so are not topo-
logically charged in the sense considered here [27,28]. We
do not consider these structures in this paper, although we
occasionally refer to chiral multifold fermions to emphasise
that these cases are excluded. In Fig. 1, we show the four
possible chiral multifold nodes and the associated Chern
numbers of the bands. In each case, the corresponding low-
energy effective Hamiltonian at the node can be written as
a generalization of the Weyl form Ĥ = k · S, and in many
cases the matrices S additionally take the form of higher-
spin representations of SU(2). Multifold fermions, predicted
to occur for example in the chiral semimetal RhSi, feature
many Fermi arcs with intricate connectivity, making ARPES
experiments challenging [29,30]. Bulk transport and optical
probes could provide alternative tests of their existence, as in
Weyl semimetals [32–36], but until now have been unexplored
for multifold fermions.

In this work, we study two bulk transport responses
that display specific, unique features of the chiral multifold
fermions: the gyrotropic magnetic effect (GME) and the
circular photogalvanic effect (CPGE). The GME is the low-
frequency limit of ‘natural optical activity’, the rotation of the
plane of linearly-polarized light upon transmission through an
inversion-broken (gyrotropic) material [37–39] [see Fig. 1(a)].
It has been extensively revisited recently in the context of

Weyl semimetals [40–44] due to its connection to the chiral
magnetic effect [45–47], which is defined as the existence of a
current flowing parallel to a magnetic field B [48–56]. Such a
response can only occur under static fields with a nonequilib-
rium band population [53,57], or as a low frequency response
to dynamical electromagnetic fields. The latter connects to
the GME expressed using Faraday’s law B = q × E/ω as
the electric current response generated by a low frequency
oscillating magnetic field.

The GME tensor measures the magnetic moment of bands
at the Fermi level [41]. In two band models, such as those
around Weyl nodes, the orbital moment is accidentally pro-
portional to the Berry curvature. In this work, we find that
for multifold fermions the bands’ GME responses and Chern
numbers not only fail to be proportional, but in many cases
they form reversed hierarchies, in which bands with the largest
orbital moment have the smallest (even zero) Berry curvature
(integrating both quantities over some surface enclosing the
node). We further identify a signature of threefold fermions
in the form of a discontinuous derivative in the GME as a
function of chemical potential, and note that the magnitude of
the GME response in these systems is generically enhanced
relative to Weyl semimetals and other chiral materials.

The second effect we study is the CPGE [see Fig. 1(b)],
which contributes to the nonlinear response, second order in
electric field, describing the (dc) current that flows in response
to an incident light pulse. In particular, the CPGE is the
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contribution to the response that switches sign when reversing
the sense of the polarization of light [58–61]. Second-order
nonlinear effects require the breaking of inversion symmetry,
a condition that permits the existence of topologically charged
Weyl points. This observation [62,63] naturally places Weyl
semimetal materials under the spotlight for the search of
novel and enhanced photovoltaic phenomena [64–73]. In-
deed, experimentally, nonlinear responses are significantly en-
hanced [74–79], yet the underlying microscopic mechanisms
are yet to be thoroughly understood.

Along with these observations recent work has predicted
that the trace of the CPGE tensor is quantized in units of
e3/h2 for a range of frequencies in Weyl semimetals, as it is
directly determined by the monopole charge of the nodes [66].
It was shown that this quantization is exact only in two
band models: the presence of additional bands introduces
nonuniversal corrections that scale with frequency ω, and their
energy separation to the Weyl point �E, as ω2/�E2. The
presence of these corrections severely restricts the search for
potential candidates to present the effect, since the sub-set
of the two Weyl bands must be significantly far away in
energy from all other states in the spectrum. Naively, one
might think that these corrections exclude the possibility of
a quantized CPGE trace in multifold fermions, contrary to
what was suggested in Ref. [29]. Since multifold fermions are
protected crossings of several bands, the correction ω2/�E2

would diverge since �E2 → 0 for any frequency.
In this work, we prove that this simplistic reasoning is

incorrect and that the CPGE trace is in fact quantized to
different integer values related to the monopole charges of
the bands, for any chiral multifold fermion in a range of
frequencies, provided some conditions are met, which we de-
rive. Together with the unique GME responses, we therefore
outline a range of unique signatures of multifold fermions
applicable to a wide variety of bulk transport and optical
setups. Note that both effects are the response of the electric
current to a pseudovector (B in the GME, E × E∗ in the
CPGE). As a result, the traces of the GME and CPGE tensors
vanish in the presence of any orientation-reversing operation,
and can only be nonzero in the chiral (or enantiomorphic)
point groups. We therefore study, beyond low-energy models,
realistic tight-binding Hamiltonians, taking into account the
effect of the (often overlooked) orbital embeddings. Using
first-principles calculations, we predict a range of previously
unexplored materials (in the families Gd3Cl3C and AsBaPt)
as being able to demonstrate the phenomena outlined in this
work. This adds to the previously-identified multifold material
family containing RhSi [28–30].

This paper proceeds as follows. In Sec. II, we review
some relevant information on multifold fermions, as well
as the GME and CPGE. In Sec. III, we provide analytical
calculations of the GME responses of each type of multifold
node. In Sec. IV, we provide both analytical and numerical
calculations of the nodes’ CPGE responses. In Sec. V, we pro-
vide numerical results for the GME in realistic band structures
in groups 198 and 199; between them these models feature
all possible multifold node types. We additionally provide
specific predictions for transport and optical experiments in
RhSi, a material in space group 198. In Sec. VI, we present
the results of ab initio calculations, which result in materials

where clear multifold nodes lie close to the Fermi level.
Finally, in Sec. VII, we provide concluding remarks.

Technical details are left to the appendices, which are
as follows. Appendix A features calculational details of the
GME. Appendix B clarifies which phenomena can occur in
which inversion-broken space groups. Appendices C and D
provide formulas for the frequency and energy scales of
threefold and fourfold fermions, respectively, referred to in
the CPGE plots in the main text. Appendix E provides details
of the ab initio methods employed in the search for new
materials. Appendix F provides details of the construction of
the tight-binding models used throughout the paper as well
as the models themselves. Finally, Appendix G demonstrates
the decoupling of the doubled fermion structures, along with
additional details of the k · p Hamiltonians used in the text.

II. BACKGROUND

In this section, we provide some relevant background to
multifold fermions, the gyrotropic magnetic effect (GME),
and the circular photogalvanic effect (CPGE), as well as a
number of original explanations and clarifications.

A. Multifold fermions

In the 65 chiral space groups, isolated point degeneracies
at high-symmetry points in the Brillouin zone are generically
monopole sources of Berry curvature. A Chern number can
be defined by integrating the flux of Berry curvature of
each band through a closed surface enclosing the node. The
simplest known case is that of a Weyl node at a time-reversal
invariant momentum (TRIM) [23] in a spin-orbit coupled
material, a twofold Kramers degeneracy where bands have
Chern numbers C = ±1. The presence of extra symmetries
can lead to the protection of nonlinear twofold [24,25] or
linear higher-fold degeneracies with higher Chern numbers.
The latter are the focus of this work, which we refer to
as multifold fermions. In systems with negligible spin-orbit
coupling (which we can regard as a spinless system since
spin degeneracy is trivial), protected degeneracies can also
be found, which in general occur in different space groups
and high-symmetry points compared to the spin-orbit coupled
case. An exhaustive enumeration considering both spinless
and spinful cases reveals that multifold fermions in the chiral
groups come only in four types, which are schematically
shown in Fig. 1 and summarized in Table I.

The first type can occur at a TRIM at the corners of the BZ
in the presence of a twofold screw axis, which, when com-
bined with time-reversal symmetry, can enforce a doubling of
the usual twofold degeneracy, in either spin-orbit or spin-orbit
free systems. The resulting fourfold crossing can be seen as
a double spin-1/2 fermion. Without spin-orbit coupling, a
double spin-1/2 fermion can occur at the R point in space
groups 19, 198, 212, and 213, and at the A point in space
groups 92 and 96. With spin-orbit coupling, double spin-1/2
fermions occur at the S and R points in space groups 18 and
19; the M and A points in space groups 90, 92, 94, and 96;
and the M point in space groups 198, 212, and 213. This
is summarized in Table I. These data were extracted from
Refs. [80–84]. Taking space group (SG) 90 at the M (or A)

155145-3



FELIX FLICKER et al. PHYSICAL REVIEW B 98, 155145 (2018)

TABLE I. Multifold fermions in the 65 chiral space groups. The names in parentheses indicate the corresponding effective theories
appearing for special parameter choices. Cn indicates the Chern number of the bands, and Dn indicates the GME prefactor (see Sec. II B).
The final two columns list space groups featuring each node type, both with and without spin-orbit (SO) coupling.

node Cn Dn No SO SO

Threefold (spin-1) −2, 0, 2 1,2,1 195 − 199, 207 − 214 199,214
Sixfold (doubled spin-1) (−2, 0, 2) × 2 (1, 2, 1) × 2 – 198,212,213
Fourfold (spin-3/2) −3, −1, 1, 3 3

2 , 7
2 , 7

2 , 3
2 – 195 − 199, 207 − 214

Fourfold (doubled spin-1/2) (−1, 1) × 2 (1, 1) × 2 19,92,96,198,212,213 18,19,90,92,94,96,198,212,213

point as a representative example, the Hamiltonian can be
written as (see Appendix G for further details)

H90(k) =
(

HW (k, b) 0
0 −H ∗

W (k,−b)

)
, (1)

where

HW (k, b) = h̄vF

(
akz ck− + ibk+

−ibk− + ck+ −akz

)
. (2)

Here, a, b, and c are real numbers. Note that bands remain
doubly degenerate along the lines kx = ky = 0. (Similar de-
coupling arguments hold for the other space groups, which
feature double spin-1/2 fermions with spin-orbit coupling,
although there are more degrees of freedom in those cases.
See Appendix G for further details. Together these k · p
Hamiltonians describe all double spin-1/2 fermions.) A dou-
ble spin-1/2 fermion can also occur in the spinless case as
predicted in Ref. [22], where the spinless Hamiltonian can
be written in the same way with c = a and b = 0. In these
cases, bands are doubly degenerate at every point. Since the
Berry curvature texture of the Weyl Hamiltonian in Eq. (2)
is analogous to that of a spin-1/2 in a magnetic field, we
may also call this a double spin-1/2 fermion. While specific
double spin-1/2 fermions in spin-orbit coupled systems have
appeared before [23,31], the full classification and k · p theory
is a new result of this work.

The rest of the more complicated multifold fermions can
only be found in the cubic space groups, and were previously
catalogued in a combination of Refs. [22,28,29]. First, three-
fold degeneracies can occur at TRIM points in symmorphic
groups without spin-orbit coupling, and at non-TRIM points
in nonsymmorphic space groups with spin-orbit coupling.
These threefold fermions have a Berry curvature texture that
is homotopic to that of a spin-1 moment in a magnetic field
[85]. The most general k · p Hamiltonian near these threefold
degeneracies takes the form

H3f (φ, k) = h̄vF

⎛
⎝ 0 eiφkx e−iφky

e−iφkx 0 eiφkz

eiφky e−iφkz 0

⎞
⎠, (3)

where the value of the parameter φ is material dependent in
general. In the absence of spin-orbit coupling, time-reversal
symmetry restricts φ = π/2 [22], since the threefold degener-
acy occurs at a TRIM in these cases. For φ = π/2 mod π/3,
the threefold Hamiltonian takes the form H3f = k · S, where
the matrices S form a spin-1 representation of SU(2). Thus at
these special values of φ the linearized Hamiltonian has full
rotational symmetry. Without spin-orbit coupling, these chiral
threefold degeneracies can be found at the � point in space

groups 195–199 and 207–214, the R point in space groups
195, 207, and 208, the H point in space groups 199, 211, and
214, and the P point(s) in space groups 197 and 211. With
spin-orbit coupling, threefold degeneracies can be found in
space groups 199 and 214 at the P and −P points.

Additionally, fourfold degeneracies can be found in the
spin-orbit coupled case, corresponding to the restriction of the
spin-3/2 representation of SU(2) onto its tetrahedral [29,30]
or octohedral [28] subgroup (in the tetrahedral case, time-
reversal symmetry is required). These fourfold degeneracies
have a Berry curvature texture that is homotopic to that of a
spin-3/2 moment in a magnetic field. The most general k · p
Hamiltonian for the octahedral case is

H4f =

⎛
⎜⎜⎜⎝

akz 0 − a+3b
4 k+

√
3(a−b)

4 k−
0 bkz

√
3(a−b)

4 k− − 3a+b
4 k+

− a+3b
4 k−

√
3(a−b)

4 k+ −akz 0√
3(a−b)

4 k+ − 3a+b
4 k− 0 −bkz

⎞
⎟⎟⎟⎠,

(4)

where a = h̄vF cos χ and b = h̄vF sin χ , and χ is again a
material-dependent parameter. An extra term, given in Ap-
pendix G, is present in the tetrahedral case.2 Contrasting
with the double spin-1/2 fermions discussed above, bands are
generically nondegenerate near a spin-3/2 degeneracy, except
at special values of χ where the Chern numbers of bands
change [28]. When χ = arctan(−3) or χ = arctan(−1/3),
this Hamiltonian takes the form H4f = k · S with S forming
a spin-3/2 representation of SU(2), and H4f recovers full
SU(2) invariance. As summarized in Table I, a chiral fourfold
crossing can be realized in the groups 195–198 and 207–214
at the � point, as well as at the R point in SGs 207, 208,
and the H point in 211 and 214. The fourfold degeneracy
in the octahedral space groups 207–214 can arise from the
irreducible spin-3/2 representation of the octahedral group,
while those in the tetrahedral groups 195–198 arise from
the paired 1

F̄
2
F̄ (co-)representation of the tetrahedral group

[29,80,84], as mentioned above. Throughout this work, an
unqualified reference to fourfold fermions will refer to these
rather than to double spin-1/2 fermions. Finally, similarly
to the “double spin-1/2,” a “double spin-1” fermion with
sixfold degeneracy can be protected by cubic symmetry. The
Hamiltonian of a general sixfold fermion to linear order can

2This corrects an error in the Supplementary Material of Ref. [29].

155145-4



CHIRAL OPTICAL RESPONSE OF MULTIFOLD FERMIONS PHYSICAL REVIEW B 98, 155145 (2018)

be written as (see Appendix G for further details)

H6f =
(

H3f

(
π
2 − φ, k

)
0

0 H3f

(
π
2 + φ, k

)). (5)

Sixfold fermions can be found in primitive cubic space
groups 198, 212, and 213 at the R point. SG 198 can be
pictured as resulting from zone folding of the body-centered
space group 199, and similarly 212–213 can be seen as the
result of zone folding the body-centered space group 214.
In all cases, the P and −P points, which host threefold
degeneracies are folded into R, which therefore hosts a sixfold
crossing.

In summary, there are four types of multifold fermions
in the chiral groups. Since for the double spin-1/2 fermions
the response is known from the previous literature on Weyl
fermions, in this work, we study the chiral optical responses
of the other three classes, first with the effective k · p mod-
els, then with lattice tight-binding models in space groups
where they are realized. For concreteness, we choose space
group 198 with spin-orbit coupling which features a spin-3/2
fermion at � and a double spin-1 fermion at R, and space
group 199 without spin-orbit coupling which realizes spin-1
fermions at � and H (note also that 198 features a double
spin-1/2 fermion at M). Several candidate materials have
been predicted for SG 198, including CoSi, RhSi, CoGe, and
RhGe [28,30,86]. In this work, we also present a new family
of materials in SG 198 and two new materials in SG 214 with
spin-1 fermions near the Fermi level.

B. The gyrotropic magnetic effect

The gyrotropic magnetic effect (GME) is the electric cur-
rent response to a low-frequency magnetic field Bj (ω):

ji (ω) = αij (ω)Bj (ω), (6)

where indices i, j, k, . . . span Cartesian directions. Repeated
indices i, j, k, . . . are summed over throughout the paper un-
less otherwise stated. The GME can be understood as the low-
frequency limit of “natural optical activity,” the rotation of the
plane of linearly-polarized light upon transmission through
an optically active material [37–39] (schematically shown in
Fig. 1, top left panel). The GME tensor αij also characterizes
the “inverse GME” [42,87–93], where a magnetization Mi

is produced in response to an applied electric field (in the
presence of time-reversal symmetry):

Mi (ω) = −iω−1αji (ω)Ej (ω). (7)

Appendix B provides details of the responses possible in
optically active point groups and places them in the context of
responses from general inversion-broken media. In particular,
it should be noted that natural optical activity can only be
measured in transmission but not in reflection [94,95].

The GME tensor receives both inter- and intraband contri-
butions [42]. At low frequencies, the intraband contribution
dominates and is given by the Fermi surface integral

αij (ω) = iωτ

iωτ − 1

e

(2π )2h

∑
n,a

∫
FS

dSav̂
n
F im

n
j , (8)

where a labels the different Fermi surface pockets, n is the
band index, v̂F i = vFi/|vF | is the ith component of the

normalized Fermi velocity, and τ is the scattering
time [41,42], which in this work is taken to be τ → ∞.
In the opposite limit, ω � 1/τ , only a dissipative inverse
GME exists (in the ωτ → 0 limit, the inverse GME Eq. (7)
will be determined by interband contributions that are not
included in the Fermi surface response of Eq. (8); see
Ref. [42] for a full discussion).

The quantity mn
j (k) = mn

orb,i (k) + Sn
i (k) is the magnetic

moment of band n at wave vector k [42,96], whose orbital
part is given by

mn
orb,i (k) = i

2

e

h̄
εijk

∑
n′ �=n

〈n|(∂jHk )|n′〉〈n′|(∂kHk )|n〉
εn′ − εn

, (9)

where ∂i = ∂/∂ki , and εnk and |n〉 are the energies and wave
functions of the Bloch Hamiltonian Hk|n〉 = εnk|n〉. The spin
contribution to the magnetic moment is given by

Sn
i = −egs h̄

4me

〈n|σi |n〉, (10)

where e, me, and g � 2 are the charge, mass, and spin factor
of the electron, respectively. Note that σi here refers to the
real spin, as opposed to the pseudospin referred to in the k · p
Hamiltonians of the previous section. For the rest of this work,
we will only consider the trace of the GME tensor, which we
designate α = tr(αij ).

C. The circular photogalvanic effect

In the circular photogalvanic effect (CPGE), circularly
polarized light incident on a gyrotropic material causes a
time-dependent current density, which relaxes to a dc current
response. This response can be produced by different mech-
anisms, and in this work we will concentrate on the intrinsic
contribution at τ → ∞, termed the “injection current,” given
by

dji

dt
= βij (ω)[E(ω) × E∗(ω)]j , (11)

where E(ω) = E∗(−ω) is the electric field (the star indicates
complex conjugation). This current grows linearly in time for
t � τ . The CPGE tensor βij can be written in general as [58]

βij (ω) = πe3

h̄V
εjkl

∑
k,n,m

f k
nm�i

k,mnr
k
k,nmrl

k,mnδ(Ek,mn − h̄ω),

(12)

where V is the sample volume, Ek,nm = Ek,n − Ek,m and
f k

nm = f k
n − f k

m are the differences between band energies
and Fermi-Dirac distributions respectively, rk,nm = i〈n|∂k|m〉
is the cross gap Berry connection, and �i

k,nm = ∂ki
Ek,nm/h̄.

For the rest of this work, we will only focus on the trace of the
CPGE tensor, which we label as β = tr(βij ).

III. GYROTROPIC MAGNETIC EFFECT: RESULTS
FOR LOW-ENERGY EFFECTIVE MODELS

We first consider the GME produced by all types of chiral
multifold fermions with effective low-energy models. As we
consider crossings with more than two bands, the Berry
curvature (defining the topology of the node) and the orbital
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moment (responsible for GME) are independent, as shown
in Table I. To emphasize this distinction, in this section, we
compute the GME for the multifold fermions in the limit
where their Hamiltonians have full rotational invariance.

A. GME of threefold fermions

The generic low-energy Hamiltonian of a threefold fermion
is given in Eq. (3). The Hamiltonian can be written H =
h̄vF kiS

i , and at the special point φ = π/2 the Si form a spin-1
representation of SU(2). Close to the node the energies are
E1,2,3(k) = h̄vF k, 0, −h̄vF k, where k = |k| and the bands
have Chern numbers C1,2,3 = 2, 0, −2.

The orbital magnetic moment can be calculated using
Eq. (9). Assuming a small spherical Fermi surface pocket
around the node, the result is found in Appendix A to be

mn
orb,i = e

2
DnvF

ki

k2
(13)

with Dn = 1, 2, 1 for the three bands, respectively. There are
three important points to note. First, the value of Dn depends
geometrically on the surface taken around the node, unlike
the Chern number Cn which is topological. Second, mn

orb,i

is equal for the two bands in which the Chern number is
opposite. Third, the band, which has zero Berry curvature
and zero Chern number, has the largest orbital moment of
all the three bands. The last statement shows that, not only
is the magnitude of the orbital moment (and thus the GME)
not related to the Berry curvature, but the hierarchies between
the bands are distinct.

We proceed to calculating the GME tensor αij of Eq. (8).
For the analytic results of this section we neglect the spin
contribution to the magnetic moment, returning to it in Sec. V.
The effective model of Eq. (8) at φ = π/2 presents the prob-
lem that the middle band is completely flat and does not form
a Fermi surface at any chemical potential μ. The GME from
this band is determined from quadratic corrections to H . With
the simple term H (2) = h̄2k2/2m, which is always allowed by
symmetry, the middle band does form a Fermi surface with the
same orbital moment. The resulting tensor is then

αij = δij

1

3

e2

h2

⎧⎪⎨
⎪⎩

D1(μ − εnode)�(μ − εnode)

D2vF

√
2m(μ − εnode)�(μ − εnode)

D3|μ − εnode|�(εnode−μ)

(14)

with �(x) the Heaviside step function. As a result, the de-
pendence on μ switches from linear to square root behavior
when crossing the node. This is a clear experimental signature
unique to (threefold and sixfold) multifold fermions. The
results are plotted in Sec. V. We note that in general other,
nondiagonal, quadratic corrections are allowed. Since their
phenomenology is material-specific we defer a discussion of
these effects to the numerical results from TB models in
Sec. V.

B. GME of fourfold fermions

The low-energy Hamiltonian of fourfold fermions is given
in Eq. (4). The Hamiltonian can again be written in the form
H = vF k · S, and at the special points χ = arctan(−3) and
χ = arctan(−1/3) the matrices S form a spin-3/2 represen-

tation of SU(2). At these points, the Berry curvature and
orbital moment can be computed analytically. Ordering the
four bands E1 < E2 < E3 < E4, for χ = arctan(−3), they
have Chern numbers C1,2,3,4 = 3, 1, −1, −3, and for χ =
arctan(−1/3) the signs are reversed. A third option, C1,2,3,4 =
3,−1, 1,−3, is present in another range of values, but the Si

matrices do not form an irreducible representation of the spin
algebra, and we do not consider this case here [28]. The orbital
magnetic moment again takes the form of Eq. (13), with
prefactors D1, 2, 3, 4 = 3/2, 7/2, 7/2, 3/2. The GME tensor
features a linear dependence on chemical potential close to
the node:

αij = δij

1

3

e2

h2

⎧⎪⎨
⎪⎩

D1(μ − εnode)�(μ − εnode)
D2(μ − εnode)�(μ − εnode)
D3|μ − εnode|�(εnode − μ)
D4|μ − εnode|�(εnode − μ)

, (15)

where we have again neglected the spin part of the magnetic
moment. The results are plotted in Sec. V; different values
of χ cannot be treated analytically, but such cases occur in
realistic material models, and are again considered in that
section.

C. GME of sixfold fermions

As shown in Sec. II A, and in particular Eq. (5), any sixfold
Hamiltonian can be brought into a block-diagonal form in
which the blocks are the Hamiltonians of threefold nodes. As
a result, the contribution of each threefold band is doubled to
make the sixfold case. The result is therefore exactly the same
as the threefold case with the response doubled. The values of
Dn and Cn are given for all multifold node types in Table I.

IV. CIRCULAR PHOTOGALVANIC EFFECT: RESULTS
FOR LOW-ENERGY EFFECTIVE MODELS

As predicted in Ref. [66], the trace of the CPGE tensor
is exactly quantized for a two-band model of a type-I Weyl
semimetal in a certain frequency range; is quantized up to
power-law corrections in the presence of extra bands; is not
quantized for a type-II Weyl. In this section, we first discuss
under what conditions the CPGE remains quantized in mul-
tifold fermions. Under very general assumptions, we prove
that for any model of a multifold fermion that is linear in
momentum, there is always a range of frequencies for which
the CPGE tensor remains exactly quantized.

The full CPGE tensor is given in Eq. (12). Using the terms
defined in that equation, and additionally defining the quantity

Rj
nm = εjklr

k
nmrl

mn, (16)

where n,m are not summed over, we can write the CPGE trace
as

β(ω) = 4π2β0

∫
d3k

(2π )3

∑
n,m

fnm∂ki
EnmRi

nmδ(h̄ω − Emn)

≡ 4π2β0

∑
n,m

∫
d Snm · Rnm, (17)

where β0 = πe3

h2 , and the Fermi function and energy differ-
ences fnm and Enm are defined below Eq. (12). For every
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pair nm of bands, this integral computes the flux of the vector
Ri

nm through a manifold Snm defined by the k points for which
exactly one of bands n and m is occupied, and the bands are
separated in energy by exactly ω. In spherical coordinates, this
reads

β(ω) = 4π2β0

∫
d3k

(2π )3

∑
n,m

fnm

∂ki
Enm

|∂kEnm|R
i
nmδ(k − knm(θ, φ)),

(18)

where ∂ki
Enm = ∂kEnmk̂i + 1

k
∂θEnmθ̂i + 1

k sin θ
∂φEnmφ̂i . If we

further assume a Hamiltonian that is linear in momentum for
any multifold fermion, several simplifications occur. First, if
there is a frequency range where Snm is a closed surface,
fnm = 1 by definition and the δ function is trivially integrated.
Moreover, the lack of energy scale in a linear model ensures
that the integrand is |k|-independent, so the result for a closed
surface does not depend on μ or ω. Explicitly, since Ri

nm

has dimensions of k−2, in the absence of any other scale
in the problem one may define Ri

nm = 1
k2 R̄

i
nm, where R̄i

nm is
dimensionless and k-independent. The contribution from a
closed Snm is then

4π2β0

∫
d Snm · Rnm = 4π2β0

∫
d�

(2π )3

∂ki
Enm

|∂kEnm| R̄
i
nm, (19)

where n,m are not summed over. Next, we show that for
any linear model, Ri

nm is purely radial. This is because
kiv

i
nm = ki〈n|∂ki

H |m〉 = ki〈n|Si |m〉 = 〈n|H |m〉 = 0, so the
off-diagonal velocity operators are orthogonal to ki . The same
argument applies to vi

mn. Since Rnm = vnm × vmn/(En −
Em)2, Rnm is perpendicular to the plane spanned by Re(vi

nm)
and Im(vi

mn), which are both orthogonal to k. Thus we must
have Rnm = k̂Rnm. In this case, the angular integral simplifies
to

4π2β0

∫
d Snm · Rnm = 4π2β0

∫
d�

(2π )3
R̄nm (20)

(n,m are not summed over), which now makes no reference
to the shape of the Snm surface. We can then use the relation
between Ri

nm and Berry curvature

�c
n = i

∑
m�=n

Rc
nm (21)

to determine in which conditions quantization is possible for
the different multifolds [66].

For completeness we first review the result in Ref. [66]
for a single Weyl node with top and bottom bands labeled by
n = 1, 2, and Chern numbers Cn = 1,−1. In this case, there
is only a single surface S12, and when this surface is closed,

β(ω) = 4π2β0

∫
d S12 · R12

= −i4π2β0

∫
d S12 · �1 = iC1β0, (22)

so the result is quantized for the twofold case. For a type-I
node, there is always a frequency range where S12 is closed.
Outside this frequency range, S12 is open and the result is
not quantized. For a type-II, the Weyl node is overtilted and
S12 becomes an open surface at any frequency, where β(ω) is

never quantized. For a double spin-1/2 fermion Hamiltonian,
which can be decoupled into two Weyl blocks as shown in
Appendix G, this result applies to each block separately, and
the total result is the sum of the two contributions.

For a threefold fermion, we label top middle and bottom
bands n = 1, 2, 3, with Chern numbers Cn = 2, 0,−2. If S12

and S13 are both closed surfaces but S23 is Pauli blocked
(i.e., S23 is an empty set since both bands are either occupied
or unoccupied at the resonant frequency), then using Rc

12 =
−i�c

1 − Rc
13 yields

β(ω) = 4π2β0

(∫
d S12 · R12 +

∫
d S13 · R13

)

= 4π2β0

(
−i

∫
d S12 · �1

+
[
−
∫

d S12 +
∫

d S13

]
· R13

)

= iβ0C1, (23)

where we used the fact from Eq. (20) that the shape of
the surfaces does not matter to deduce that the correction
in square brackets is zero, and the result is quantized. An
analogous result would hold if S23 and S13 were closed. The
same result holds for a sixfold fermion, due to the decoupling
in Eq. (5).

For a fourfold fermion, we label bands from top to bottom
as n = 1, 2, 3, 4, with corresponding Chern numbers Cn =
3, 1,−1,−3. If S13, S14, S23, S24 are closed and the rest are
blocked then

β(ω) = 4π2β0

(∫
d S13 · R13 +

∫
d S14 · R14

+
∫

d S23 · R23 +
∫

d S24 · R24

)

= 4π2β0

(
−i

∫
d S13 · �1 − i

∫
d S23 · �2

−
∫

d S13 · ( R12 + R14) +
∫

d S14 · R14

−
∫

d S23 · ( R21 + R24) +
∫

d S24 · R24

)

= iβ0(C1 + C2), (24)

where we have used Eq. (20) again to recover the Chern
numbers of bands 1 and 2.

A. CPGE of threefold fermions

Having determined the conditions under which quantiza-
tion is possible, we now compute the CPGE explicitly for the
threefold fermion with the Hamiltonian in Eq. (3), the results
of which we present in Fig. 2. The energies and wave func-
tions of this Hamiltonian can be computed analytically for
arbitrary φ and are presented in Appendix C. A representative
band structure (for φ = π/6 + 0.2) is plotted in Fig. 2(a).

To calculate the CPGE, we first note that as opposed to
the GME calculation, no quadratic corrections are required for
a meaningful calculation. The resonant surface of integration
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(a) (b)

(c) (d)

FIG. 2. CPGE for an effective threefold fermion model. (a) A representative band structure of Eq. (3) for φ = π/6 + 0.2 ∼ 0.72, with the
chemical potential depicted by the dashed horizontal line. The frequencies ωi where the different resonant surfaces Snm change from active to
inactive and from open to closed are depicted with a consistent color coding with that of (b) and (c). Analytical expressions for the spectrum
and for ωi can be found in Appendix C. (b) Evolution of the different ωi as a function of φ. The colored blue region indicates the region where
exact quantization holds due to the fact that S12 and S13 are closed. In the region ω1 < ω < ω2, S12 is closed and a nonquantized CPGE plateau
exists. The vertical gray line corresponds to φ = π/6 + 0.2, the value used to calculate the CPGE in (c). (c) As in (b), the shaded area denotes
the region with exact quantization. Between ω1 < ω < ω2 the plateau is nonuniversal yet close to the quantized value 2β0 due to the small
magnitude of the corrections. (d) CPGE for different values of φ deviating from the SU(2) invariant case φ = π/6. The small deviations (even
at φ = π/6) from 2β0 are due to numerical artifacts that decrease with increasing momentum resolution.

for CPGE is defined by Enm − ω when n is occupied and m

unoccupied, and this can be closed at finite μ in the linear
model, despite the presence of open Fermi surfaces. The dif-
ferent frequency ranges where these resonant surfaces become
open or closed depend on the parameter φ [see Fig. 2(b)]
and are bounded by the characteristic energy scales ωi with
i ∈ [0, 5] depicted in Fig. 2(a). The manifold S12 becomes
active for ω > ω0 and is closed for ω1 < ω < ω2 while S13

becomes active for ω > ω3 and fully closed for ω > ω4. S23

becomes active with ω > ω5 and is never closed in the linear
model.

It is worth discussing the φ = π/6 case first, where the
threefold Hamiltonian has full rotational symmetry. In this
case, the energies are simply En = vF k, 0,−vF k, and there
are no open surfaces. S12 becomes closed at ω0 = ω1 = μ and
S13 becomes closed at ω3 = ω4 = 2μ. However, due to the
full rotation symmetry R13 = 0, and according to Eq. (23) we
get a fully quantized plateau at ω = μ [see Fig. 2(d)].

When φ �= π/6, R13 is finite in general, and according to
Eq. (23) we only have a quantized plateau once both S12

and S13 are closed, which only occurs for ω > ω4 indicated
by the shaded region in Figs. 2(b) and 2(c). When ω1 <

ω < ω2, S12 is closed and there is a nonquantized plateau
that is nonuniversal. Nevertheless, the contribution from R13

is actually quite small, and approximate quantization starts
already at ω > ω1 as shown in Fig. 2(c) for the particular case
φ = π/6 + 0.2. The plateau is preserved up to ω < ω2. If φ >

φc = arctan(−2 + √
13)/(

√
3) ≈ 0.75 the window closes and

there is no plateau as seen in Fig. 2(d).
The presence of quadratic terms in the Hamiltonian will

have two types of effect. First, the changes in energies will
determine the new frequency windows where quantization
can be observed. Second, quadratic corrections will introduce
an energy scale mv2

F , with m an effective mass, so that
the shapes of the resonant manifolds become important and
the cancellations of the correction terms will in general not
occur. Quantization will therefore get power-law corrections
in ω/(mv2

F ), which can be avoided by measuring at frequen-
cies lower than this scale. It should be noted that power-law
corrections at higher frequencies are expected anyway in the
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FIG. 3. CPGE for an effective fourfold fermion model. (a) A representative band structure of Eq. (4) for χ = −0.36 (see Appendix D for
analytic expressions for arbitrary χ ). The relevant frequency scales ωi (see Appendix D for expressions) are depicted with a consistent color
coding with that of (b) and (c). The chemical potential is indicated by a dashed horizontal line. (b) Evolution of the different ωi as a function
of χ bounding the different types of surfaces Snm (open, closed, inactive or active) of allowed optical transitions. The colored blue region
indicates the region where exact quantization holds due to the fact that S13, S14, S23, and S24 are closed. As for the threefold case other regions
have closed surfaces resulting in a nonquantized CPGE plateau. The vertical gray line corresponds to χ = −0.36, the value used to calculate
the CPGE in (c). (c) The shaded area denotes the region with exact quantization (4β0), yet a plateau close to (3β0) is seen for h̄ω/μ ∼ 1.
The latter is only exactly quantized at the value of χ that realizes the spin-3/2 multifold case, χ = arctan(−3) ≈ −0.32 [solid curve in (d)].
(d) The CPGE for different values of χ .

presence of extra bands beyond those forming the multifold
node, which have the same origin as the corrections in the
Weyl node case [66].

B. CPGE of fourfold fermions

Fourfold (spin-3/2) fermions have the low-energy Hamil-
tonian specified in Eq. (4). A representative energy spectrum
is shown in Fig. 3(a) (analytic expressions can be found in
Appendix D).

In analogy with the threefold case, we show in Figs. 3(a)
and 3(b) the relevant energy scales (ωi with i ∈ [0, 8], see
Appendix C for concrete expressions) where the different
resonant surfaces open and close depending on the pa-
rameter −π < χ < 0 which we recall was defined above
as χ = arctan(b/a) under Eq. (4). Taking μ > 0 for con-
creteness, for −π < χ < arctan(−3) or arctan(−1/3) < χ <

0, S12 becomes active for ω > ω0, and is closed for ω1 <

ω < ω2. For ω2 < ω < ω3, it is open again, and becomes
blocked at ω > ω3. S13 becomes active at ω = ω4 and closed
for any ω > ω5. S14 and S23 are active and already closed for

ω > ω6. Finally, S24 becomes active at ω = ω7 and is closed
for ω > ω8. If arctan(−3) < χ < arctan(−1/3), the follow-
ing frequencies are interchanged: ω0 ↔ ω1, ω2 ↔ ω3, ω4 ↔
ω5, ω7 ↔ ω8 [see Fig. 3(b)].

As with the threefold case, it is instructive to first discuss
the case χ = arctan(−1/3) ≈ −0.32 where full rotational in-
variance is recovered [solid line in Fig. 3(d)]. In this case, the
energies are E1 = 3h̄vF |k| = 3E2 = −3E3 = −E4 and opti-
cal surfaces are either fully closed or inactive. Due to angular
momentum conservation imposed by rotational invariance,
Rnm can only be nonzero when |n − m| = 1. Because of this,

only two surfaces contribute: S12 for 2/3 < ω/μ < 2 and
S23 for 2 < ω/μ. Furthermore, in this special case, R12 =
i�1 and R23 = i(�1 + �2). This gives rise to two exactly
quantized plateaus at 3β0 and 4β0, respectively [horizontal
gray dashed lines in Fig. 3(d)].

In the general case, χ �= arctan(−1/3), several more sur-
faces contribute. There is still a quantized plateau for ω >

ω7, ω8, when the only active surfaces are S13, S14, S23, S24.
The region where this happens is shaded blue in Figs. 3(b) and
3(c). According to Eq. (24), this plateau is exactly quantized
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(a) (b)

FIG. 4. Tight-binding band structures. (a) The band structure of the eight-band model used for RhSi, from Ref. [29], including spin-
orbit coupling. The model without spin-orbit coupling is shown in Appendix F. (b) The band structure of a minimal model featuring the
symmetries of space group 199, without spin-orbit coupling. As this is not fit to any particular material the energies are schematic, but the band
connectivities and node structures are accurate.

in the linear model, even without the full rotational invariance.
Other plateaus can be found with nonquantized values when
other surfaces are closed, but again the deviations from quan-
tization can be accidentally small. As with the threefold case,
power-law corrections to quantization due to both quadratic
terms in the Hamiltonian and the presence of extra bands [66]
are also to be expected.

C. CPGE of sixfold fermions

As mentioned in Sec. II A, using the unitary transformation
presented in Appendix G, the sixfold node can be brought into
block-diagonal form with blocks made from the Hamiltonians
describing threefold nodes. For this reason, the response of the
sixfold node is not fundamentally different from the threefold
case considered above.

V. REALISTIC MATERIAL HAMILTONIANS

To connect our results with realistic materials it is nec-
essary to go beyond low-energy effective models, in order
to enable us to provide space group specific predictions of
the responses we study. The tight-binding models we present
and study in this section incorporate the intrinsic chirality of
the space groups and will also take into account the proper
embedding of the orbitals in real space. The latter, sometimes
overlooked, is strictly necessary to get accurate position oper-
ator expectation values and accurate predictions [97].

We mainly consider models in two space groups (198 and
199), which can be generalized to three more (212/213 and
214, respectively) by specifying the mentioned orbital real
space embedding. The first is space group 198, with mini-
mal 4a Wyckoff positions parametrized by a dimensionless
number x [see Fig. 4(a) for the corresponding band structure
and Appendix F for the precise tight-binding model]. At
x = 1/8 and 5/8, the symmetry group can be enhanced from
tetrahedral to octahedral, and the resulting structure is in the
more symmetric groups 212 or 213. Since x can be changed

by conjugating the Hamiltonian with a unitary matrix,3 the
band structure is independent of the embedding. The GME
and CPGE responses, however, are sensitive to x. The second
space group we consider is 199 with minimal 8a Wyckoff
positions parametrized by u. For u = 1/4, the symmetry can
again be promoted from tetrahedral to octahedral, resulting in
space group 214. An example band structure for a minimal
tight-binding model featuring these symmetries is shown in
Fig. 4(b). In Appendix F, we again provide further details of
the model band structure.

Recently, a number of materials in space group 198 have
been suggested in which the relevant multifold nodes are
predicted to lie near the Fermi level, well separated from
other bands. For concreteness we focus on rhodium silicide
(RhSi), employing the tight-binding band structure developed
in Ref. [29], with modifications specified in Appendix F. We
plot the band structure in Fig. 4. Single crystals of this material
have been grown and characterized [86], with x = 0.3959 for
the relevant bands.

This material features two protected multifold crossings.
One of these lies at the � point. As shown in Fig. 4(a) [mag-
nified in Fig. 5(a)], without spin-orbit coupling it takes the
form of a spin-degenerate threefold crossing. When spin-orbit
coupling is included, the sixfold crossing splits into a fourfold
crossing with Chern numbers C = 3, 1,−1,−3, describing a
spin-3/2 fermion, and a twofold crossing with a standard Weyl
node with C = 1,−1. At the point R = (π, π, π ) without
spin-orbit coupling there is a spin-degenerate double spin-
1/2 crossing [magnified in Fig. 5(b)]. Including spin-orbit
coupling splits it into a sixfold crossing and a regular Weyl
node [30]. In addition, there are several type-II Weyl nodes
away from high-symmetry locations [30]. The nodes at R and
� have a significant separation in energy. Finally, there is also
a double spin-1/2 at M with spin-orbit coupling, however, it is

3Although this is not a unitary transformation on the Hilbert space
of Bloch functions, since the unitary matrix is not periodic in k.
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(a) (b) (c)

FIG. 5. Trace of the GME tensor for space groups 198 and 199. In the top row, the different nodes are reproduced from Fig. 4.
Spin-orbit (SO) coupling is either present (blue) or absent (red). In the bottom row the trace of the GME tensor is calculated numerically
for the cases with and without spin-orbit coupling (same color scheme), and analytically for the case without spin-orbit coupling (black
dashed lines). The chemical potentials of nodes are indicated with arrows. (a) the � point for RhSi, space group 198. Without spin-orbit
coupling the � point features a doubly degenerate isotropic threefold node at −0.07 eV (μ2). The gyrotropic response is linear in chemical
potential at energies above the node, and scales as a square root plus a linear part below the node. With spin-orbit coupling the node
splits into a fourfold node (μ1) and a standard Weyl (μ3). (b) The R point in the same model. Without spin-orbit coupling all eight
bands meet at a spin-degenerate double spin-1/2 node (μ5). Spin-orbit coupling splits this into a sixfold node (μ4) and two separated
bands. All cases are isotropic. (c) An isolated threefold node appears in space group 199 at the � point. The node is not isotropic, and
the quadratic corrections approximately cancel out leaving a linear variation of the GME trace as a function of chemical potential close to
the node.

far below the Fermi level and plays little role in low-frequency
response.

A. GME for space groups 198 (RhSi) and 199

For RhSi, we have numerically calculated the GME re-
sponse, αij , using Eq. (8) employing the tight-binding model
outlined in Ref. [29] with the essential modification described
in Appendix F to include the real space embedding of the
orbitals. This numerical calculation allows us to account for
the nonzero spin-orbit coupling and to move away from
the low-energy limit. Calculational details are provided in
Appendix A.

In Fig. 5, we show the contributions to the GME from the �

and R nodes separately, both with and without the spin-orbit
coupling present in the real material. The GME tensor αij is
proportional to the identity matrix in all multifold fermions
[recall that we denote tr(αij ) = α]. We allow the chemical
potential to vary in order to give a controllable experimental
handle, adjustable by doping.

The � point without spin-orbit coupling features a spin
degenerate threefold node at −0.07 eV. As the chemical po-
tential μ is lowered above the node, α decreases linearly. At
the node, the gradient dα/dμ varies discontinuously, and the
trace vanishes at the node (as does the Fermi surface pocket).

Below the node there are two contributions to α: a linear part,
and an α ∝ √

μ part. This is in accordance with the analytic
predictions of Sec. III, overlaid in Fig. 5 (see Appendix A 3
for details).

When the spin-orbit coupling is included, the spin degener-
ate threefold node at � splits into a fourfold spin-3/2 node and
a standard Weyl node, with the separation set by the spin-orbit
coupling energy scale. At chemical potentials above the spin-
3/2 node, and below the spin-1/2 node, the behavior matches
the case without spin-orbit coupling. Aside from affecting
the band structure, there is now a spin contribution to the
magnetic moment. The effect is around an order of magnitude
smaller than the orbital part, and the results presented in Fig. 5
are not significantly affected by this term’s omission. This is a
result of the relatively small spin splitting of the bands around
the node in this material.

At the R point, without spin-orbit coupling, there is a spin
degenerate double spin-1/2 node at around 0.48 eV below
the Fermi level, and the effective Hamiltonian is simply four
copies of a Weyl node. Varying μ about this node leads to a
linear change in the GME response, enhanced by a factor of
four compared to the standard Weyl case [42]. The sign of the
response switches at the node.

When spin-orbit coupling is included the spin degenerate
double spin-1/2 node at R breaks up into a sixfold (double
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(a)

(b)

FIG. 6. GME and CPGE dependence on atomic positions. (a)
The trace of the GME tensor in our model of RhSi (black), shown
with the trace of the GME tensor in a hypothetical material with
x = 1/8, with the same spectrum but different orbital embeddings
(dashed blue). Note the significant deviations in the GME tensor for
μ away from 0. (b) Trace of the CPGE tensor for the same two
models. Here we see that the dependence on orbital embedding is
strongest for large ω, far from the quantized plateaus.

spin-1) node at −0.47 eV, and two bands separated from this
node by the spin-orbit coupling energy scale. The sixfold node
is inverted relative to that at � in the spin-orbit free case.

Also shown in Fig. 5, is the response of a threefold node
without spin-orbit coupling, as occurs at the � point in space
group 199. This particular realization of a threefold node has
anisotropic quadratic corrections about the node, indicated in
Fig. 5(c) by showing cuts along the M → � → R direc-
tions. The � → X direction features no dispersion close to
the node. The quadratic corrections cancel, giving a linear
change in the trace of the GME tensor as a function of
chemical potential.

As the GME tensor αij is proportional to the identity in all
multifold fermions, the response (either current or magnetiza-
tion) will always be parallel to the applied (magnetic or elec-
tric) field. From the Drude form of the frequency dependence
of α [Eq. (8)], at low frequency in unclean samples the inverse
GME is expected to dominate, whereas the direct GME dom-
inates in clean samples at higher frequencies [42]. Owing to

the difficulty with which RhSi and related compounds such
as CoSi are grown, it is likely that scattering times τ will be
short. With this in mind, the inverse GME is likely more easily
measurable.

Low and high frequencies are defined relative to the offset
of the topological nodes from the Fermi level. In RhSi, the
node offsets correspond to maximum frequencies of 16.9 THz
at � and 116 THz at R. The lowest probe frequencies are set
by the scattering time τ in the Drude form of Eq. (8) and are
dependent on sample quality.

It is natural to expect the magnitude of the response from
multifold nodes to be significantly enhanced relative to Weyl
node pairs, as more bands add to the effect, all contribute
with the same sign, and all add either the same amount as a
standard Weyl band or some larger multiple thereof. A simple
estimate for the GME response in general multifold materials
with small spin-orbit coupling can be made by using the
coefficients Dn in Table I. RhSi features one multifold node
0.07 eV below εF at �, and another 0.48 eV below εF at R.
Owing to the relative sizes of the Fermi surface pockets, the
� node may be neglected. The node at R contributes a (spin-
degenerate) double spin-1/2, giving twice the response of a
standard (spin-degenerate) Weyl node, featured for example
in the candidate chiral Weyl semi-metal SrSi2 in which the
node appears around 0.1 eV below the Fermi level [42]. The
response in both cases is proportional to the offset of the
node from the Fermi level, and this simple estimate therefore
suggests a GME response 9.6 times stronger in RhSi than from
a node pair in SrSi2. However, there are multiple symmetry-
related nodes in SrSi2 contributing to the material’s response.

For a more thorough estimate we can use the numerically
calculated value of α for undoped RhSi in Fig. 6, which
is around α = 1.3 × 1010 A Wb−1. A 1-mT magnetic flux
density would therefore generate a current density of around
107 A m−2. The rotatory power of a material is the angle per
unit length through which the plane of polarization of linearly
polarised light is turned upon transmission. It is given in terms
of the trace of the GME tensor by [42]

ρ(ω) = − 1
3μ0α(ω). (25)

In RhSi, at ω → 0, this gives a value of 5.4 rad mm−1, an
order of magnitude larger than the value of 0.4 rad mm−1

predicted for a single node pair in SrSi2 for ω → 0, in
agreement with the simple estimate above.

The GME is not restricted to multifold fermions and Weyl
nodes, however, and occurs in any material with a gyrotropic
space group and states at the Fermi level. Natural optical
activity is also quantified by the rotatory power: the chiral
metal tellurium is predicted to exhibit a rotatory power of
0.157(3) rad mm−1 at h̄ω = 0.117 eV and 77 K, an order of
magnitude smaller than the RhSi response [88]. The optically
active insulator α-quartz features a rotatory power of ρ =
0.38 rad mm−1 at λ = 5893 AA, again around an order of
magnitude smaller than RhSi [37,38,98].

B. CPGE for space groups 198 (RhSi) and 199

As for the GME we have used the above realistic tight-
binding lattice models to calculate the CPGE for space groups
198 and 199. The results are summarized in Fig. 7.
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(a) (b) (c)

FIG. 7. Trace of the CPGE tensor for space groups 198 and 199 as a function of frequency ω for the tight-binding models considered
in the text. See Fig. 4 for the corresponding band structures. (a) SG198 at � (μ = 0.) (b) SG198 at R (μ = −0.5 eV) and (c) SG199 at
� (μ = −2.7 eV). For 198, the CPGE with and without spin-orbit (SO) coupling is plotted. The origin of the observed deviations from
quantization is discussed in the main text and is attributed to a combination of finite momentum space resolution, quadratic corrections and the
contributions of small CPGE active pockets. The latter are only allowed in the case with spin-orbit coupling.

There are two main contributions to the CPGE for space
group 198, one associated to the � point and one associated to
the R point. Depending on the chemical potential they can
either be Pauli blocked or optically active, but only in the
case where one of them is optically active do we expect the
CPGE to be quantized. We analyze both possibilities in what
follows.

Illuminating pristine RhSi (μ = 0, see Fig. 4) will optically
activate transitions near the � point provided the frequency
is large enough to overcome Pauli blocking at � but small
enough to Pauli block transitions at R. The corresponding
CPGE for frequencies falling in this range is shown in
Fig. 7(a). We observe a plateau close to 4β0, which we
interpret as the plateau that corresponds to the optically active
threefold (fourfold) fermion at � without (with) spin-orbit
coupling. As explained in Sec. IV, the total CPGE is given
by the Chern number of the bands with optically allowed
transitions, which in both cases (with and without spin-orbit
coupling) leads to an expected quantization of 4β0, consistent
with what we see in the numerical data. It is important to note
that the absence of exact quantization is hard to exclude in
realistic lattice models since small but finite optical transitions
cannot be ruled out. First, there is a Fermi pocket near R,
which may have allowed optical transitions. Second, the spin-
orbit splitting of the degeneracy at � is small, so changing
the frequency slightly can drastically change the nature of
the optical surfaces, in particular whether they are open or
closed. Finally, quadratic corrections can affect the frequency
window at which quantization can occur as discussed in
Sec. IV.

If instead we assume that the chemical potential can be
tuned to be closed to the R point (μ = −0.5 in the energy
scale of Fig. 4) the relevant transitions will be those around R

and the CPGE will resemble that of Fig. 7(b) where a plateau
close to −4β0 appears. In the case without spin-orbit coupling,
it is the (spin degenerate) fourfold that generates the plateau
while in the spin-orbit coupled case it is the sixfold fermion.
As for the � point, the quantization cannot be claimed to be
exact, although corrections decrease as the momentum grid
size is taken to be finer. Our results for space group 198
suggest that the RhSi has indeed, for practical purposes a
quantized CPGE at realistic parameter values.

C. GME, CPGE, and the importance of the orbital embedding

As discussed above, the spatial embedding of the orbitals
changes the space group and can change the response func-
tions by modifying the eigenstates. In Fig. 6, we show the total
GME and CPGE (for μ = 0) responses of the material RhSi
as a function of chemical potential and frequency respectively,
taking into account spin-orbit coupling. To highlight the effect
of the orbital location we also show the response of an
imagined material which has an identical band structure, but
with x = 1/8.

For the GME, close to the node around εF the two em-
beddings behave similarly, but away from the node nonlin-
ear corrections become important and the responses differ
significantly. The CPGE also changes for different orbital
embeddings, but the effect of x is stronger away from the
quantization plateau.

VI. MATERIALS PREDICTIONS

In order to find material candidates in which the GME and
CPGE could be experimentally measured, we have performed
an extensive search among the space groups that can display
multifold fermions (see Table I). First, we searched for spin-
degenerate threefold crossings in materials with negligible
spin-orbit coupling, and found two material candidates of the
same family where threefold crossings are relatively isolated
and well split close to the Fermi level. These are Gd3Cl3C
[99] and Gd3I3Si [100] in SG I4132 (214) (see Fig. 8). In
the presence of weak spin-orbit coupling SG 214 displays a
threefold crossing at the H point [22,80,84]. Figures 8(a) and
8(b) show the band structure of Gd3Cl3C without and with
spin-orbit coupling, respectively. We see from the figures that
the spin-orbit interaction is indeed weak in this material. At
the H point, there is still a slight splitting of 4 + 2 bands,
clearer along high symmetry lines. However, since the split-
ting is smaller than 1 meV, these compounds are suitable for
measuring the properties of threefold fermions.

As was previously reported, sixfold and fourfold fermions
are realized in SG P 213 (198) in RhSi. We also present
here a new family of ternary compounds in the same SG
featuring fourfold fermions near the Fermi level. The principal
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(a) (c)

(b) (d)

FIG. 8. Band structures of several candidates displaying multifold fermions. (a) Gd3Cl3C in SG I4132 (214) without spin-orbit (SO)
coupling, featuring a threefold crossing at the H point close to the Fermi level. (b) For Gd3Cl3C with spin-orbit coupling included, we
observe the same threefold crossing at the H point owing to weak spin-orbit coupling. (c) Gd3I3Si (I4132) with spin-orbit coupling included.
(d) AsBaPt in P 213 (198) with spin-orbit coupling, featuring a fourfold crossing close to the Fermi level at the � point.

candidate is AsBaPt [101], shown in Fig. 8(d). One can
observe the eightfold connected bands close to the Fermi
level, and a fourfold crossing just below the Fermi energy at
the � point. Other candidates of the same family are CaPtSi
[102], BaPtSi [103], BaPPt [101], and BaPdSi [104].

VII. CONCLUSIONS

In this work, we have calculated two different optical
responses of multifold fermions that are enabled by the chiral
nature of the space groups they in which they are realized, the
gyrotropic magnetic effect (GME) and the circular photogal-
vanic effect (CPGE). To do so, we have first presented a full
account and classification of all types of threefold, fourfold,
and sixfold degeneracies. In particular, we enumerated the
space groups and low-energy Hamiltonians for double spin-
1/2 degeneracies, which had not been fully specified before.

All multifold nodes can be written in the form H = k · S,
where k is the crystal momentum, and for certain special
parameter choices the matrices S form representations of the
SU(2) algebra. The absence of any characteristic energy scale
at low energies and the topological charge of these fermions
conspire to produce the peculiar and large responses we find
compared to Weyl semimetals and other chiral metals.

Using their low-energy description as well as realistic
tight-binding models for space groups 198 and 199 we have
shown that the gyrotropic magnetic effect and the circu-

lar photogalvanic effect can serve as experimental probes
for distinguishing multifold fermions from other band de-
generacies. Multifold (semi-)metals will have an enhanced
gyrotropic magnetic effect relative to Weyl semimetals and
chiral metals; the GME is the low-frequency (transport)
limit of natural optical activity, and the rotatory power of
multifold materials is similarly enhanced relative to stan-
dard cases such as quartz [37] (although the transparency
of quartz means the total optical rotation can be larger in
that material). We additionally identified a unique signature
of threefold and sixfold nodes in the form of a kink in the
GME response as a function of chemical potential about
the node.

Furthermore, we have proven under which circumstances
multifold fermions can have a quantized CPGE response. This
result is surprising, since the corrections spoiling exact quanti-
zation of two band models were expected to diverge for bands
crossing the nodes [66]. We have analytically shown that this
naive expectation is resolved by virtue of vanishing matrix
elements at specific frequency windows where the surfaces
of optically allowed transitions are closed. This condition
generically results in frequency independent CPGE plateaus.
In the specific case where all optical transition surfaces are
closed, the plateau is strictly quantized in units of e3/h2 times
a sum of Chern numbers. As for the GME, the magnitude
of the CPGE is generically larger in multifolds than in Weyl
semimetals, since large Chern numbers multiply the large
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universal constant β0 (see Ref. [66] for a discussion on the
estimated size of the photocurrent).

The GME and CPGE therefore can act as multifold detec-
tor probes, that distinguish between different types of chiral
fermions beyond surface-state ARPES or static magneto-
transport, with access, in the case of the CPGE, to their
topological charge. It would be interesting to explore how
other optical probes, such as resonant x-ray scattering [105],
which can also carry topological information, can serve as
alternatives to the effects discussed in this work.

Throughout this work, we have also had occasion to ex-
plore some subtleties related to atomic embeddings which
plague the study of both topological semimetals and linear
response theory. In our study of space groups 198 and 199,
we were careful to emphasize the importance of our basis
function positions to our tight-binding models. Because the
positions of the basis functions do not affect the spectrum of
a tight-binding Hamiltonian, they are often chosen arbitrarily
or overlooked entirely. We have emphasized in our discussion
that the basis function positions, due to their effect on the
boundary conditions of Bloch functions, have measurable
consequences. In particular, both the GME and CPGE depend
on matrix elements of the position operator, which depend
crucially on these choices [97]. In space groups 198 and 199,
the basis function positions are not constrained by symmetry,
and we showed that different choices can have a marked effect
on the nonquantized part of response functions. We hope
this pedagogical exercise serves as a useful guide to future
research on response theory.

While both the GME and CPGE provide implementable
tests for the existence and properties of multifold nodes,
there are some drawbacks and experimental challenges to
be overcome. First, both effects require chiral, nonmagnetic,
metallic multifold systems in order to be measured. Such
materials are quite rare yet this adds value to the family
of materials we have presented in this work. The potential
of recently developed efficient approaches [106–108] for the
search of novel topological metals makes us confident that
other materials can be soon added to the list where these
effects can be measured.

Second, although the GME has been measured [109–112]
and largely understood [88,89] in materials like tellurium, it so
far lacks experimental confirmation in topological metals. We
believe our work brings it closer to experimental realization,
since we have showed that multifold fermions add additional
materials where the GME can be probed and measured due its
large magnitude and the multiple materials that can potentially
display the effect.

Thirdly, measurements of the bulk injection current in
the CPGE may require some experimental ingenuity. As dis-
cussed in Ref. [66], we expect that quantization can have its
clearest signatures in a time-resolved photocurrent measure-
ment, with the use of light pulses that are shorter than the
relevant scattering time τ ∼ ps. Measuring the photo-current
directly in topological semimetals is possible [74–77], and
although it will result in CPGE plateaus, these will generically
depend on the scattering τ and not only on fundamental
constants [66,67].

Finally, as we have seen the quantization of the CPGE
can be weakly violated at certain frequencies due to the

presence of quadratic corrections and extra optical transi-
tions, necessitating some care in choosing the appropriate
experimental platform. Additionally, measuring the trace of
the CPGE tensor βij requires summing over all polarization
planes which might be experimentally challenging in chiral
Weyl semimetals. Remarkably, all multifolds except doubled
spin-1/2 occur in cubic point groups, so βij = δij and measur-
ing one component is enough. This presents a clear practical
advantage over noncubic Weyl semimetals [66].

Weyl semimetals provide a condensed matter analog of
exotic (and as yet unobserved) fundamental particles, Weyl
fermions, governed by the Weyl equation of particle physics.
Multifold fermions provide a condensed matter analog of par-
ticles “beyond the standard model.” In this work, we have pro-
vided their full classification and unraveled, both analytically
and numerically their gyrotropic and photogalvanic responses,
providing as well new materials where these predictions can
be tested. Our results aim to motivate experimental work
and material growth that may lead to a deeper understanding
of these emergent pseudo-relativistic excitations as well as
enhanced optical phenomena.
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APPENDIX A: CALCULATIONAL DETAILS
TO DERIVE THE GME

1. Mathematical details of gyrotropy and connection to GME

In general materials, the displacement field Di and electric
field Ej can be related through the expression [38,113]

Di = (εij (ω) − iλij l (ω)kl + · · · )Ej , (A1)

where εij is the dielectric susceptibility, and λijl (ω) is the
gyrotropy tensor. The material is optically active (gyrotropic)
when the gyrotropy tensor is nonzero. The ellipsis accounts
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TABLE II. List of noncentrosymmetric point groups, i.e., groups without an inversion center. The tick indicates if the point group is
polar (P), enantiomorphic (E), gyrotropic (G), weakly gyrotropic (wG), piezoelectric (Pz), optically active (OA), or has a linear or circular
photogalvanic effect (LPGE and CPGE). The trace of the CPGE or GME is only nonzero for enantiomorphic (E) groups. The final column
lists the nonzero elements of the symmetric part of the inverse gyrotropy tensor fij , f s

ij = f s
ji , which has the same symmetry as gij and αij .

Parts of this table appear in Refs. [38,113–117].

Group P E G wG OA Pz LPGE CPGE f s
ij

C1
√ √ √ √ √ √ √

all
C2

√ √ √ √ √ √ √
f11, f22, f33, f13

Cs

√ √ √ √ √ √
f12, f23

C2v

√ √ √ √ √ √
f12

C3
√ √ √ √ √ √ √

f11 = f22, f33

C3v

√ √ √ √ √ √
none

C4
√ √ √ √ √ √ √

f11 = f22, f33

C4v

√ √ √ √ √ √
none

C6
√ √ √ √ √ √ √

f11 = f22, f33

C6v

√ √ √ √ √ √
none

D2
√ √ √ √ √ √

f11, f22, f33

D2d

√ √ √ √ √
f12

D3
√ √ √ √ √ √

f11 = f22, f33

D4
√ √ √ √ √ √

f11 = f22, f33

D6
√ √ √ √ √ √

f11 = f22, f33

S4
√ √ √ √ √

f11 = −f22, f12

C3h

√ √
none

D3h

√ √
none

Td

√ √
none

T
√ √ √ √ √ √

f11 = f22 = f33

O
√ √ √ √

f11 = f22 = f33

for the fact that this relation can be viewed as an expansion
in the momentum of the incident radiation, which is typically
small compared to the inverse lattice spacing. For notational
convenience, we will suppress the dependence of tensors on
angular frequency ω for the remainder of the discussion.
A nonzero λ implies that inversion symmetry is broken.
Moreover since εij (ω, k) = εji (ω,−k) k we have that λijl =
−λjil . Therefore λijl has 9 independent components and can
be written as λijl = εijmgml in terms of the gyrotropy tensor
gml , with εijm the Levi-Civita symbol. This enables us to
define the gyration vector G through

λijlkl = εijmgmlkl ≡ εijmGm, (A2)

and thus Eq. (A1) can be written as

Di = εijEj − i(G × E)i . (A3)

Note that the GME tensor αij used in the main text is related
to the gyrotropy tensor through the relation

gij = 1

ωcε0
(αji − tr(α)δij ), (A4)

as stated in the Supplementary Material of Ref. [42]. It is
sometimes custom to invert Eq. (A3) and write

Ei = ε−1
ij Dj − i(f × D)i , (A5)

where we have implicitly defined

ε−1
ij (ω, k) = ε−1

ij (ω) + iδij lkl · · · , (A6)

and

δij lkl = εijmfmlkl ≡ εijmfm. (A7)

Note that f has the same symmetry properties as G. The
inverse gyroptropy tensor fij only enters the electromagnetic
wave equations with the scalar product fij k̂i k̂j [113]. The
rotatory power, defined as the angle of rotation of the plane
of polarization per unit length of propagation, is proportional
to fij k̂i k̂j and is thus only determined by the symmetric part
of fij . For the point groups C4v,6v,3v the second rank tensor
gij and thus fij have a zero symmetric part, and thus do not
rotate the plane of polarization of light. They can however
be “weakly gyrotropic,” meaning that the gyrotropy tensor is
nonzero but purely antisymmetric. The symmetry properties
of the inverse gyrotropy tensor are shown in Table II.

The tensor αij , used in the main text, is given by

ji = αijBj , (A8)

which, together with Eq. (A1), implies that αij shares the same
symmetry properties as gij . This extra i/ω prefactor differs
from the definitions used in Ref. [41].
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2. Numerical evaluation of the GME tensor

Reference [42] gives the following expression for the GME tensor αij :

αij = e

(2π )3

∑
n

∫
d3k

∂f

∂εn

vni

⎛
⎝ e

2h̄
Imεjlm

∑
n′ �=n

〈n|∂lHk|n′〉〈n′|∂mHk|n〉
εn − εn′

− egs h̄

4me

〈n|σj |n〉
⎞
⎠. (A9)

Here, e is the electron charge; f (εn) is the Fermi function evaluated for band n with energy εn; vni = h̄−1∂iεn =
〈n|h̄−1(∂iHk )|n〉 is the velocity of band n in Cartesian direction i, where ∂i � ∂/∂ki ; gs ≈ 2 is the spin g-factor for
the electron; me is the mass of the electron; and σj is the j th Pauli matrix. Einstein summation notation is assumed.

Evaluating the expression at zero temperature, the Fermi function reduces to a Dirac delta function

αij = − e

(2π )3

∑
n

∫
d3kδ(εn − μ′)vni

⎛
⎝ e

2h̄
Imεjlm

∑
n′ �=n

〈n|∂lHk|n′〉〈n′|∂mHk|n〉
εn − εn′

− egs h̄

4me

〈n|σj |n〉
⎞
⎠. (A10)

We now employ the following approximation to deal with the delta function∫
d3kδ(εn − εF ) ≈ 1

δE

∫ εF +δE/2

εF −δE/2
dE′

∫
d3kH

(
E′), (A11)

where

H (E) =
{

1 if εF − δE
2 ,< εn < εF + δE

2
0 otherwise

. (A12)

The δE expression must be symmetric about εF . This can be seen from the GME expression for a single node,
which is proportional to (εnode − εF ); if the window of H (E) were defined to be εF < ε < εF + δE, the av-
erage value of εnode would become proportional to δE, leading to a linear dependence of α on the choice
δE. Physically, δE corresponds to a finite-width shell of energies to be averaged over around the Fermi level.

Defining the volume of the crystal V = N3a3 we have, in partial pseudocode

αij = − e

V

1

δE

∑
n

∑
k∈BZ

[
if − δE

2
< εkn <

δE

2

][
1

h̄
〈n|∂iHk|n〉

]⎛⎝ e

2h̄
Imεjlm

∑
n′ �=n

〈n|∂lHk|n′〉〈n′|∂mHk|n〉
εn − εn′

− egs h̄

4me

〈n|σj |n〉
⎞
⎠.

(A13)

Now define the dimensionless variable k = 2π
a

k, with a the lattice constant of the material, such that the Brillouin zone is defined
by k ∈ [− 1

2 , 1
2 ]. Using gs = 2,

αij = − e2

4πh2

1

δE

∑
n

⎡
⎣ 1

N3

∑
k∈BZ

⎤
⎦[if − δE

2
< εkn <

δE

2

]
〈n|∂iHk|n〉

×
⎛
⎝Imεjlm

∑
n′ �=n

〈n|∂lHk|n′〉〈n′|∂mHk|n〉
εn − εn′

− h2

mea2
〈n|σj |n〉

⎞
⎠. (A14)

Note that the only material-specific parameter is the lattice constant, which only affects the spin part. In the main text, the
only material whose spin-split band structure we consider is RhSi, in Sec. V. Inserting the values of fundamental constants and
the RhSi lattice constant a = 4.67 Å for the spin part, we have the final result (with E etc. dimensionless):

αRhSi
ij = −7.45 × 108 A

Tm2

1

δE

∑
n

⎡
⎣ 1

N3

∑
k∈BZ

⎤
⎦[if− δE

2
<εkn <

δE

2

]
〈n|∂iH k|n〉

×
([

1

eV

]
Imεjlm

∑
n′ �=n

〈n|∂lH k|n′〉〈n′|∂mH k|n〉
εn − εn′

− 13.8〈n|σj |n〉
)

. (A15)

3. Analytic evaluation of the orbital magnetic moment

We illustrate the derivation of the orbital magnetic moment, required for the GME calculations, for the case of the threefold
node. This also applies to the sixfold case by the reasoning presented in the main text. The threefold node, as described by
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Eq. (3), with φ = π/2 [general expressions for φ �= π/2 can be found in Appendix (C)], reads

H = ih̄vF

⎛
⎝ 0 kx −ky

−kx 0 kz

ky −kz 0

⎞
⎠ (A16)

with eigenenergies

E1 = 0, E2 = h̄vF k, E3 = −h̄vF k (A17)

and corresponding normalized eigenvectors

|1〉 = 1

k
(kz, ky, kx )T , |2〉 = (√2k

√
k2
x + k2

z

)−1

⎛
⎝kykz − ikkx

−k2
x − k2

z

kxky + ikkz

⎞
⎠,

|3〉 = (√2k

√
k2
x + k2

z

)−1

⎛
⎝kykz + ikkx

−k2
x − k2

z

kxky − ikkz

⎞
⎠. (A18)

The Berry curvature is given by

�n
i = iεijk

∑
m�=n

〈n|(∂jH )|m〉〈m|(∂kH )|n〉
(En − Em)p

(A19)

with p = 2. With p = 1 the expression instead gives the orbital magnetic moment divided by e/2h̄.
For band n = 1, we have

�1
1 = i

〈1|∂2H |2〉〈2|∂3H |1〉
(E1 − E2)2 + i

〈1|∂2H |3〉〈3|∂3H |1〉
(E1 − E3)2 + c.c.

= i
〈1|∂2H |2〉〈2|∂3H |1〉

(−h̄vF k)2 + i
〈1|∂2H |3〉〈3|∂3H |1〉

(h̄vF k)2 + c.c.

= (h̄vF )2 (
√

2k)−1
(
k2
z + k2

x

)1/2(√
2k
√

k2
x + k2

z

)−1
(kxk − ikzky )

(−h̄vF k)2

+ (h̄vF )2 (
√

2k)−1
(
k2
z + k2

x

)1/2(√
2k
√

k2
x + k2

z

)−1
(−kxk − ikzky )

(h̄vF k)2
+ c.c. (A20)

The real parts of the first two terms cancel, leaving the imaginary parts, which then cancel with the complex conjugates, giving
zero

�1
i = 0

(the other components similarly vanish owing to the isotropic nature of the Weyl node).
To obtain the orbital magnetic moments we set p = 1 rather than 2. As a result, a relative sign is introduced between the

formerly canceling terms. The result is therefore

m1
1 = e

2h̄
(h̄vF )2 (

√
2k)−1

(
k2
z + k2

x

)1/2(√
2k
√

k2
x + k2

z

)−1
(kxk − ikzky )

−h̄vF k

+ e

2h̄
(h̄vF )2 (

√
2k)−1

(
k2
z + k2

x

)1/2(√
2k
√

k2
x + k2

z

)−1
(−kxk − ikzky )

h̄vF k
+ c.c.

= −evF k−2kx (A21)

and similarly

m1
i = −evF k−2ki. (A22)

Bands n = 2, 3:

�2
1 = i

〈2|(∂2H )|1〉〈1|(∂3H )|2〉
(E2 − E1)2 + i

〈2|(∂2H )|3〉〈3|(∂3H )|2〉
(E2 − E3)2 + c.c. (A23)

the second term vanishes, since 〈2| = |3〉T and the ∂iH are elements of the cross product.

�2
1 = −(h̄vF )2 (

√
2k)−2(ikzky + kxk)

(h̄vF k)2 + c.c. = −(h̄vF )2 k−1kx

(h̄vF k)2 (A24)
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giving

�
2,3
i = (−,+)k−3ki. (A25)

Again changing the denominator in the penultimate line we obtain the expression for the orbital magnetic moment:

m
2,3
i = −evF k−2ki (A26)

(N.B. this has the same sign between bands). The other cases can be calculated in a similar fashion.
With the calculated orbital moments, the contribution to the GME trace for band n can be computed as

αn = e

∫
d3k

(2π )3

∂ki
En

h̄
mi,nδ(En − μ) = e

h̄

∫
d3k

(2π )3
∂ki

Enmi,n

δ(k − kF )∣∣∂ki
En

∣∣
= e

2π2h̄

∫
k2dk

evF Dn

2k
δ(k − kF ) = e2

4π2h̄
kF vF Dn. (A27)

For the threefold fermion at the φ = π/2 point at chemical potential μ measured from the node, the upper band has kF =
μ/(h̄vF ). For the middle band, quadratic corrections are needed to have a Fermi surface. Including H = 1/2m(k2

x + k2
y + k2

z ),
which does not change the orbital moment, we have kF = h̄−1√2mμ. So for the three bands, we have

αn = e2

4π2h̄2

⎧⎨
⎩

μD1�(μ)
vF

√
2mμD2�(μ)

|μ|D3�(−μ)
. (A28)

To compare this prediction with the tight-binding model for RhSi used in Sec. V A, we need to compute vF and m from
the tight-binding parameters v1, vp, and v2 of Ref. [29]. These can be obtained in perturbation theory to be vF = vp/2 and
m = 1

2 [(4v2
1 − v2

p )/(16v1) − v2/2]−1.

APPENDIX B: SYMMETRY CONSTRAINTS
FOR RESPONSE COEFFICIENTS IN

NONCENTROSYMMETRIC POINT GROUPS

Noncentrosymmetric point groups. There exist 21 noncen-
trosymmetric point groups, listed in Table II. In the following,
we discuss some of the effects they can host due to the absence
of inversion and list the corresponding subset of point groups
for each effect.

Polar point groups. There are 10 polar point groups (also
known as ferroelectric or pyroelectric materials):

C1, Cs, C2, C2v, C4, C4v, C3, C3v, C6, C6v.

In a polar point group, all symmetries, including mirrors, leave
one direction invariant. An insulator with these symmetries
can have a nonvanishing polarization along this direction.

Enantiomorphic or chiral groups. These groups, defined as
those with no orientation-reversing elements, are [118]

C1, C2, C3, C4, C6,D2,D4,D6, T ,O.

In this work, we have considered the following space groups
with chiral point groups that can host different multifold
fermions: 18, 19 (D2), 90, 92, 94, 96 (D4), 195–199 (T ),
207–214 (O). The constraints for the gyrotropy tensor (and
thus for CPGE and GME as well) are given in Table II.

Gyrotropic point groups. The term “gyrotropic” can gener-
ate some confusion in the literature since some works use it
interchangeably with “optically active,” but others distinguish
optically active from “weakly gyrotropic.”

Prior to the work of Fedorov in 1959 [114,115], the rotation
of the plane of polarization of linearly polarized light was
taken as a definition for gyrotropy and was assumed to be
the same as having a nonzero gyrotropy tensor gij . These
are the classes known as optically active (see OA column in

Table II) and add up to a total of 15 point groups. However,
Fedorov showed [116] that three more point groups should be
called gyrotropic. These are C4v, C3v and C6v , marked wG
for weakly gyrotropic in the table. The reason to call them gy-
rotropic is that the gyrotropy tensor is also nonzero. However,
since in these three classes this tensor is fully antisymmetric,
it does not rotate the plane of polarization. As described in
Appendix A, the rotatory power is determined only by the
symmetric part of the gyrotropy tensor [38,113,117].

Weakly gyrotropic crystals differ from nonactive crystals
in the sense that light reflected from them is elliptically
polarized [119]. Thus the number of crystallographic classes
in which gyrotropy is possible is 18 (marked under G in
Table II), and not only the optically active 15.

To summarize, the antisymmetric part of the gyration
tensor does not enter the rotation of the polarization plane
of a transmitted wave. Therefore, when a material has a
zero symmetric part and a nonzero antisymmetric part, the
material is called weakly gyrotropic and elliptically polarizes
a reflected wave. When the symmetric part of the gyration
tensor is nonzero, irrespective of the antisymmetric part, the
material is referred to as optically active because it rotates the
plane of polarization. Both of these together are the gyrotropic
point groups. We also note that some authors use the terms
“optically active” and “gyrotropic” interchangeably, but we
prefer to distinguish them as explained here.

Piezoelectric point groups. Piezoelectricity is a current
response to an applied mechanical strain uij . There are 20
piezoelectric point groups [120,121], which are all the non-
centrosymmetric ones except the O group.

Point groups with finite linear and circular photogalvanic
effects. The linear photogalvanic effect is a current response
to a symmetric tensor EiE

∗
j + E∗

i Ej and the symmetry con-
straints are therefore the same as for piezoelectricity. As stated
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in the main text, the circular photogalvanic effect is the current
response to a pseudovector E × E∗ and therefore it has the
same symmetry constraints as gyrotropy [120].

Finally, the diagonal elements of the CPGE and GME ten-
sors are zero for all nonenantiomorphic point groups except
S4. This point group has no mirrors, so the response tensors
have nonvanishing elements in the diagonal; but their sum (the
trace) is zero due to the improper rotation. Therefore only
enantiomorphic point groups can show a nonzero quantized
trace of CPGE, or a GME.

APPENDIX C: ANALYTICAL SOLUTION OF H3 f

In this Appendix, we derive the analytical eigenstates and
energies of H3f Eq. (3) for general φ, and in particular we
show explicitly that the quantity Ri

nm is radial. The energies
can be obtained from

det(H − IE) = −E3 + Ek2 + 2kxkykz cos 3φ = 0. (C1)

This is a cubic equation without quadratic term (known as
depressed cubic). The three solutions can be written in closed
form as

En = 2|k|√
3

cos

(
1

3
arccos

(
3
√

3kxkykz

k3
cos 3φ

)

− 2π (n − 1)

3

)
(C2)

for n = 1, 2, 3, and with 0 < arccos x < π . When φ = π/2,
we have E1 = k, E2 = 0 and E3 = −k. Note kxkykz/k3 takes
its maximum value in the (1,1,1) direction where kxkykz/k3 =
1/(3

√
3). In this direction, we have

E(1,1,1)
n = 2√

3
|k| cos

(
φ − 2π (n − 1)

3

)
, (C3)

where due to the definition of arccos x, φ should be un-
derstood in the sector 0 < φ < π/3. And the splitting be-

tween bands is given by E12 = 2|k| cos(φ + π/6), E23 =
2|k| sin φ, E13 = 2|k| cos(φ − π/6). In the (−1,−1,−1) di-
rection, the same expressions hold with φ → −φ + π/3.

The manifold S12 becomes active for ω > ω0 and is closed
for ω1 < ω < ω2 while S13 becomes active for ω > ω3 and
fully closed for ω > ω4. S23 becomes active with ω > ω5 and
is never closed in the linear model. These frequencies are

ω0 = μ

√
3 cos(φ + π/6)

cos(φ)
, ω1 = μ

√
3 cos(φ + π/6)

cos(φ − 2π/3)
,

ω2 = μ

√
3 cos(−φ + π/2)

cos(−φ + π/3)
, ω3 = μ

√
3 cos(φ − π/6)

cos(φ)
,

ω4 = μ

√
3 cos(−φ + π/6)

cos(−φ + π/3)
, ω5 = μ

√
3 sin φ

cos(φ − 2π/3)
.

(C4)

The normalized eigenfunctions that correspond to En are

ψn = 1√(
3E2

n − k2
)(

E2
n − k2

z

)
⎛
⎝ E2

n − k2
z

Enkxe
−iφ + kykze

2iφ

Enkye
iφ + kxkze

−2iφ

⎞
⎠.

(C5)

To prove that this is indeed an eigenvector, Eq. (C1) was used
with E = En. These wave functions can be used to obtain the
diagonal velocity matrix elements as

vi
nn = 〈ψn|∂ki

H |ψn〉 = 2Enki + 2(kxkykz/ki ) cos 3φ

3E2
n − k2

. (C6)

For the CPGE integral, the difference �i
nm = vi

nn − vi
mm is

needed and is given by

�i
nm =

2Emn

[
ki (3EnEm + k2) + 3(Em + En) kxkykz

ki
cos 3φ

]
(
3E2

n − k2
)(

3E2
m − k2

) .

(C7)

The quantities Ri
nm = r

j
nmrk

mnε
ijk = 1

(En−Em )2 〈n|∂jH |m〉
〈m|∂kH |n〉εijk are given by

Ri
nm = ki

2(En + Em)2
(
E2

nE
2
m + (EnEm − k2)k2

z + k4
z

)
sin 3φ

(En − Em)
(
E2

n − k2
z

)(−3E2
n + k2

)(
E2

m − k2
z

)(−3E2
m + k2

) , (C8)

where we have used

E2
n + E2

m + EnEm = k2 (C9)

and

(En + Em)EnEm = −2kxkykz cos 3φ, (C10)

which can be obtained by subtracting Eq. (C1) for En and Em provided n �= m. This shows that Ri
nm is indeed purely radial.

APPENDIX D: ENERGY SCALES FOR H4 f

The eigenvalues of H4f in Eq. (4) can be obtained from

det(H4f − EI ) = E4 − E2k2 + f (k, χ ) = 0 (D1)

with

f (k, χ ) = 1
8 (1 − cos 4χ )

(
k4
x + k4

y + k4
z

)+ 1
8

(
11
4 + 7

4 cos 4χ + 3 sin 2χ
)(

k2
xk

2
y + k2

xk
2
z + k2

yk
2
z

)
. (D2)
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The solutions in decreasing order are given by

E1(k) =
√

k2 +
√

k4 − 4f (k, χ )

2
, E2(k) =

√
k2 −

√
k4 − 4f (k, χ )

2
,

E3(k) = −
√

k2 −
√

k4 − 4f (k, χ )

2
, E4(k) = −

√
k2 +

√
k4 − 4f (k, χ )

2
. (D3)

Defining k100 = k(1, 0, 0) and k111 = k(1, 1, 1)/
√

3, the different frequencies defined in the main text are given by

ω0 = μ
E1(k111) − E2(k111)

E1(k111)
, ω1 = μ

E1(k100) − E2(k100)

E1(k100)
, ω2 = μ

E1(k100) − E2(k100)

E2(k100)
,

ω3 = μ
E1(k111) − E2(k111)

E2(k111)
, ω4 = μ

E1(k100) − E3(k100)

E1(k100)
, ω5 = μ

E1(k111) − E3(k111)

E1(k111)
, (D4)

ω6 = μ
E1(k111) − E4(k111)

E1(k111)
, ω7 = μ

E2(k111) − E4(k111)

E2(k111)
, ω8 = μ

E2(k100) − E4(k100)

E2(k100)
.

APPENDIX E: Ab Initio CALCULATION METHODS

Calculations have been performed within the DFT
[122,123] as implemented in the Vienna ab initio simulation
package (VASP) [124,125]. The interaction between ion cores
and valence electrons was treated by the projector augmented-
wave method [126], the generalized gradient approxima-
tion (GGA) for the exchange-correlation potential with the
Perdew-Burke-Ernkzerhof for solids parametrization [127]
and spin-orbit coupling was taken into account by the second
variation method [128]. A Monkhorst-Pack k-point grid of
(4 × 4 × 4) for reciprocal space integration and 500-eV en-
ergy cutoff of the plane-wave expansion have been used to get
a residual error on the energy of less than 10−3 meV, resulting
in a fully converged electronic structure including spin-orbit
coupling.

APPENDIX F: TIGHT-BINDING BAND STRUCTURES

In this Appendix, we review our construction of tight-
binding models in space groups 199, 214, and 198, paying
particular attention to the boundary conditions imposed by
the atomic positions. Appendix F 1 reviews the construction
of the nearest-neighbor model for space groups 199 and 214
without spin-orbit coupling, largely following the discussion
in Ref. [22]. In Appendix F 2, we show how to modify the
tight-binding model of Ref. [29] to accurately describe the
atomic positions of RhSi.

1. SGs 199 and 214

Here we will construct minimal tight-binding models for
space groups 199 and 214 without spin-orbit coupling. Both
of these groups are body-centered cubic, with Bravais lattice
vectors

R1 = a

2
(−x̂ + ŷ + ẑ),

R2 = a

2
(x̂ − ŷ + ẑ), (F1)

R3 = a

2
(x̂ + ŷ − ẑ).

For simplicity, we will take the lattice constant a = 1 for the
remainder of this work. Note first that space group 199 is
generated by

G199 = 〈{C2x | 1
2

1
2 0
}
, {C3,111|000}, {E|100},

{E|010}, {E|001}〉. (F2)

Here, E denotes the identity rotation, and the translation part
of space group elements will be given in reduced coordinates,
i.e., {

E| 1
2

1
2 0
}→ 1

2R1 + 1
2R2. (F3)

Space group 214 is obtained by appending to this generating
set the additional twofold screw

G214 = 〈G199,
{
C2,110| 1

2 00
}〉

. (F4)

To construct a minimal tight-binding model, we will place
spinless s orbitals at the minimal-multiplicity Wyckoff posi-
tion in the space group, and consider nearest-neighbor hop-
pings. In both SGs 199 and 214, the minimal-multiplicity
Wyckoff position is the 8a position (and also the 8b position
in SG 214), with multiplicity 4 in both cases. Because the
stabilizer group of this position in SG214 contains C2,110, the
tight-binding models for both SG199 and 214 will be formally
identical. Concretely, the four points in the 8a (or b) position
are, in reduced coordinates,

{q1, q2, q3, q4} = {(u, u, u),
(

1
2 − u, 1

2 , 0
)
,
(
0, 1

2 − u, 1
2

)
,(

1
2 , 0, 1

2 − u
)}

, (F5)

obtained by acting successively with x̂, ŷ, and ẑ twofold
rotations on q1. For SG199, the value of u is arbitrary, − 1

2 <

u < 1
2 , while for SG 214, u is fixed to ± 1

4 . As this will be
the only difference between the two models, we will leave u

arbitrary. For simplicity, we will take u > 0 without loss of
generality. Our final model will be applicable for either sign
of u.

By using s orbitals as our basis functions, all symmetries in
the stabilizer group of the 8a position are represented trivially.
Thus, to construct our model, we need only ensure that all
hoppings appear in symmetry invariant combinations. Note
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that the shortest distance between orbitals in the lattice is
given by

|q1 − qj |2 = 1
4 − u + 2u2 < 1

4 , (F6)

equal for all all symmetry related bonds. Thus we find for the
nearest-neighbor Hamiltonian,

HNN = tNN

∑
R

(c†2,Rc1,R + c
†
3,Rc1,R + c

†
4,Rc1,R + c

†
4,R−R1

c3,R

+ c
†
4,R+ R2

c2,R + c
†
3,R−R3

c2,R ) + H.c., (F7)

where ci,R annihilates a fermion at site i in unit cell R. We can
Fourier transform this using

ci,R =
∑

k

ei,k·(R+qi )cik (F8)

to obtain

HNN = tNN

∑
k

(c†1,k c
†
2,k c

†
3,k c

†
4,k )

×V †(u, k)H0(k)V (u, k)

⎛
⎜⎜⎜⎜⎝

c
†
1,k

c
†
2,k

c
†
3,k

c
†
4,k

⎞
⎟⎟⎟⎟⎠ (F9)

with

H0(k) =

⎛
⎜⎜⎝

0 1 1 1
1 0 e−ik·R3 eik·R2

1 eik·R3 0 e−ik·R1

1 e−ik·R2 eik·R1 0

⎞
⎟⎟⎠ (F10)

and

V (u, k) =

⎛
⎜⎜⎝

eik·q1 0 0 0
0 eik·q2 0 0
0 0 eik·q3 0
0 0 0 eik·q4

⎞
⎟⎟⎠. (F11)

Note that only the matrix V , which determines the embedding
of the orbitals, distinguishes between SG 199 and 214 in this
model.

2. RhSi and SG 198

In this section, we introduce some modifications to the
tight-binding model of RhSi given in Ref. [29], in order
to obtain more physically meaningful results for the GME
and CPGE. In particular, we focus on the embedding and
boundary conditions on Bloch functions. The tight-binding
model without spin-orbit coupling is shown in Fig. 9, and
that with spin-orbit coupling was shown in Fig. 4. First,
we note that Ref. [29] chose for the locations of their

FIG. 9. RhSi band structure without spin-orbit coupling. The real
material features a small spin-orbit coupling as shown in Fig. 4 in the
main text.

atoms

qA = (0, 0, 0), qB = ( 1
2 , 1

2 , 0
)
,

qC = ( 1
2 , 0, 1

2

)
, qD = (0, 1

2 , 1
2

)
, (F12)

given in reduced coordinates (which here are aligned with the
cartesian directions). Introducing the matrix

V (k) = exp

⎡
⎢⎢⎣
⎛
⎜⎜⎝

0 0 0 0
0 i

2 (k1 + k2) 0 0
0 0 i

2 (k1 + k3) 0
0 0 0 i

2 (k2 + k3)

⎞
⎟⎟⎠
⎤
⎥⎥⎦

⊗ σ0, (F13)

we have that their tight-binding Hamiltonian H(k) satisfies

H(k + G) = V (G)†H(k)V (G). (F14)

The rows and columns of our matrices correspond to orbitals
A, B, C, and D, in that order.

However, these are not boundary conditions and atomic
coordinates of the dominant states near the Fermi energy
in RhSi. Our ab initio calculations reveal that the relevant
orbitals near EF originate from Rh atoms in this material,
which are located at

qA = (x, x, x), qB = ( 1
2 + x, 1

2 − x,−x
)
,

qC = ( 1
2 − x,−x, 1

2 + x
)
, qD = (−x, 1

2 + x, 1
2 − x

)
,

(F15)

with x = 0.3959. To obtain a tight-binding Hamiltonian in the
proper embedding, we must take

Hx (k) ≡ Ux (k)†H(k)Ux (k) (F16)

with

Ux (k) = exp

⎡
⎢⎣
⎛
⎜⎝

ix(k1 + k2 + k3) 0 0 0
0 ix(k1 − k2 − k3) 0 0
0 0 ix(k3 − k2 − k1) 0
0 0 0 ix(k2 − k1 − k3)

⎞
⎟⎠
⎤
⎥⎦⊗ σ0. (F17)
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With this choice, we can easily verify that

Hx (k + G)αβ = e−iG·qαHx (k)αβeiG·qβ , (F18)

where there is no implied summation over repeated indices.

APPENDIX G: LOW-ENERGY HAMILTONIANS FOR THE
DOUBLE SPIN-1/2 AND DOUBLE SPIN-1 FERMIONS

In this section, we elaborate on some details of the deriva-
tion of the k · p Hamiltonians for the double spin-1/2 and
double spin-1 fermions given, respectively, in Eqs. (4) and
(5) in the text. We also derive the low-energy Hamiltonian
for tetrahedral spin-3/2 fermions. In this appendix, ki will be
used to denote the displacement away from a high-symmetry
momentum K for convenience.

1. Double spin-1/2 fermions

As mentioned in Sec. II A, double spin-1/2 fermions are
protected by the combination of a perpendicular twofold
screw rotational symmetry and time-reversal symmetry. Due
to the chiral nature of the space groups in question, this
fourfold degeneracy takes the form of two Weyl points of the
same charge pinned to lie at the same energy, with symmetry-
allowed internode coupling.

Following the methods of Ref. [28], the low-energy k · p
Hamiltonian for the double spin-1/2 fermions in SG 90 can
be shown to be

H90(k) =

⎛
⎜⎝

akz bεk+ ck− 0
bε∗k− −akz 0 ick+
c∗k+ 0 −akz −bε∗k−

0 −ic∗k− −bεk+ akz

⎞
⎟⎠, (G1)

where ε = e−iπ/4, a and b are real parameters, and c is
complex. This Hamiltonian is written in the basis where the
time-reversal operator is the natural one,

ρ(T ) =
(

0 I
−I 0

)
K, (G2)

where K is complex conjugation; and the spatial symmetries
are represented by the block-diagonal matrices

ρ(C4z) =

⎛
⎜⎜⎝

e−3πi/4 0 0 0
0 e−iπ/4 0 0
0 0 e3πi/4 0
0 0 0 eiπ/4

⎞
⎟⎟⎠,

ρ

({
C2x |1

2

1

2
0

})
=

⎛
⎜⎜⎝

0 e−iπ/4 0 0
eiπ/4 0 0 0

0 0 0 eiπ/4

0 0 e−iπ/4 0

⎞
⎟⎟⎠.

(G3)

Note that even though there is coupling between the Weyl
fermions, along the plane δkx = 0, bands remain doubly
degenerate. This is a generic feature of these double spin-1/2
fermions, and is due to the fact that they are protected by a
twofold screw symmetry g = {C2x | 1

2
1
2 0}. Because the double

spin-1/2 occurs at a point K with Kx = 1/2, we have that
the product of g and time-reversal symmetry leaves the plane

kx = 0 invariant and squares to −1, thus enforcing a Kramers
degeneracy.

By applying a constant unitary rotation to Eq. (G1), we
can transform it to a basis where the two Weyl fermions are
decoupled. First, writing c = |c|eiφ we note that the operator

A =

⎛
⎜⎜⎝

0 0 0 −ei(φ−π/4)

0 0 ei(φ−π/4) 0
0 e−i(φ−π/4) 0 0

−e−i(φ−π/4) 0 0 0

⎞
⎟⎟⎠

(G4)
commutes with Eq. (G1), and has eigenvalues (1, 1,−1,−1).
Re-expressing the Hamiltonian in the eigenbasis of A and
reabsorbing the constant phase ε into the definition of the
basis states we recover Eq. (1) of the main text.

The double spin-1/2 fermion in space group 198 at the M

point has a similar, but slightly less constrained Hamiltonian,
due to the absence of fourfold rotational symmetry. The
little group at the M point has a four-dimensional physically
irreducible representation, which can be expressed as

ρ
({

C2x | 1
2

1
2 0
}) = σzτ0,

ρ
({

C2z
1
2 0 1

2

}) = iσyτ0, (G5)

ρ(T ) = −iσ0τyK,

which lead to the linear Hamiltonian

H198 = ckzσyτ0 + kxσzv1 · τ + kyσx v2 · τ , (G6)

where σ and τ are vectors of Pauli matrices, τ0 is the identity
matrix in “τ space,” and the tensor product of σ and τ is
implied. Additionally, c is a real scalar, and v1 and v2 are
three-vectors of real parameters. The additional degrees of
freedom in this Hamiltonian compared to the one in SG 90
arise due to the absence of C4 symmetry. Nevertheless, we can
still decouple this double spin-1/2, by noting that the operator

A = 1

|v1 × v2|σy (v1 × v2) · τ (G7)

commutes with H198, and has eigenvalues (1, 1,−1,−1).
Expressing the Hamiltonian in terms of the eigenspaces of A

thus generically decouples the Hamiltonian. The dispersion of
this Hamiltonian is quite complicated, and takes the form

ε±± = ±
√

|v1kx |2 + |v2ky |2 ± 2|v1 × v2|kxky + c2k2
z . (G8)

Finally, note that when v1 ‖ v2 the operator A is not defined,
however, in this case the Hamiltonian is trivially decoupled by
A′ = v̂1 · τ .

2. Double spin-1 fermion

The low-energy Hamiltonian for the doubled S = 1
fermion was given in Ref. [28] as

H6f (k) =
(

H3f (φ, k) bH3f (0, k)

b∗H3f (0, k) −H ∗
3f (φ, k)

)
. (G9)

Noting that H6f commutes with the operator

A =
(

cos φ b

b∗ − cos φ

)
⊗ I3×3, (G10)

155145-23



FELIX FLICKER et al. PHYSICAL REVIEW B 98, 155145 (2018)

H6f can be decoupled into two blocks labeled by the eigen-
values of A, ±

√
cos2 φ + |b|2. The result takes the form

H6f =
√

1 + |b|2
(

H3f

(
π
2 − δφ, k

)
0

0 H3f

(
π
2 + δφ, k

))
(G11)

with δφ = tan−1 (
√

cos2 φ + |b|2/ sin φ). For H212,213 ≡
H198(φ = π/2) this reduces to δφ = tan−1 |b|.

3. Tetrahedral spin-3/2 fermions

The tetrahedral spin-3/2 fermions in space groups 195–
198 arise from the octahedral spin-3/2 fermions in space
groups 207–214 upon the breaking of fourfold rotational

symmetry. These relaxed symmetry constraints allow for an
additional term in the k · p Hamiltonian at linear order, which
takes the form

H4f,T = H4f + vT

⎛
⎜⎜⎜⎝

0 kz −√
3kx iky

kz
2kz√

3
iky

kx−2iky√
3

−√
3kx −iky 0 −kz

−iky
kx+2iky√

3
−kz − 2kz√

3

⎞
⎟⎟⎟⎠,

(G12)
where H4f is the octahedral spin-3/2 Hamiltonian given in
Eq. (4), and vT is a real parameter proportional to the strength
of C4 symmetry breaking. This gives the most general linear
Hamiltonian invariant under the 1

F̄
2
F̄ (co-)representation of

the tetrahedral group, which is generated by

ρ(C2x ) = −i

⎛
⎜⎝

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞
⎟⎠, ρ(C3,(1,−1,1)) = 1

4

⎛
⎜⎜⎝

1 − i
√

3(1 − i) 1 + i (1 + i)
√

3
(−1 + i)

√
3 1 − i −√

3(1 + i) 1 + i

−1 + i
√

3(−1 + i) 1 + i
√

3(1 + i)√
3(1 − i) −1 + i −√

3(1 + i) 1 + i

⎞
⎟⎟⎠, (G13)

ρ(T ) =

⎛
⎜⎝

0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

⎞
⎟⎠K. (G14)
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