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Magnetic monopole noise
ritika Dusad1,10, Franziska K. K. Kirschner2,10, Jesse C. Hoke1,3, Benjamin r. roberts1, Anna eyal1,4, Felix Flicker5,  
Graeme M. Luke6,7,8, Stephen J. Blundell2* & J. C. Séamus Davis1,2,9*

Magnetic monopoles1–3 are hypothetical elementary particles with 
quantized magnetic charge. In principle, a magnetic monopole can 
be detected by the quantized jump in magnetic flux that it generates 
upon passage through a superconducting quantum interference 
device (SQUID)4. Following the theoretical prediction that 
emergent magnetic monopoles should exist in several lanthanide 
pyrochlore magnetic insulators5,6, including Dy2Ti2O7, the SQUID 
technique has been proposed for their direct detection6. However, 
this approach has been hindered by the high number density and 
the generation–recombination fluctuations expected of such 
thermally generated monopoles. Recently, theoretical advances 
have enabled the prediction of the spectral density of magnetic-
flux noise from monopole generation–recombination fluctuations 
in these materials7,8. Here we report the development of a SQUID-
based flux noise spectrometer and measurements of the frequency 
and temperature dependence of magnetic-flux noise generated by 
Dy2Ti2O7 crystals. We detect almost all of the features of magnetic-
flux noise predicted for magnetic monopole plasmas7,8, including 
the existence of intense magnetization noise and its characteristic 
frequency and temperature dependence. Moreover, comparisons of 
simulated and measured correlation functions of the magnetic-flux 
noise indicate that the motions of magnetic charges are strongly 
correlated. Intriguingly, because the generation–recombination 
time constant for Dy2Ti2O7 is in the millisecond range, magnetic 
monopole flux noise amplified by SQUID is audible to humans.

Observation of a quantized jump in the magnetic flux Φ threading 
a SQUID loop is the definitive technique for the detection of mag
netic monopoles4 (Fig. 1a). For example, an elementary Dirac mono
pole1 with magnetic charge m0 = ±h/(μ0e) (h is Planck’s constant;  
e is the electron charge; μ0 is the magnetic constant) should generate  
a flux change of Φ0 = ±h/e upon passage through a SQUID loop. 
This approach was proposed6 for the detection of thermally generated 
magnetic monopoles, each with magnetic charge ±m∗, in lanthanide 
pyrochlore magnetic insulators9,10 such as Dy2Ti2O7 and Ho2Ti2O7. 
If each monopole in a thermally generated ±m∗ pair departs to ±∞ 
in opposite directions, the net flux threading the SQUID loop should 
evolve from 0 to Φ∗ = m∗μ0 (Fig. 1b). However, because these mate
rials are hypothesized to contain a dense monopole plasma, with 
equal numbers of ±m∗ magnetic charges undergoing rapid thermal 
generation and recombination (GR), the Φ(t) measured by a SQUID 
(Fig. 1c) should be stochastic and weak. Thus, despite extensive  
evidence consistent with a magnetic monopole plasma9,10 in Dy2Ti2O7 
and Ho2Ti2O7, the magneticflux signature4,6 of the magnetic charges 
m∗ has gone undetected.

In these compounds, the magnetic ions (Dy3+, Ho3+) occupy vertices 
of cornersharing tetrahedra (Fig. 1d). Each ion exhibits only two spin 
configurations and acts as an Ising magnetic moment (μ ≈ 10μB; μB, 
Bohr magneton) that points either towards (‘in’) or away from (‘out’)
the centre of each tetrahedron9,11 (black arrows in Fig. 1d). The nearest 
neighbour exchange interaction between these moments9 takes the 

form −J∑Si∙Sj, with exchange energy J ≈ −3.7 K for Dy2Ti2O7 and 
J ≈ −1.6 K for Ho2Ti2O7 and Si the unit vector representing an Ising 
moment on site i. The resulting dipolar spin ice (DSI) Hamiltonian 
incorporates both the exchange interactions and longerrange dipole 
interactions as12
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Here D = μ0μ2/(4πa3) is the dipoleinteraction energy scale 
(D = +1.41 K for both Dy2Ti2O7 and Ho2Ti2O7), a = 0.354 nm is 
the nearestneighbour distance between moments, and rij is the vec
tor connecting sites i and j. Only six energetically degenerate ground
state spin configurations occur per tetrahedron13, all of which have 
two spins pointing in and two pointing out (Fig. 1d). The magnetic 
monopole model of the spin ices is then achieved by rewriting the real 
Ising dipoles ±μ of equation (1) in terms of magnetic charges ±m∗ 
placed at the centres of adjacent tetrahedra such that ±μ = ±m∗d/2 
(Fig. 1d), where d is the distance between tetrahedron centres, rα. Each 
centre is then labelled by a net magnetic charge mα, where mα = 0 for 
the 2in/2out configuration, mα = m∗ for the 3out/1in configuration 
and mα = −m∗ for the 3in/1out configuration (Fig. 1d). The interac
tion potential between magnetic charges mα and mβ at sites rα and rβ 
is then represented by the Hamiltonian6,9
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where ν = / + + / /J D( 3) 4 (1 2 3 ) 3 and rαβ is the distance between rα 
and rβ. In equation (2) the first term represents the Coulomblike inter
actions between magnetic charges and the second term an onsite 
repulsion that enforces mα = 0, or a 2in/2out ground state, at T = 0. 
In this picture, when thermal fluctuations randomly flip a fraction of 
the Dy spins, magnetic monopole quasiparticles with charges ±m∗ 
along with a small additional population14 with charges ±2m∗ are gen
erated. Overall, the lowenergy spin excitations are then hypothesized 
to be a plasma of ±m∗ magnetic charges5,6,9,10 interacting via a 
Coulomblike potential while undergoing rapid thermally activated 
GR across an energy barrier of Δ ≈ 2ν(μ/d)2.

Thermally generated plasmas of ±e electric charges, subject to both 
Coulomb interactions and spontaneous GR, are well understood in 
intrinsic semiconductors15–18. Here, thermal GR of ±e pairs generates 
voltage noise with a spectral density of ω ω= /S T V S T N( , ) ( , )V N

2
0
2 , 

where SN(ω, T) is the spectral number of GR fluctuations in the number 
N of ±e pairs, N0 is their equilibrium number at a given temperature  
T, and ω is the angular frequency. Analogous theories for GR fluctua
tions in a plasma of ±m∗ magneticcharge pairs have recently  
been developed for spin ice compounds7. The rates of ±m∗ pair  
generation, g(N, T), and recombination, r(N, T), are such that 

| = |g N T r N T( , ) ( , )N N0 0
  where N0(T) is the equilibrium number of ±m∗  
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pairs. However, thermally stimulated fluctuations δN = N – N0 in the 
number of ±m∗ pairs occur owing to the GR processes. The Langevin 
equation for such fluctuations is7
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 and ζA T t( ) ( ) rep
resents the thermally generated stimulus, which is uncorrelated in 
time7,14. Taking the Fourier transform of equation (3) yields the pre
dicted spectral density of fluctuations in the number N of ±m∗ pairs as7
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2 is the variance. This result, shown schematically 

in Fig. 2a for a sequence of different τ(T) rates, reveals many intriguing 
properties. The spectral density of ±m∗ pair fluctuations should be 
constant up to an angular frequency of ωGR(T) ≈ 1/τGR(T) on the 
socalled GR noise plateau because of the randomness of the GR pro
cesses. Above this frequency, SN(ω, T) should eventually fall off as 1/ω2 
for timescales on which uncorrelated magnetic monopoles can prop
agate freely. Another signature predicted by equation (4) for magnetic 
monopole GR processes is that, in a regime where σN

2 is approximately 
constant7, the power spectral density of the lowfrequencynumber 
fluctuations, SN(ω → 0, T), should increase proportionately to τ(T).

However, a key challenge remains for the SQUID detection of emer
gent magnetic monopoles6: the GR fluctuations in the number of ±m∗ 
pairs must be related directly to the fluctuations of the magnetic flux 
Φ(t) that is detectable by a SQUID (Fig. 1c). Moreover, equation (4) 
does not account for correlations in the motion of singly charged 
mono poles or for the existence of any doubly charged monopoles14. In  
theory, the correlations exist because of topological constraints that 
distinguish the dynamics of ±m∗ pairs in spin ice from free particle–
antiparticle pairs. Each cogenerated ±m∗ pair is connected by a Dirac 
string with magnetic flux Φ∗ = m∗μ0 (yellow trace in Fig. 1d), and the 
spin configuration within each Dirac string prevents sequential 
traversal along it by a second monopole of the same sign10. Therefore, 
a microscopic theory is required for magnetization fluctuations and 
noise, including the effects of both doubly charged monopoles and 
correlated monopole motion. Here we use Monte Carlo simulations of 
the thermally generated magnetic configurations described by equa
tion (1) (see Methods section ‘Monte Carlo simulations’; the calibration 
of the Monte Carlo time step is described in Methods section 
‘Calibration of Monte Carlo time step’). The result is a prediction of the 
spectral density of fluctuations ωS T( , )Mz

 in the z component of the 
magnetization of Dy2Ti2O7 crystals for each ω and T. Figure 2b shows 
such Monte Carlo simulation data, presented as the predicted noise 
spectral density of magneticfield fluctuations ωS T( , )Bz

 for Dy2Ti2O7 
crystals of volume approximately equal to that of our millimetrescale 
samples. Because our samples are about 1016 times larger than the vol
umes that can be studied by Monte Carlo simulations, the absolute 
magnitude of ωS T( , )Bz

 is an estimation (see Methods section ‘Monte 
Carlo simulations’) because the effects of finitesize scaling on DSI 
Monte Carlo simulations19 over such a volume range are unknown. 
Nevertheless, these Monte Carlo simulations, which are based on equa
tion (1), provide several important predictions. First, they reveal an 
analytical form of ωS T( , )Bz

 (Fig. 2b) that is equivalent in key charac
teristics to equation (4) (Fig. 2a), as derived using the Langevin equation  
for GR fluctuations of ±m∗ pairs. Second, by fitting the functional form 
τ(T)/{1+[ωτ(T)]b} to the Monte Carlo simulation data in Fig. 2b, one 
can determine τ(T). Third, the Monte Carlo simulation of S T(0, )Bz

 is 
approximately proportional to τ(T) for the temperature range of our 
experiments (Fig. 2c), once an offset to all ωS T( , )Bz

 values is considered 
to account for numerical Nyquist (sampling) noise. Finally, the rela
tionship S(ω) ∝ ω−2, which applies at high frequencies according to 
GR theory with a single GR time constant7, is replaced with a more 
complex behaviour of S(ω) ∝ ω−b with b(T) < 2. This effect may be due 
to a combination of noise spectral densities, as in equation (4), but with 
a distribution of GR time constants. In any case, as discussed below, the 
Monte Carlo simulations indicate that this S(ω) ∝ ω−b behaviour in 

1 mm

Flux noise sensor  

Dy2Ti2O7
sample

4 mm6 mm

m0

–m
*

+m
*

+m
*

–m
*

*

SQUID

 

Φ
Φ

0/2

Φ

Φ

Φ

0/2

0

 

–

0x

x

x

x

a

b

c

d

Fig. 1 | SQUID detection of quantized flux jump of magnetic monopoles. 
a, Schematic of a fundamental Dirac monopole with charge m0 = ±h/(μ0e) 
traversing the SQUID input coil from x = −∞ to x = +∞. The magnetic
flux threading of the SQUID changes in total by Φ0 = h/e. b, Schematic of 
two emergent magnetic charges ±m∗ generated in Dy2Ti2O7 at x = 0 by a 
thermal fluctuation. As each charge departs in opposite directions towards 
x = ±∞, the net flux threading the SQUID changes in total by Φ∗ = μ0m∗. 
The dark grey circles with two Xs denote the SQUID. c, Schematic of the SNS 
(see Methods section ‘Spin noise spectrometer’). The primary coil, consisting 
of six turns of 0.09mmdiameter NbTi wire wound on a cylindrical Macor 
shell, and the two wires connecting it to the input coil of a Quantum Design 
550 DC SQUID are contained within a cylindrical superconducting Nb flux 
shield (not shown). The thermal conductivity of Macor is sufficient to 
thermalize the sample for any T > 1 K. Inset, single crystals of Dy2Ti2O7 cut 
in the shape of a rod with a square crosssection; the crystals are placed along 
the axis of the pickup coil. d. Schematic representation of the spin ice excited 
state in which two magnetic charges, ±m∗, are generated by a spin flip and 
propagate through the material. In Dy2Ti2O7 the tetrahedron corners are the 
midpoints of the bonds of a diamond lattice defined by the centres of the 
tetrahedra, and all such bonds point along the local [111] direction. The ratio 
of the lattice constant of the diamond d and that of the fundamental pyrochlore 
lattice a is = /d a3 (2 ). A single flip of an Ising Dy3+ spin converts the 
2in/2out mα = 0 configuration in adjacent tetrahedra to a situation with 
adjacent mα = m∗ for the 3out/1in configuration in one tetrahedron and 
mα = −m∗ for the 3in/1out configuration in the next one. These two 
opposite magnetic charges can then separate via a sequence of spin flips in 
sequential tetrahedra, which leave them all in the 2in/2out mα = 0 
configuration, except at the ends of this chain. However, owing to spin ice 
constraints, the specific path taken (which can be defined as a Dirac string 
with flux Φ∗) cannot be traversed sequentially by another magnetic charge of 
the same sign.

1 1  J U L Y  2 0 1 9  |  V O L  5 7 1  |  N A t U r e  |  2 3 5



LetterreSeArCH

Dy2Ti2O7 derives microscopically from topological constraints due to 
the Dirac strings, causing the motion of interacting monopoles to 
become correlated.

These theoretical innovations provide clear predictors for the magnetic 
flux noise spectral density SΦ(ω, T) due to a plasma of ±m∗ magnetic 
charges undergoing GR processes. First, random fluctuations dominate  
at frequencies ωτ(T) ≪ 1 and topologically constrained monopole 
dynamics dominate at ωτ(T) ≫ 1, with a transition regime surrounding 
ωτ(T) ≈ 1. Second, even though the evolution of magnetic relaxation 
times with T is microscopically complex10, the GR prediction for a 
plasma of ±m∗ magnetic charges is that

τ∝ΦS T T(0, ) ( ) (5)

provided that σN
2  remains approximately constant in the temperature 

range of the experiment (see ref. 7 and Methods section ‘Statistics of 
monopole number fluctuations’). Third, signatures of topological con
straints on monopole dynamics are contained within the prediction for 
the magneticflux noise autocorrelation function and powerlaw expo
nent b(T). The combined conclusions from the Monte Carlo simula
tions of magnetization noise in Dy2Ti2O7 (Fig. 2b) are embodied in
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To explore these prospects, we developed a highsensitivity SQUID
based flux noise spectrometer20,21 to measure the SΦ(ω, T) of crystalline 
samples. Here we use it for studies of Dy2Ti2O7 over the frequency 
range 1 Hz < f < 2.5 kHz (see Methods section ‘Spin noise spectrome
ter’). This spin noise spectrometer (SNS) is mounted on a custombuilt, 
lowvibration cryostat operable in the range 1.2 K ≤ T ≤ 7 K, which 
was estimated to be optimal for detection of the most intense flux 
noise spectra from the millimetrescale Dy2Ti2O7 crystals studied. 
Measurements consist of: varying the temperature of the sample assem
bly from 1.2 K to 4 K in steps of 25 mK, using the SQUID to measure 
the magnetic flux Φ(t) generated by the Dy2Ti2O7 sample at each T 
and utilizing a spectrum analyser to determine the flux noise spectral 
density SΦ(ω, T).

Figure 3a shows a typical example of SΦ(ω, T) measured from 
Dy2Ti2O7 samples in our SNS at 1.2 K ≤ T ≤ 4 K. The lefthand axis is 
the magneticflux noise spectral density SΦ(ω, T) and the righthand 
axis shows an estimate of the equivalent magneticfield noise spectral 
density ωS T( , )Bz

 within the Dy2Ti2O7 samples (see Methods section 
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Fig. 2 | Spectral density of fluctuations in monopole number and 
magnetization. a, Spectral density of fluctuations in monopole number 
SN(ω, T) predicted from equation (4) for several monopole GR time 
constants τ in the temperature range from 4 K to ~1 K, which one might 
expect to achieve by cooling Dy2Ti2O7. The GR plateau in SN(ω, T) for 
ω → 0 is clear, as is the ω−2 falloff expected of freemonopole motion for 
frequencies ωτ > 1. The inset shows the normalized spectral density, 
SN(ω, T)/SN(0, T). The colour scale is as in b. b, Spectral density of 
magneticfield fluctuations ωS T( , )Bz

 in the Dy2Ti2O7 sample, predicted by 
Monte Carlo simulations using the Hamiltonian of equation (1) in the 
temperature range 1 K ≤ T ≤ 4 K. These simulations are physically distinct 
from those reported in ref. 8 because here we focus on bulk fluctuations of 
the z component of magnetization, Mz(t), or of the associated z component 
of the magnetic field, Bz(t), whereas ref. 8 considers field fluctuations in 

vacuum outside a specific crystal termination surface. Because of the 
periodic boundary conditions and the very small Monte Carlo sample 
volume, the scaling of the predicted magnitude of ωS T( , )Bz

 for the Monte 
Carlo sample to the absolute magnitude expected for an experimental 
sample of volume about 1016 times greater is an approximation 
(see Methods section ‘Monte Carlo simulations’). However, this does not 
affect the form of ωS T( , )Bz

 expected for a macroscopic experimental 
sample. c, Relationship between S T(0, )Bz

 and τ(T) for the GR fluctuations 
of a ±m∗ magneticcharge plasma, as predicted by Dy2Ti2O7 Monte Carlo 
simulations8 of Bz(t). We note that all of the S T(0, )Bz

 data points are offset 
by a constant along the vertical axis owing to artefacts of Nyquist 
(sampling) noise at the highfrequency end of the Monte Carlo 
calculations.
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‘Spin noise spectrometer’). Each dataset is fitted with equation (6), with 
the best fit shown as a solid curve (see Methods section ‘Data analysis’). 
Thus, we find that the magneticflux noise spectral density of Dy2Ti2O7 
is constant for frequencies from near 1 Hz up to an angular frequency 
of ω(T) ≈ 1/τ(T), above which it falls off as ω−b, where b spans the 
range 1.2–1.5. Figure 3b shows SΦ(ω, T)/SΦ(0, T), revealing that the GR 
time constant τ(T) evolves rapidly towards longer times at lower T. 
Figure 3c shows the measured SΦ(0, T) from Fig. 3a plotted against the 
τ(T) measured from the fits to SΦ(ω, T) in Fig. 3a, where T is the 
implicit variable and ranges from 1.2 K to 4 K. Here we see that SΦ(0, T) 
is proportional to τ(T) throughout our temperature range (Figs. 2c, 4a). 
This situation is as expected from GR models when the variance in 
monopole number σN

2  remains roughly constant, as confirmed in 
Methods section ‘Data analysis’. Comparison of GR time constants τ(T) 
derived from flux noise spectroscopy to magnetic relaxation times 
τΜ(T) derived from magnetic susceptibility measurements22–25 reveal 
them to have good empirical correspondence (see Methods section 
‘Data analysis’), although their microscopic relationship remains to be 
identified precisely. Generally, the theoretical predictions for a ther
mally generated plasma of ±m∗ magnetic charges that is dominated by 

GR fluctuations (Fig. 2) are consistent with all of these unusual magnetic 
flux noise phenomena (Figs. 3, 4a). Finally, because the monopole times 
τ(T) are in the millisecond range, magnetic monopole flux noise ampli
fied by the SQUID is actually audible to humans (see Supplementary 
Video 1).

The frequency dependence of SΦ(ω, T) contains additional key 
information. We used our Monte Carlo simulations for Dy2Ti2O7  
to predict the autocorrelation function C t T( , )Bz

 of magneticfield fluc
tuations Bz(t). Figure 4b shows the Monte Carlo predictions for 

/C t T C Tlog[ ( , ) (0, )]B Bz z
  at T = 1.2 K for three distinct theories of mag

netic monopole dynamics. The first model (blue) describes a ±m∗ 
magneticcharge plasma of DSI with Coulomblike interactions and 
Diracstrings8,10 (yellow line in Fig. 1d). The second model (green) is 
the nearestneighbour spin ice model (NNSI), in which Coulomblike 
interactions are suppressed but Diracstring constraints are present. 
The final model (red) is a neutral plasma of ±m∗ magnetic charges 
undergoing Coulomb interactions that is topologically uncon
strained. For comparison our measured autocorrelation function 

/C t T C Tlog[ ( , ) (0, )]B Bz z
  is plotted (black) in Fig. 4b with a bestfit curve  

overlaid. Clearly, the DSI model of equation (1), which includes 
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Fig. 3 | Spectral density of magnetic-flux noise in Dy2Ti2O7. a, Measured 
spectral density of flux noise SΦ(ω, T) from Dy2Ti2O7 samples (for 
example, Fig. 1c) in the range 1.2 K ≤ T ≤ 4 K. The lefthand axis is the 
magneticflux noise spectral density SΦ(ω, T); the righthand axis is an 
estimate of the equivalent magneticfield noise spectral density ωS T( , )Bz

 
averaged over the Dy2Ti2O7 samples (on the basis of the calibration of  
the flux sensitivity of the spectrometer; see Methods section ‘Spin  
noise spectrometer’). The best fits of ωS T( , )Bz

 to the functional form  
τ(T)/{1+[ωτ(T)]b(T)} are shown as solid curves. Overall we find the 
SΦ(ω, T) of Dy2Ti2O7 to be constant for frequencies 1 Hz ≲ f ≲ 2π/τ(T) Hz, 

above which it falls off as ωb. Error bars (shown only for four 
temperatures—1.20 K, 1.40 K, 2.00 K and 4.00 K—for visual clarity) 
represent the standard deviation of each data point, extracted from an 
average of five independent Dy2Ti2O7 flux noise datasets at each 
temperature. b, Normalized flux noise spectral density SΦ(ω, T)/SΦ(0, T), 
revealing the divergence of the time constant τ(T) towards longer times at 
lower temperatures (Extended Data Fig. 5). c, SΦ(0, T) plotted versus τ(T) 
as measured from fitting the data in Fig. 3a. The results demonstrate that 
SΦ(0, T) ∝ τ(Τ) for Dy2Ti2O7 throughout this temperature range, as 
expected for ±m∗ GR magneticflux noise.
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Coulomblike interactions and Diracstring topological constraints, is 
far more consistent with the directly measured correlation function in 
this system. Moreover, the NNSI model is inconsistent with the exper
imental results, as shorttime correlations appear to be completely 
absent. This correlation function phenomenology is virtually 
unchanged, except for values of τ(T), within our temperature range. 
The Monte Carlo predictions of the frequency exponent b from the 
same three models can be determined by fitting each simulated 

ωS T( , )Bz
 to τ(T)/{1+[ωτ(T)]b(T)}. These results for b(T) are shown in 

Fig. 4c, along with the measured b(T), as determined by fitting the same 
function to each measured ωS T( , )Bz

. Here we see that the GR theory 
expressed by equation (4) is well supported by the Monte Carlo simu
lations, which predict SΦ(ω, T) ∝ τ/[1+(ωτ)b], where b = 2 for uncor
related free monopoles and b < 2 for the full DSI Hamiltonian. 
Moreover, comparison between simulated and measured autocorrela
tion functions C t T( , )Bz

  and falloff exponents b for magneticflux noise 
in Dy2Ti2O7 reveals that the DSI model is the most consistent with the 
observed phenomenology. To achieve more precise agreement may 
require fine adjustment of J or D in equation (1)26 or better control over 
finitesize scaling effects19. Overall, however, Fig. 4c implies that the 
powerlaw signatures of strong correlations observed in both 

/C t T C Tlog[ ( , ) (0, )]B Bz z
 and ωS T( , )Bz

 are due to the combined effect 
of the Dirac string connecting each ±m∗ pair (Fig. 1d) and the 
Coulomb interactions between all monopoles.

To recapitulate, theoretical predictions for the magneticflux signa
ture of ±m∗ magnetic charges in spin ice6–8 are studied for the case of 
Dy2Ti2O7. The intense magnetization noise predicted by Monte Carlo 
simulations (Fig. 2) was observed for the first time (Fig. 3a). The fre
quency and temperature dependence of the magneticflux noise spec
trum SΦ(ω, T) predicted for ±m∗ magnetic charges undergoing thermal 
GR (Fig. 2b, c) was confirmed directly and in detail (Fig. 3). The 
expected transition from a plateau of constant magneticflux noise7,8 
(for ωτ(T) ≪ 1) to a powerlaw falloff8 (for ωτ(T) ≫ 1) was observed 
throughout (Fig. 3a). Moreover, falling temperatures cause the low 
frequency flux noise spectral density to increase rapidly as SΦ(0, T) 
∝ τ(T) (Fig. 4a). These characteristics are distinct from the magneti
zation noise spectral density signatures of a ferromagnet20, a classic spin 

glass21 or an Ising paramagnet27, all of which evolve qualitatively dif
ferently with ω and T. On the other hand, within the context of both 
±m∗ GR theory7 and Monte Carlo simulations for DSI8, the observed 
SΦ(ω, T) (Figs. 3, 4) is consistent with other studies that imply that 
Dy2Ti2O7 and Ho2Ti2O7 contain a plasma of emergent magnetic mon
opoles9,10,14,28–33. Additionally, the agreement of the measured magnet
ization noise autocorrelation functions /C t C( ) (0)B Bz z

 with those 
predicted from Monte Carlo simulations of equation (1) (Fig. 4b) 
implies substantial correlations in the motions of ±m∗ magnetic 
charges in Dy2Ti2O7. Overall, we found robust agreement between 
current theories for thermal GR of ±m∗ pairs in a correlated magnetic 
monopole plasma (Fig. 2) and the phenomenology of the magneticflux 
noise spectral density in Dy2Ti2O7 (Figs. 3, 4).
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Fig. 4 | Spectral density of magnetic-flux noise for a correlated 
monopole fluid. a, Measured (black circles) and Monte Carlo predicted 
(blue stars) lowfrequency noise spectral density, SΦ(0, T), of Dy2Ti2O7 as a 
function of temperature. b, Monte Carlo predictions of the autocorrelation 
function /C t Clog[ ( ) (0)]B Bz z

 for field fluctuations Bz(t) at T = 1.2 K, 
obtained using three spin dynamics models for Dy2Ti2O7. The DSI model 
(blue) contains Coulomblike interactions and constraints imposed by 
Dirac strings on the repeated passage of samesign monopoles along the 
same trajectory. The NNSI model has the Coulomb interactions 
suppressed (green). The freemonopole plasma model (red) is based on 
freemonopole GR theory. The measured autocorrelation function 

/C t Clog[ ( ) (0)]B Bz z
 of magneticfield fluctuations Bz(t) of Dy2Ti2O7 is 

plotted as black dots and overlaid with a fitting function (black line). 
Clearly, the autocorrelation function of the DSI model corresponds best to 
the measured C t( )Bz

. We note that the difference between the singleslope 

C t( )Bz
 obtained for the freemonopole plasma7 and the more complex 

shapes predicted by the other models represents microscopically the 
distinction between a simple process involving a single relaxation time 
constant and a more complex one, which potentially involves a range of 
relaxation time constants. Most importantly, the measured C t( )Bz

 shows 
that magnetization dynamics is obviously strongly correlated in time.  
c, Predictions of the exponent b(T) when ωS T( , )Bz

 (as determined from 
the Monte Carlo simulations for the three magneticcharge dynamics 
models) is fitted to the functional form τ ωτ/ +T T( ) {1 [ ( )] }b T( ) . The 
measured b(T), obtained by fitting ωS T( , )Bz

 (as determined from the 
experimental data in Fig. 3a) to the functional form τ ωτ/ +T T( ) {1 [ ( )] }b T( ) ,  
is shown in black. The time constants τ(Τ) of the predicted  ωS T( , )Bz

 and 
the measured SΦ(ω, T) are not free parameters here (Fig. 4a). Error bars 
represent the uncertainty in the analytical fits to the data due to statistical 
fluctuations of SΦ(ω, T).
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MEthodS
Monte Carlo simulations. Monte Carlo simulation procedures. Monte Carlo (MC) 
simulations are used to model the magnetization dynamics of Dy2Ti2O7. In general, 
these simulations are carried out on a sample containing 4 × 4 × 4 unit cells, each 
of which contains 16 Dy3+ ions; we refer to this as the MC sample. Standard MC 
procedures are used34, consisting of 106 cooling steps followed by an interval W 
of 5,000 MC time steps at fixed T, during which the time dependence of the net z 
component of the magnetic moment, μz(t), of the whole MC sample is simulated. 
This procedure is repeated 600 times. Carrying out the MC simulations for 5,000 
sequential time steps ensures the capture of the range of magnetization dynamics 
timescales that is expected in this material at each temperature; these span from 
about 100 μs (for a single MC step) to approximately 1 s (the total time of the 
simulation). The temperature range of the simulations is 1.0–4.0 K. Because this 
is a simulation of bulk magnetization dynamics, periodic boundary conditions 
are used in all directions.

For a given configuration, the z component of the magnetic moment of the 
MC sample, μz, is found by summing the z components of the magnetic moments 
of the 1,024 Dy ions that it contains. The magnitude of the magnetic moment for 
each Dy Ising spin is μ ≈ 10μB. The MC simulated time dependence of this value 
at a given temperature T, μz(t, T), is evaluated sequentially throughout the whole 
time window W. Its autocorrelation function is then

∫τ μ μ τ= +μ

/

− /

C T
W

t T t T t( , ) 1 ( , ) ( , )d (7)
W

W
z z

2

2
z

(in units of μB
2 ). The predicted spectral density of magneticmoment noise in the 

MC sample is then calculated using the Wiener–Khinchin theorem

∫ω τ ωτ τ=μ μ

∞

S T C T( , ) 4 ( , )cos( )d (8)
0

z z

expressed in μ × (MC step)B
2 . We extract the frequency range 10−4 (MC steps)−1 

to 10−1 (MC steps)−1 with a Nyquist frequency of 0.5 (MC steps)−1. Equation (8) 
is then averaged over the 600 independent simulation runs to get better precision 
for ωμS T( , )

z
. Finally, the time axis of the MC simulation is converted from MC 

steps to seconds as described in Methods section ‘Calibration of Monte Carlo time 
step’, so that the angular frequency in equation (8) and the following equations is 
ω = 2π/t rad s−1 and ωμS T( , )

z
 is expressed in μB

2  s.
To convert to the noise spectral density of the z component of the magnetiza

tion in SI units, we use ω ω= /μS T C S T V( , ) ( , )M
2

0
2

z z
 (in A2 m−2 s), where 

V = 6.6 × 10−26 m3 is the volume of the MC sample and μ= . × − −C 9 27 10 A m0
24 2

B
1. 

To estimate the predicted spectral density of the zmagnetization noise expected 
from the experimental Dy2Ti2O7 sample within the range of the SQUID pickup 
coil (Fig. 1c), we approximate that there are n = 2.9 × 1016 ± 20% MC samples in 
the pickup coil volume and divide ωS T( , )Mz

 by n. The predicted spectral density 
of fluctuations of the z component of the magnetic field B (in tesla) within the 
sample is then given by

ω μ ω=S T S T( , ) ( , ) (9)B M0
2

z z

(in T2 s). Figure 2b shows this estimation of ωS T( , )Bz
 from the MC simulation 

of the DSI Hamiltonian (equation (1)) for our specific sample geometry in  
the SNS.
Model Hamiltonians. First, the full DSI Hamiltonian (given in equation (1)) 
is employed. The exchange energy is J ≈ −3.72 K and the dipolar energy is 
D ≈ 1.41 K for Dy2Ti2O7. This DSI model leads to the lowest energy state of Dy 
spins pointing to the centre or out of the tetrahedron on which they are sitting 
along the local <111> axes. This state is known as the 2in/2out state (Fig. 1d). As 
previously discussed, the violation of this rule by a spin flip causes the generation 
of a monopole–antimonopole pair with charge ±m∗ or a doubly charged pair with 
charge ±2m∗ (ref. 14). The energy of two nearestneighbour monopoles is 3.06 K, 
and the energy required to create one monopole is Δ = 4.35 K.

Second, the NNSI Hamiltonian is considered by setting D = 0 in equation (1), 
which suppresses the effects of longrange Coulomb interactions. J is chosen such 
that the system still has a 2in/2out ground state while having the same density 
of excitations as DSI at a given temperature. This system still has monopolelike 
excitations, but the force between the monopoles is greatly reduced. Thus, we 
calculate the noise spectral density of ±m∗ magnetic charge pairs hopping in the 
presence of strongly suppressed Coulomb interactions.

Third, we identify the noise spectrum of ±m∗ magnetic charge pairs hopping 
freely in the absence of Coulomb interactions or topological constraints due to 
Dirac strings in Dy2Ti2O7. The model is described by equation (2), with the m∗ 
charges located on the sites of a diamond lattice.

Statistics of monopole number fluctuations. The master equation for genera
tion g(N, T) and recombination r(N, T) of magnetic monopole pairs7 defines the 
probability P(N, T) of finding N monopole pairs at temperature T in a steadystate 
condition

= + + + − −

− + =

P N T
t

r N T P N T g N T P N T

P N T g N T r N T

d ( , )
d

( 1, ) ( 1, ) ( 1, ) ( 1, )

( , )[ ( , ) ( , )] 0
(10)

Here g(N, T) and r(N, T) are the generation and recombination rates of the mon
opoles, respectively, and one ±m∗ pair per generation or recombination event is 
added or removed, correspondingly. The exact dependence of g and r on N and T 
depends on the microscopic dynamics of the GR processes in the system under 
investigation. We also note that15,16

δ δ= −
−

=

N N r g
N

d( )
dt

d( )
d (11)

N N0

where δN = N − N0. The time constant required for N to approach its equilibrium 
value is defined as

τ
=

−
= −′ ′

T
r g

N
r N T g N T1

( )
d( )

d
( , ) ( , ) (12)

N
0 0

0

Obviously, in equilibrium, g(N0, T) = r(N0, T).
Expanding ln P(N, T) about its maximum value ln P(N0, T) in a quadratic  

fashion15,16 yields
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Thus the expected Gaussian probability distribution of N about its most probable 
value, N0, is

σ
=
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The variance of the monopole number σ = −N N( )0
2

N
2  is then determined from 

equations (13), (15)15,16 as
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For emergent magnetic monopoles in Dy2Ti2O7, the equilibrium generation rate 
at temperature T within our range will be g(N0, T) ∝ exp(−Δ/T) where Δ is the 
thermal energy barrier for thermal spin flips that generate the monopoles. It has 
been established23 from previous experiments that at these higher temperatures 
the time constants are given by τ(T) ≈ exp(Δ/T). This implies that the variance of 
the magnetic monopole number σ Δ Δ≈ / − /T Texp( )exp( )N

2  would be expected 
to be approximately constant in this temperature range.
Spin noise spectrometer. Design. We use a custombuilt 1K cryostat to carry out 
our experiments, with the SQUID, the sampleholder and their superconducting 
shielding mounted below the refrigerator. The SNS setup consists of a cylindrical 
sampleholder with a concentric hole of diameter 1.4 mm and length 5.7 mm, 
which is used to encapsulate the rodshaped samples as shown in Fig. 1c. The 
superconducting pickup coil is wound around the sampleholder and consists of 
6 turns of thin Nb wire with inductance L ≈ 0.25 μH. The input inductance of the 
QD 550 SQUID is reported by the manufacturer (Quantum Design) as 2.0 μH. The 
sampleholder and the SQUID circuitry of the SNS are all contained within a Nb 
tube of aspect ratio R ≈ 4 for flux shielding. No external cables enter this shielded 
region to minimize external noise picked up by our detector. This ensures that the 
flux noise floor of this apparatus sits at the minimum level of Φ < 4μΦ0 Hz−1/2 
quoted by the manufacturer for the entire temperature range of the study, as shown 
in Extended Data Fig. 1.
Operation. A typical operation cycle consists of cooling down to 1.2 K and then 
setting the operating temperature in the range from 1.2 K to above 4 K, with 
temperature stability at each step of 2.5 mK. Once the temperature is stable at a 
desired setpoint, we record the flux noise Φ(t) generated by our sample and then 
evaluate its spectral density using a spectrum analyser. Unprocessed data at each 
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temperature consist of five datasets with a bandwidth of 2.5 kHz, each of which is 
the outcome of averaging 1,000 acquisitions with acquisition time of (resolution 
bandwidth)−1, providing the output as voltage noise spectral density detected at 
the SQUID, SV(ω, T).
Calibration. The transfer function C between the pickup coil and the SQUID is 
calibrated by driving a small known flux Φtest(Φ0) via a drive coil (inserted into 
the pickup coil) through the pickup coil and recording the corresponding SQUID 
output voltage VS. In this case (Extended Data Fig. 1)

Φ Φ
=

.
C V

0 684
1
( )

(17)S

test 0

We find that C = 0.015. The spectral density of the magneticflux noise within 
the sample is obtained as

ω
ω

=ΦS T S T
C

( , ) ( , ) (18)V
2

To relate SΦ(ω, T) to the magneticfield noise spectral density generated within  
our sample, ωS T( , )Bz

, we consider the crosssectional area of the sample 
σ = 1.4 × 10−6 ± 17%, yielding

ω
ω
σ

= ΦS T S T( , ) ( , ) (19)B 2z

in units of T2 s.
Flux noise signal strength. A comparison between a typical magneticflux noise 
spectral density distribution from a sample and the noise spectral density from 
an empty pickup coil is shown in Extended Data Fig. 2 for a bandwidth of 1 Hz 
to 2.5 kHz. The plateau of the flux noise spectral density from Dy2Ti2O7 is higher 
than the noise floor level by a factor of 1.5 × 106. Mechanical noise peaks in the 
empty coil flux signal and the Dy2Ti2O7 flux signal have been deleted manually. 
We note that the plateau for the flux noise spectral density signal of monopoles 
from Dy2Ti2O7 goes down to at least 1 Hz.
Sample geometry effects. Shape effects could occur in such spin noise measure
ments. This is because even though we measure a cuboidal sample with a coil 
around its middle, the spins at the ends of the sample still contribute partially. Our 
experiments measure flux through the pickup coil due to dipole fields generated 
by the spins in the sample, and the noise comes mainly from spin flips (that is, 
magnetic monopole hops). The detectable flux caused by a single spin in the sample 
depends on the location and direction of that spin. Some spins are ‘invisible’ (for 
example, spins pointing to a direction in the x–y plane) and some have a greater 
effect, for example, spins near the plane of the coil that are pointing along z. If there 
is a fluctuation of the magnetic moment of the whole sample that results in a net 
moment, it will produce a net demagnetization field experienced by all of the spins 
(potentially affecting their dynamics) that is shapedependent.
Data analysis. Fitting. The flux noise spectral density floor measured for an empty 
pickup coil in the SNS (that is, the background noise ΦS bcg) is fitted to a smooth 
polynomial function ΦS f . Because the noise floor does not vary with temperature, 
the same function ΦS f  is then subtracted from the measured Dy2Ti2O7 noise, 

ωΦS T( , )DTO  for all temperatures, to obtain the reported noise spectral density 
SΦ(ω, T) dataset shown in Fig. 3.

These postprocessed data are then fitted with the empirical equation (6) using 
the leastsquares method for a bandwidth of 16 Hz–2.5 kHz for all temperatures. 
Although the plateau in the flux noise spectral density SΦ(ω, T) goes down to at 
least 1 Hz for all temperatures, to optimize the data acquisition times to about 1 h 
per temperature, for all spectra shown in Fig. 3 the lower limit for the bandwidth 
of the data used in regression analysis is set at 16 Hz. The time constant, τ(T), the 
powerlaw exponent for the frequency, b(T), and SΦ(0, T) are free parameters in the 
fitting procedure, and fits for all temperatures are of high quality, with R2 > 0.99. 
The residuals of these fits are shown in Extended Data Fig. 3. We established that 
the flux noise spectral density from Dy2Ti2O7 is consistent for different single 
crystals of the material, as shown in Extended Data Fig. 4.
Comparison of time constants. It has been established empirically that the suscep
tibilityderived time constants τM(T) representing the magnetization dynamics 
of Dy2Ti2O7 diverge with decreasing T22–24 and are probably heterogeneous25,35. 

This type of a.c. susceptibility measurement has been made for Dy2Ti2O7 in differ
ent sample shapes ranging from polycrystalline samples24 to toroidal single crys
tals25,35. Yaraskavitch et al. established that the time constants τM(T) measured 
from SQUIDbased susceptibility measurements of rodshaped samples were in 
good qualitative agreement with τM(T) values reported in both Snyder et al.22 and 
Matsuhira et al.23 Eyvazov et al.35 verified quantitative agreement between τM(T) 
from a.c. susceptibility measurements and τM(T) from Yaraskavitch et al.24.

In Extended Data Fig. 5, we show the GR time constants τ(T) obtained from our 
flux noise experiments. These clearly follow a quantitatively equivalent trajectory 
to the a.c. susceptibility τM(T) of refs 25,35 and thus correspond well with the τM(T) 
values derived from numerous susceptibility studies of this material22–25. However, 
the correspondence between τM(T) and τ(T) reported in this work remains to be 
understood within a quantitative microscopic theory.

Additionally, evidence for a heterogeneous distribution of microscopic spin 
relaxation rates contributing to τM(T) has been adduced from the stretched 
exponential form of the time dependence of magnetization25,35 in Dy2Ti2O7. 
Considering the related a.c. susceptibility studies22–25,35 and the similarity between 
τM(T) and τ(T), we estimate that any effects of such heterogeneity on the flux 
noise spectrum SΦ(ω, T) would first become visible at temperatures below T = 1 K. 
Therefore, they are unlikely to have been detected in these first SNS studies.
Variance in magnetic-flux noise. We note that the measured variance of the signal 
Φ(t), σΦ

2, is approximately constant as a function of temperature, as shown in 
Extended Data Fig. 6. This variance is determined at each temperature by integrat
ing the measured flux noise spectrum over the frequency.

∫σ ω ω= Φ

∞

Φ S ( )d (20)
0

2

The result in Extended Data Fig. 6 may appear surprising because one would 
generally expect that the fluctuations would be rapidly suppressed with falling 
temperatures. However, although the number of magnetic monopoles in Dy2Ti2O7 
is believed to decrease rapidly (exponentially in the simplest theory) with falling 
temperature, the integrated magneticflux noise power in the temperature range 
of our studies remains approximately constant. As explained in Methods section 
‘Statistics of monopole number fluctuations’, this phenomenology is empirically 
consistent with the measured τ(T). However, it will require further theoretical and 
experimental studies to determine and understand its evolution towards lower 
temperatures.
Calibration of Monte Carlo time step. Inter-calibration of timescales. To obtain a 
correspondence between MC time step and actual time, we assume that the MC 
temperature is equal to the measured temperature of the experiment in the range 
1.2 K–3 K. We then compare the GR time constants obtained from fitting S(ω, T) 
to τ(T)/{1+[ωτ(T)]b} for: (a) the MC DSI model simulations in Fig. 2b to yield 
τMC DSIM(T) and (b) the experimental data in in Fig. 3a to yield τexperiment(T). The 
temperature T is used as the implicit variable. The slope of a linear fit of τMC DSIM(T) 
versus τexperiment(T) yields the correspondence between MC step and actual time. 
The result yields that in these simulations 1 MC step = 83 ± 11 μs, which is then 
used throughout our study. The possibility of nonlinearity in the correspondence 
of our MC step to seconds, as reported in other MC simulations36, will require 
future studies on how scaling the periodic boundary conditions and MC sample 
volumes affects the linear correspondence that is typically used in similar exper
iment–MC comparisons10.

Data availability
The data that support the findings of this study are available from the correspond
ing author upon reasonable request.
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Extended Data Fig. 1 | Sensitivity calibration of magnetic-flux noise 
spectrometer. Here we show the linear relationship between a flux applied 
to the pickup coil via a drive coil (Φapplied) and flux output by the SQUID 

(Φmeasured). The slope gives the transfer function between the pickup coil 
and the SQUID.
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Extended Data Fig. 2 | Comparison of Dy2Ti2O7 magnetic-flux noise 
with background noise. Typical spectrum of magneticflux noise spectral 
density from a Dy2Ti2O7 sample (at 1.22 K) compared with that of an 
empty pickup coil corresponding to ~16.8 × 10−12Φ0

2 Hz−1. The black 

data points have been shifted vertically for clarity. Error bars represent the 
standard deviation of each data point, extracted from an average of five 
independent Dy2Ti2O7 flux noise datasets.
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Extended Data Fig. 3 | Quality of fits to measured flux noise spectral density. Residuals (SΦ(ω, T) – Sfit(ω, T)) for fits of the measured flux noise 
spectral density (Fig. 3) with equation (5) are shown for four temperatures.
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Extended Data Fig. 4 | Comparison of magnetic-flux noise from 
different Dy2Ti2O7 samples. Plot of magneticflux noise SΦ(ω, T) from 
two different rodshaped Dy2Ti2O7 samples. We observe that the SΦ(ω, T) 
distributions are very similar and therefore this experiment is qualitatively 

repeatable for single crystals of Dy2Ti2O7. The differences in magnitude 
and time constant are due to the geometrical differences between the two 
samples.
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Extended Data Fig. 5 | Magnetization relaxation time constants  
from flux noise spectra. Time constant obtained from fits to the  
measured SΦ(ω, T) data shown in Fig. 3. The time constant τ(T) 
derived from the flux noise behaves in a superArrhenius fashion, 

τ(T) = τ0exp[DT0/(T – T0)], consistent with previous measurements of a.c. 
susceptibility time constants τM(T) (ref. 35), which also exhibited super
Arrhenius behaviour with τ0 ≈ 1.4 × 10−4 s, D ≈ 14, T0 ≈ 0.26 K.
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Extended Data Fig. 6 | Variance of Dy2Ti2O7 magnetic-flux noise versus temperature. Measured variance of flux σΦ
2, showing that it is approximately 

constant as a function of temperature in the range displayed.
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