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Multiband charge density wave exposed in a
transition metal dichalcogenide
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In the presence of multiple bands, well-known electronic instabilities may acquire new
complexity. While multiband superconductivity is the subject of extensive studies, the pos-
sibility of multiband charge density waves (CDWSs) has been largely ignored so far. Here,
combining energy dependent scanning tunnelling microscopy (STM) topography with a
simple model of the charge modulations and a self-consistent calculation of the CDW gap,
we find evidence for a multiband CDW in 2H-NbSe,. This CDW not only involves the opening
of a gap on the inner band around the K-point, but also on the outer band. This leads to
spatially out-of-phase charge modulations from electrons on these two bands, which we
detect through a characteristic energy dependence of the CDW contrast in STM images.
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mposing a new periodicity on a crystal leads to the reorgani-

zation of the electronic bands of the parent compound through

their back-folding on the new Brillouin zone. New periodicities
may be engineered in designer materials, for instance in artificial
heterostructures with Moiré minigaps, or emerge due to a struc-
tural or electronic phase transition. The charge density wave state
is an electronic order where the charge density develops a spatial
modulation concomitantly to a periodic distortion of the atomic
lattice and the opening of a gap in the quasi-particle spectrum. By
reducing the electronic band energy, this gap compensates for the
elastic and Coulomb energy costs associated with the formation of
the CDW. It also lowers the degeneracy of the electronic states at
the crossings of the folded bands. These are the points in the band
structure of the parent compound that are connected by the
wavevector of the new periodicity. Although a gap should open at
all the crossings of the folded bands, previous studies only focused
on the primary CDW gap around the Fermi-level, which leads to
the highest energy gain of the reconstructed system. The existence
of secondary gaps and associated charge modulations (CMs)
remains largely unexplored.

In many cases, only a tiny fraction of the electrons are involved
in the CDW formation. Therefore, the CDW gap manifests only as
a slight reduction of the density of states (DOS)—which can depend
on momentum—rather than a full depletion of the DOS. This
makes it challenging to measure the CDW gap using spectroscopic
probes such as angle-resolved photoemission spectroscopy (ARPES)
and scanning tunnelling spectroscopy. This is particularly true for
2H-NbSe, !> (hereinafter simply NbSe,). However, the effect of the
redistributed electrons can be readily detected in topographic STM
images, even for minute changes brought upon by the opening of
the CDW gap as demonstrated in the following.

NbSe;, is an iconic material of correlated electron physics. It hosts
a nearly commensurate charge density wave below Tcpy =33.5K
and a superconducting (SC) order below Tsc = 7.2 K-10, NbSe, is a
layered material with a three-fold symmetric crystal structure
around the direction perpendicular to the layers (Fig. 1a). Each unit
cell is composed of two slabs of Se-Nb-Se trilayers, where the Se
lattices are 60° rotated, while the Nb atoms are aligned on top of
each other in a trigonal prismatic coordination with the Se atoms.

The Fermi surface (FS) of NbSe, is mainly determined by the
bonding and antibonding combinations of the Nb-4d orbitals!' 112
leading to double-walled barrel-shaped pockets around the K and T
points of the hexagonal Brillouin-zone231314 (Fig, 1b). The charge-
ordered state consists of three CDWs, which form along the three
equivalent M directions with wavevectors (1 — 8)% [TM|, where
§~0.02 and depends on temperature!?. In real space, this yields a

Fig. 1 Crystal structure and Fermi surface of NbSe,. a The three-fold
symmetric crystal structure from top and side views33. b The Fermi surface
has been calculated using a two-band tight-binding fit to ARPES data3. Inner
pockets (red) around I" and K derive from one band, while the outer pockets
(blue) derive from the second band; a small pancake-shaped pocket around
T originating mainly from Se orbitals has been omitted.

locally commensurate 3agx 34, superstructure delimited by
discommensurations!>16, where aj is the atomic periodicity.

The 3agx 3a, reconstruction is readily accessible to topo-
graphic STM imaging. Its bias-dependent contrast has been the
focus of previous studies, with particular emphasis on the con-
trast inversion expected in a classic Peierls scenario between
images acquired above and below the CDW gap!7-18, and on the
role of defects in stabilizing the CDW?. Sacks et al.!8 calculate the
bias dependence of the CDW phase in a perturbative approach,
considering a single band normal state description of NbSe,. They
find that the phase-shift of the CDW component of the local DOS
can be very different from the 180° expected in a one-dimensional
(1D) case (Supplementary Note VII) when changing the imaging
bias across the Fermi level (Eg). However, their model does not
reproduce the full bias dependence of the CDW amplitude and
phase that we find.

Results and discussion

Bias dependent STM topography, CDW phase and amplitude.
In Fig. 2a—c, we present a selection from numerous topographic
STM images of the same region on a cleaved NbSe, surface at
different sample biases (V) between —0.5V and 0.5V. They
show a triangular atomic lattice with a superimposed 3a, x 34,
CDW modulation (see also Supplementary Fig. la), consistent
with previous STM studies of unstrained bulk NbSe,*>»16:17:19-22,
A defect-free region with a well resolved CDW outlined in red is
magnified in Fig. 2d, f, h for each V}. In order to identify the
origin of the bias dependence of the topographic contrast in these
images, we separate the atomic lattice and CDW contributions
using Fourier filtering (Supplementary Note I). This analysis
shows that the bias-dependent STM contrast is due to the
changing CDW signal (Fig. 2e, g, i) since the corresponding
atomic lattice contrast remains unchanged (see Supplementary
Fig. 1).

The observed CDW pattern can be modelled as the sum of
three plane waves as described in ref 1°. While each plane wave
has its own phase @;(r), which depends on a selected reference
point, the dephasing parameter O(r) = @,(r) + @,(r) +
@3(r) mod 360° is uniquely defined for each particular CDW
pattern, independent of any reference point. ®(r) represents the
internal CDW structure, quantifying the local relative position of
the wavefronts of the three CDWs. In Fig. 2j-1, we show ©(r)
corresponding to the STM images in Fig. 2a—c, respectively. They
were obtained by fitting the CDW contrast following the method
described in ref. 1°.

Each bias voltage is characterized by a dominant dephasing
parameter (Fig. 2j-1), except in the vicinity of defects discussed
later. This visual assessment is confirmed by the peaked
histograms of @(r) (Supplementary Fig. 2). Fitting a Gaussian
to these histograms allows to extract a well-defined dephasing
parameter ®y(V}) for each imaging bias (Supplementary Fig. 3).
For a quantitative analysis of the bias dependence of ®,, we note
that a given local CDW structure is represented by any arbitrary
combination of ¢;(r) summing up to the same dephasing
parameter, in particular the one where all three phases are equal.
Moreover, the threefold symmetry of the system implies there is
no privileged plane wave among the three used to describe the
CDW. These observations allow us to map the problem to a one-
dimensional (1D) description with an apparent CDW phase
9o(V) = ©o(V,)/3 (Supplementary Note III), and model ¢o(V},)
to understand the bias dependent CDW pattern.

Plotting ¢o(V},) in Fig. 3a reveals a striking non-monotonic bias
dependence, with an inflexion point around —0.15V and a
minimum slightly above the Fermi-level (Er=0V). This
dependence is robust as long as ¢o(V}) is extracted from
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Fig. 2 Bias-dependent STM imaging of NbSe, at 1.2 K. Constant current topography showing the atomic lattice and CDW at aV, =50 mV, b V,, = — 50 mV
and ¢V, = — 150 mV (Solely for visualization, the STM image in ¢ has been corrected for diagonal running sharp lines (with wavelength much longer than those of
the CDW) which arose due to a tiny horizontal tilt of the sample leading to a least significant bit issue in the digital-analogue conversion of the piezo voltage.) with
;=100 pA. d, f and h are magnified images of the areas marked by the red squares in a, b and ¢, respectively. The overall imaging contrast is very different in these
cases, although the atomic lattice appears identical in all images (Supplementary Fig. 1). e, g and i shows the magnified image of the large Fourier-filtered image of
the CDWs at the same location as shown in d, f and h, respectively. It demonstrates that the variation of contrast observed in d, f and h is stemming from a

variation in the appearance of the CDW at different biases. These appearances can be quantified by a single parameter: the dephasing parameter which describes
the relative position of the three CDWs. j-I show the spatial variation of the dephasing parameter determined by fitting the CDW modulations of the STM images
shown in a-c, respectively. The red squares correspond to the same area that is highlighted in a-c¢ and magnified in d-i. Scalebars: 10 nm in a-c and j-I; 1 nm in d-i.

topographic STM images away from defects (Supplementary
Fig. 4). Close to defects, the dephasing parameter ®y(V}) is
different and tends to depend much less on imaging bias
(Supplementary Fig. 5). This is consistent with earlier findings
that defects (and impurities) can act as strong pinning centres?>24
locking the local phase of the CDW or driving the formation of
CDW domains?>2%.

The CDW amplitude can be extracted in a similar way to the
phase, by fitting the histogram of the local amplitudes a,(r) of
each plane wave measured over the entire field of view with a
Gaussian, and extracting the peak value a,Vy). The bias
dependence and magnitude of a;(V}) is nearly the same for all
three CDWs (Supplementary Fig. 6b). For the analysis, we
consider the average of these three amplitudes at each bias
Ag(Vy) = (a1(Vp) + a2( V) + a5(V},))/3 plotted in Fig. 3b.

Modelling and calculations. To understand the bias dependence
of the CDW amplitude and phase in Fig. 3, we simulate

topographic STM traces using a 1D model system (Supplemen-
tary Note VIII). In the simplest configuration corresponding to
the Peierls reconstruction, we consider the contribution to the
tunneling current of a single CM and its associated gap centred
on Ep (Fig. 4a—c). In this case, traces at the same polarity are
always in phase, whereas traces at opposite polarities always show
contrast inversion (or a 180° phase shift in the present harmonic
model). The latter, often considered as an identifying hallmark of
the CDW state??, clearly does not reproduce the data in Fig. 3a.

A single CM can only produce two sets of STM traces differing
by contrast inversion in the vicinity of the gap. To generate a
more complex bias dependence of the phase, we consider the
possibility of a second CM whose associated gap opens in another
band and away from Ey (Fig. 4d—f). If these two harmonic CMs
are in phase (Fig. 4d), the resulting STM traces are either in-phase
or 180° out of phase (Fig. 4e), unable to reproduce the data in
Fig. 3a. To generate more structures in the bias dependence of the
phase, we need to introduce a phase shift between the two CMs
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Fig. 3 Bias dependence of the phase and amplitude in experiments and in
modelling. a and b show the bias dependence of the phase and amplitude
of one of the unidirectional CDW extracted from the dephasing parameter
and amplitude maps. ¢ and d The phase and amplitude of the best matching
simulations in the two-gap model. The data in b and d are normalized to
their V, = 0.5V value.

(Figs. 4g-i). This leads to a phase that is no longer bi-modal,
limited to two values differing by 180° as in Fig. 4c, f. It takes
many different values (Fig. 4i), where the precise bias dependence
is defined by the magnitude of the two gaps, their position relative
to Er and by the relative phase shift between the two CMs. The
simulated STM topographic traces in Figs. 4b, e and h also reveal
a pronounced bias-dependent imaging amplitude with distinct
line-shapes in the three model cases discussed above (Supple-
mentary Fig. 7).

The broad parameter space of our 1D model makes it
challenging to run a self-converging fit to the data. Visually
optimizing the size and position of the two gaps in Fig. 4i, we find
a range of parameters (Supplementary Note X) simultaneously
reproducing the experimental bias dependent CDW phase and
amplitude data remarkably well (Fig. 3). As for the relative phase
between the two CMs, it is chosen to minimize the Coulomb
interaction of the CMs and to conform with the strong
commensuration energy that locally locks them to the lattice.
Reducing the Coulomb energy is obtained by introducing a phase
shift between the two CMs, which can only be +120° (Fig. 4g) to
satisfy the lock-in criterion with the lattice given the 3a,
periodicity of the CDW.

In the following, we turn to theoretically modelling multiple
CDW gaps on different bands in NbSe,. We deploy self-

a Cc
180
=< ~
S >
o) &
e 90 2 g
3 1 r O
L 1 0
=) Imaging bias (V)
—0.10 | —-0.10 | -++++-0.27 | = =-0.40
0 0
-0.5 -0.25 0 0.25 0.5 0 1 2 3 -05 -025 O 025 0.5
Energy (eV) Distance (x/\) Imaging bias (V)
d f
180 —_— —
=< ~
2 Z >
o) ® &
2 2 90 2 q
© £ @]
@ o 10
=) Imaging bias (V)
—0.10 | —-0.10 | -++++-0.27 | = =-0.40
0l —= 0
-0.5 -0.25 0 0.25 0.5 0 1 2 3 -05 -025 O 025 0.5
Energy (eV) Distance (x/\) . Imaging bias (V)
g h i
3 4
—~ [ 360
~ S %
fa S35 - _
X2 - o g
] < [0} -
£ 82 2 180 2 @
<
}z 1 8’ o 1 [m]
e 8—1 Imaging bias (V)
L —0.10 | —0.02 | +++=-0.10 | = =-0.27
0 . 0 0 0
-0.5 -0.25 0 0.25 0.5 0 1 2 3 -05 -025 O 0.25 0.5

Energy (eV)

Distance (x/))

Imaging bias (V)
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three cases, the first column shows the spatial and energy-dependent CDW local DOS maps. Second column: corresponding simulated topographic traces
at selected biases (the actual bias value is shown in the legend). The red and blue topographic traces correspond to positive and negative sample biases,
respectively. To clearly see the evolution of the phase and the amplitude the curves are offset vertically in b, e and h such that they all oscillate around the
same value. Third column: bias dependence of the phase (left red axis) and DOS (spatially integrated local DOS from the first column, right blue axis).
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Fig. 5 Density of state of the two bands in the self-consistent
calculations. a The red (blue) indicates the band making up the inner
(outer) pockets; solid/dashed indicates the ungapped/gapped band
structure, where gaps are included self-consistently at the mean-field level.
b Difference between the gapped and ungapped cases in a, showing small
DOS suppressions at energies away from Eg on both bands in addition to
the gap at Er on the inner band.

consistent calculations to include the CDW gap within the
random phase approximation on the two-dimensional two-band
tight-binding fit to the NbSe, band structure constrained by
ARPES3. The corresponding FS shown in Fig. 1b consists of inner
(red) and outer (blue) bands originating from symmetric and
antisymmetric combinations of the Nb d,._, orbitals. The
model (see “Methods”) was previously shown to accurately
reproduce the full range of experimental measurements on the
charge-ordered state!>28. The resulting DOS for the gapped and
ungapped cases in each band are shown in Fig. 5a. To emphasize
the DOS reduction accompanying the CDW phase transition, we
plot the difference between the gapped and ungapped DOS for
each band in Fig. 5b.

Our theoretical modelling shows a clear gap on the inner band at
Eg, consistent with the gap measured by ARPES around the K-point>.
Interestingly, Fig. 5b reveals further DOS reductions, for example
near 100 meV on the inner band and —50 meV on the outer band.
These features are indicative of CDW gaps opening away from Eg in
addition to the (primary) gap at Ej, supporting the simple model we
propose to understand the bias dependence of the CDW appearance
in STM images of NbSe,. According to Fig. 5b, there could even be
more than two gaps. Consequently, we have included up to n=28
gaps to our 1D model. However, the agreement with the data is
similar for n =2 and n = 3 (Supplementary Note XI), and we see no
improvements adding more gaps.

In summary, the remarkable match between the bias dependence
of the CDW contrast in STM topography and the simple 1D model
proposed here provides compelling evidence that the CDW in NbSe,
is composed of at least two out-of-phase CMs on the inner and outer
bands. While a 180° phase shift between these two CMs would
minimize the Coulomb energy, the complex bias dependence of the
CDW amplitude and phase observed by STM can only be

reproduced when considering also the commensuration energy. This
highlights the importance of the coupling of charge order to the
lattice, which manifests in the formation of discommensurations!>1©
and ultimately enables the observation of the multiband CMs
uncovered here. The present study further highlights the power of
topographic imaging to gain unique insight into detailed features of
the CDW too faint to be detected accurately by tunneling
spectroscopy. The formation of multiple modulations in response
to new periodicities of a primary transition directly observed here, is
extremely general and should in principle be present in all charge
(and spin) density wave materials, and suggests new directions to
explore in the physics of spatially modulated electronic orders.

Methods

Crystal growth and STM measurements. Single crystals of NbSe, were grown via
iodine-assisted chemical vapour transport and cleaved in-situ at room temperature.
STM experiments were done in UHV (base pressure below 2 - 10~10 mbar) using
tips mechanically cut from a Ptlr wire and conditioned in-situ on a clean Ag(111)
single crystal. The bias voltage was applied to the sample. STM images were
recorded in constant current mode with at least 64 pixel/nm resolution. Details of
the CDW amplitude and phase fitting procedure can be found in ref 1°.

Self-consistent calculations. We carried out a 22-orbital Slater-Koster tight-
binding fit* to the NbSe, band structure, constrained by ARPES measurements>
and local density approximation numerical calculations!!. This provided not only
the band structure, but the orbital composition of the bands. We found that the two
bands crossing the Fermi level are predominantly composed of the niobium d; . _,.
orbitals (>60% across the Brillouin zone). A third, small, pancake-shaped pocket
centred on I' derives primarily from the selenium p-orbitals and is therefore not
expected to mix significantly with the other bands, in-keeping with experimental
observations that it plays no role in the charge ordering. We then re-fit the two
bands of interest using only the two relevant orbitals; the fit was indistinguishable
from the phenomenological fit to ARPES data provided in ref. 3.

The Coulomb interaction can be neglected in NbSe,, as the large DOSs at the
Fermi level leads to strong screening. This remains true down to the lowest
temperatures (above the SC transition at 7.2 K) since the CDW gap only opens on
small regions of the FS. The relevant interaction is the electron-phonon coupling,
for which we constructed an analytic expression following Ref. 3. It has long been
suggested that the CDW in NbSe, originates not from FS nesting, but from the
dependence of the electron-phonon coupling on the momentum transfer in the
phonon-mediated electron—electron scattering!!. Our calculation includes the
dependence of the coupling on the ingoing and outgoing electron momenta, as well
as the orbital composition of the electronic bands scattered between. Only by
taking all of these factors into account were we able to find a consistent explanation
of the full range of experimental observations, including ARPES?3, scanning
tunneling spectroscopy/microscopy?, and inelastic X-ray scattering3!. Our model
has only one free parameter, the overall magnitude of the electron-phonon
coupling, which we fixed using Tcpw = 33.5K.

We modelled the effect of the CDW on the electronic band structure using the
random phase approximation. We employed the Nambu-Gor’kov method to work
within the gapped phase; this method consists of promoting the electronic Green’s
function to a 9 x 9 matrix, representing the tripling of the real-space unit cell in
both lattice directions induced by the CDW formation. The CDW gap appears in
off-diagonal elements, and diagonalisation then results in a gapped electronic band
structure. We solved for the CDW gap self-consistently at high-symmetry points in
the Brillouin zone, and used the results to constrain a tight-binding fit for the gap
structure. We assumed the gap to be independent of energy. The CDW gap serves
as an order parameter, and so our model naturally accounts for long-range CDW
correlations. Further details of the method are given in refs. 1228,

We found that a CDW gap opens at the Fermi level on the outer pocket centred
on the K-point, along the MK line, in agreement with ARPES23. However, since
the order parameter is non-zero at all points in the Brillouin zone, and at all
energies, gaps also open wherever band crossings are introduced. This is the origin
of the multiband CDW, evidenced by the suppression of DOS at energies below Ep
seen in Fig. 5. We calculated the DOS at different energies, with and without the
CDW gap, by summing over the Brillouin zone the spectral function found from
the electronic Green’s function.

Data availability
The data that support the findings of this study has been deposited in the Yareta
repository (https://doi.org/10.26037/yareta:en553fvpkrdorgqtssxegldtyi)32.

Code availability
Computer codes are available upon reasonable request and preferably within a
collaboration.
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I. FOURIER-FILTERING TO SEPARATE THE ATOMIC LATTICE AND CDW
CONTRIBUTIONS TO THE STM TOPOGRAPHY.

We use Fourier filtering to separate the atomic lattice and CDW signals in topographic
STM images. We start with the Fourier transform (FT) of the STM image, e.g. Fig. 2a of
the main text. This yields a sharp and intense peak structure at the first order Bragg-peaks
of the CDW and atomic modulations outlined in Suppl. Fig. 1a with red and blue circles,
respectively. To obtain the image corresponding to the atomic (CDW) lattice, we mask the
atomic (CDW) component by suppressing the values outside the blue (red) circles in the
FT and we take the inverse transform of this modified map. These operation are always
performed on the large scale STM images (Figs. 2a, b and c).

Suppl. Figs. 1b-d show magnified regions of the Fourier filtered STM images in Figs. 2a-
c. They reveal the atomic lattice at the exact same locations as the CDW contributions
shown in Figs. 2e, g and i, respectively. The atomic lattice contribution is the same in all
three images, supporting the conclusion that the contrast changes in Figs. 2d, f and h are

primarily due to changes in the CDW contrast with bias.
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Suppl. Fig. 1. Atomic lattice contribution to the STM topography. a Fourier-transform
of the STM image shown in Fig. 2a of the main text. The blue and red circles mark the peaks
corresponding to the atomic and CDW components, respectively. Magnified Fourier filtered images
of the atomic lattice at b 1, =50 mV, ¢ V, = =50 mV and d V;, = —150 mV corresponding to the

exact same region as shown in Figs. 2d-i of the main text. Scalebar: 1 nm.

II. HISTOGRAMS OF THE DEPHASING PARAMETER

Suppl. Figs. 2a, b, and ¢ show the histograms of the dephasing parameter maps ©(r)
shown in Figs. 2j, k, and | in the main text, respectively. They all exhibit a well defined

peak, which we fit with a Gaussian to determine the most frequent dephasing parameter



©o(V3) for each imaging bias.
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Suppl. Fig. 2. Histograms of the dephasing parameter maps. a, b, and c corresponds to the
O(r) maps shown in Figs. 2j, k, and 1 in the main text, respectively. The solid red lines show the
Gaussian fit of the dominant peak in each histogram. The peak position defines the representative

dephasing parameter Oy (V}) for each imaging bias V},.

III. MAPPING THE DEPHASING PARAMETER TO THE PHASE OF A UNI-
DIRECTIONAL CDW

The appearance of the CDW pattern observed by STM can be reproduced by the sum
of three plane waves [1]. The dephasing parameter O(r) = ¢1(r) + p2(r) + p3(r) mod 360°,
where ;(r) is the phase of each plane wave, is a unique representation of a given CDW
pattern. Any arbitrary combination of ¢;(r), i = (1,2, 3), summing up to the same dephasing
parameter, will describe this CDW pattern. In particular the combination where all three
phases are equal. Based on the threefold symmetry of the system, there is no preferred
direction and one may further assume that all three follow the same bias dependence.

These observations allow us to map ©(r) to a one-dimensional problem we can more easily
model. We start from 0y(V},) (Suppl. Fig. 3a) obtained for each bias as shown in Suppl.
Fig. 2. Next, we remove any phase jumps due to the 360° periodicity of ©¢(V;) (Suppl.
Fig. 3b). Finally, we divide the resulting phase by three to obtain a representative one-
dimensional (1D) phase ¢o(V;) = O0(V,)/3 (Suppl. Fig. 3c). Note that since the dephasing
parameter O¢(V}) is 360° periodic, we can freely add an integer times 120° to ¢o(V3) and

still get the same dephasing parameter.



360 b 600 c 200
o, e
[ ]
270 450 150t
Tiot ., 13 H
@ . @ 300 ® 100 |
< ° °® < <
o \ R o o
90 S Y K 150 \ oo 50 \ oo
(] [ [ ]
0 hd 0 | e 0 . L 2 .
0.5 0.25 0 0.25 0.5 0.5 0.25 0 0.25 0.5 0.5 0.25 0 0.25 0.5
Bias (V) Bias (V) Bias (V)

Suppl. Fig. 3. Mapping the dephasing parameter to the phase of a unidirectional CDW.
a Dephasing parameter ©¢(V;) mod 360° as obtained from the local fitting of the real space charge
modulation. The jump at -0.2 V is due to the 360° periodicity. b To remove the jump at -0.2 V,
we add 360° to Og(V}) for V;, <-0.2 V (extended zone scheme). ¢ ¢o(V;) = O0(V})/3 mapping the

extended zone dephasing parameter to the phase of a unidirectional CDW.

IV. BIAS DEPENDENCE OF THE PHASE AWAY FROM DEFECTS

Here we demonstrate that the scheme to extract the bias dependent phase from topo-
graphic STM images is robust. The analysis in the main text is based on the phase extracted
from the entire field of view (FOV) of Figs. 2a, b and ¢. This FOV combines regions away
from defects with different topographic patterns. Here we demonstrate that although each
region may correspond to a slightly different phase value, the bias dependence of the phase

remains the same.

In Suppl. Fig. 4a, we highlight eight regions from which we extract the CDW phase as a
function of bias plotted in Suppl. Fig. 4b. The inset of panel b shows the same data offset for
clarity. For the small regions (1-4), there are not enough points for a reasonable histogram.
Therefore, we use a spatial average for the dephasing parameter in these regions. In the
large regions, we extract the phase as described in the main text: we fit a Gaussian to the
histogram of the dephasing parameter O(r) to determine the most frequent one Oy(V}). We
are aware that in general the most frequent value and the average may not coincide, but

this was not a problem for the areas with homogeneous O(r) selected here.

Independently of the size or the precise location of the defect-free area from which we
extract the phase, we always find the same bias dependence within a small spread. This

is most remarkable when comparing regions that appear differently in the STM image,
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Suppl. Fig. 4. Phase extracted away from defects. a The same STM image as in Fig. 2a with
numbered red squares marking the different areas where we extract the phase. Scalebar: 10 nm.
b STM imaging bias dependence of the phase extracted at the marked regions. Inset: the same

curves with a vertical offsets for clarity.

e.g regions 1 and 4 or regions 6 and 7. As the dephasing parameter only accounts for the
appearance of the CDW pattern alone and not for its registry to the atomic lattice, the above
observations imply that the CDW is composed of areas (connected by discommensuration
with rapidly varying phase [1, 2]) where the CDW pattern is laterally shifted with respect
to the atomic lattice. This is consistent with recent studies finding CDW domains with

identical internal structures but with a distinct registry to the atomic lattice [3, 4].

V. BIAS DEPENDENCE OF THE CDW PHASE IN THE VICINITY OF DE-
FECTS

The impact of defects and impurities on the CDW is the focus of numerous studies, and
is beyond the scope of the present investigation. Defects can act as strong pinning centers
[5, 6], locking the local CDW to a particular phase or breaking it up into phase domains
[7, 8]. In line with these studies, our analysis shows a very different behaviour of the CDW
phase in the vicinity of defects, with a different and often weaker dependence on the imaging

bias. This is illustrated in Suppl. Fig. 5 for a selection of defects. Similar looking defects in



the topography (Suppl. Fig. 5a) can drive a similar bias dependence of the CDW phase in
their vicinity (defects 2 and 4), but also very different ones (e.g. defects 1 and 3, or 6 and
7). The latter may reflect de-pinning and re-pinning of the CDW at a given defect site in

response to the repeated scanning of the same area at different biases.
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Suppl. Fig. 5. Phase extracted around defects. Main panel: the same STM image as in
Fig. 2a with numbered coloured squares marking the different areas where we extract the phase.
Scalebar: 10 nm. Small panels: the STM imaging bias dependence of the phase extracted at the

marked regions.

Suppl. Fig. 5 graphically shows the importance of carefully considering defects in our
analysis of the bias dependent CDW contrast. While the bias dependence varies a lot near
different defects, it is consistently the same in the defect-free regions, independent of their

location in the defect landscape (see Suppl. Fig. 4). This is a a very strong indication that

7



the defect-free regions we consider reveal intrinsic properties of the CDW modulation in
NbSe,. These regions are exempt of any local spectroscopic or topographic features at some
specific bias that would be expected in presence of some hidden or subsurface defects. More-
over, the CDW Fourier peaks are sharp and well defined, unlike the characteristic signatures
expected if defects were affecting the clean regions (see e.g. [9] and [10]). Finally, if strain
due to the proximity to the visible defects or due to some hidden subsurface defects was
affecting the clean regions we consider for our analysis, we would expect some anisotropy in
the bias dependence of the CDW components (e.g. the stripes observed in [11]). This is not
consistent with the perfectly homogeneous bias dependence of the three CDW component
amplitudes depicted in Suppl. Fig. 6. All these experimental facts point to the same con-
clusion, that our multiband analysis is neither affected by proximity to the visible defects

shown in Suppl. Fig. 5 nor by invisible subsurface defects.

VI. THE CDW IMAGING AMPLITUDE

In Suppl. Fig. 6a we show a map of the amplitude a;(r) obtained by fitting the CDW
modulation along one of the three directions in Fig. 2a. The histogram of this amplitude
map has a well defined peak, which we fit with a Gaussian to extract an amplitude a;(V})
representative for the entire field-of-view for each imaging bias V. We repeat the same
procedure for the other two directions to extract as(V;) and az(V;). All three a;, (i=1,2,3),
have a very similar bias dependence as seen in Suppl. Fig. 6b, prompting us to use their

average at each bias in Fig 3b of the main text.
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Suppl. Fig. 6. The CDW imaging amplitude. a Map of the local amplitude a;(r) of the CDW
along one of the principle directions extracted from the STM image in Fig. 2b. Scalebar: 10 nm. b
Bias dependence of the representative amplitudes a;, (i=1,2,3) of each of the three one directional

CDWs forming the CDW in Fig. 2.

VII. SPATIAL AND ENERGY DEPENDENCE OF THE LDOS IN A 1D CDW

In the following, we derive an expression of the energy and spatial dependence of the local
density of states (DOS) in a 1D CDW. A similar derivation is presented in the supplementary

material of ref. [12]. We start with the expressions from Griiner’s book [13]:

plx, k) = UF + V2 — 2U Vi cos(2kpx + @), (1)

where U? = %(1 — g—’;) and V2 = %(1 + g—’;) €, = hvp(k — kp) is the normal state
dispersion linearised around the Fermi-energy and Ej, = sgn(e)+/€2 + A? is the dispersion
in the CDW state, where A is the CDW energy gap. All energies are measured from the
Fermi-energy. Inserting U, and Vj into Supplementary Eq. 1 we get:

[ 2
plx, k) =1—4/1— 6—’““2 cos(2kpz + @) =
Ej;

E2 2
7 kcos(2kpr + @) = 2)

=1 —

A
=1 — — cos(2krx + ).
Ey,

We get the energy dependent local DOS from the following condition for the total number
of states: N = [ p(z, E)dE =", p(x, k) fk (z, k)dk which yields:

9



L

plx, EYdE =p(z, k);dk
plo B) =pla )% 31 = ol () ®)

—1
L GkhUF
=p(x, k)— | sgn(eg) ———
p( )ﬂ_<g<k’)\/m>

Finally, by omitting the index for k:

-1
1 L A €L
plx, E) :sgn(E)%; (1 - cos(2kpx + (p)) (ﬁ) =
L1
= {using that €; = £ — A? and that DOS at ep is N'(Er) = _h_} - 4
™ NUR

—sgn(E)N (Ep) <1 - %COS(%FJC + 90)) (\/%)

VIII. CALCULATION OF THE CONSTANT CURRENT TOPOGRAPHY

We calculate 1D constant current topographic traces zo(x,V’) by determining the tip-
sample distance d at a given bias V' and lateral position x that satisfies the constant current

condition:

Isetpoz'nt - u(d = 20,7, V)| - 07 (5>

where Igerpoint > 0 is the set-point tunnelling current and I(d,z,V) is the tunnelling cur-
rent at a given tip-sample distance, lateral position and bias. To calculate the tunnelling
current, we use the Bardeen equation for a 1D barrier in the limit of zero temperature [14].
First, we assume that the tip DOS does not depend on energy: pu,(E) = prip. With this

approximation, in the limit 7" — 0, the tunnelling current is given by

4me v 9
I<d7 €, V) = Tptip psample(mﬁ E) |M(d> E, V)‘ dE, (6)
0
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where M(d, E, V) is the tunnelling matrix element and psumpie(x, E) is the local DOS of the

sample. For the matrix element we use the result obtained for the 1D barrier [14]:

2

M(d,E,V) = CMh—me*”d, (7)

m

where (' is a constant and x is determined by the average work function of the tip and

Sample ((DO - ((I)tip + (I)sample)/2) as

m(V,E):\/Qh—ZL <®0+%—E) (8)

Grouping all the constants in Cy, the tunnelling current reads

eV
I(d,z,V)=C / Psampie(t, BY2(V, E)e” 2 VEqp. (9)
0

Note that the above formalism is valid only for finite V. At V = 0 there is no net
tunnelling current and the measurement cannot be performed. Formally, in the V' — 0
limit, / — 0 as the integration range goes to zero. To maintain a finite current, the tip
sample distance must be reduced d — —oo, meaning that the tip crashes into the sample.
Technically speaking, it is not possible to record constant current images at zero bias as
there is no tunnelling current for any positive tip-sample distance. In the calculations we
avoid this situation by never evaluating the current at strictly zero bias.

We model the density of states of the sample pggmpic(2, E) by the sum of three terms:
Psample (T, E) = po+ p1(x, E) + pa(x, E). po is a constant background while p; and py are the
DOS variations due to the two CMs:

pr(z, B) = R (sgnw ~e0 (1 iy costhenwo)

<E+ZF—51)
(E+iF—51

V(E +il —g)2 — A?
(10)

and
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Ao cos(k ))
.— x JE—
(Et il —ep) PV ) BT — a0 - A

(11)

pa(x, E) =R (sgn(E — &) (1 — (B4l — c) ) ;

where A are the size of the gaps, €19 are the energies where the gaps are centred (gap
midpoint) with respect to Er, kcpw = 27/ Acpw is the CDW ordering vector, Acpw the
wavelenght and ¢ a real-space phase difference between the two CMs. We used I' = 0.005 eV
for all the calculations presented in this work.

In order to calculate the constant current topographic traces, we solve numerically Supple-
mentary Eq. 5 where we use Supplementary Eq. 9 for the tunnelling current and &5 = 5.2 eV
for the average tip-sample work function (W and NbSe,). To simulate a realistic situation we
set Cy and pg such that the average tip-sample distance at a given bias (away from zero) is in
the 5-8 A range when the tunnelling current setpoint is 100 pA. The phase and amplitude at
a given bias is simply determined from the position of the maximum and from the difference

of the maximum and minimum value in the calculated constant current topographic traces.

IX. BIAS DEPENDENCE OF THE CDW AMPLITUDE IN THE DIFFERENT
MODELS

In Suppl. Fig. 7, we present the bias dependence of the CDW amplitude calculated using

the above method for the three models discussed in Fig. 4 of the main text.
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Suppl. Fig. 7. Bias dependence of the amplitude of the CDW signal of the STM
topography in the different 1D situation discussed in Fig 4. a A single CM with a gap
at the Fermi level. b Two CMs with the two gaps centred at different energies, but without any
real-space phase difference between the CMs. ¢ Same as b, but with a 120° (27/3) phase difference

between the CMs. For clarity, all the curves are normalized to their value at V;, = 0.5 V.
X. OPTIMIZED PARAMETERS OF THE TWO-GAP MODEL

To compare the two-gap model with our experimental data, we performed a visual op-
timization of the main parameters of the model: the size of the two gaps (A;2) and their
midgap position (£12). The model shows an excellent qualitative agreement with the experi-
mental data (Fig. 3) for the following parameter ranges: A; € [8,16] meV, Ay € [45,75] meV,
g1 € [—14,—2] meV and ey € [—100, —65] meV, where €, » are measured from Ep. With the
parameters in these ranges the model reproduces the overall line-shape of the bias depen-
dence of both the amplitude and the phase, and all the main features of the experimental
data as discussed in the main text. In Figs. 3c and d we plot the bias dependence of the
phase and amplitude obtained in the model using the parameters at the middle of the above

ranges: Ay = 12 meV, Ay = 60 meV, ¢ = —8 meV and g5 = —82.5 meV.

13



XI. PHASE AND AMPLITUDE IN THE THREE-GAP MODEL

We have also calculated the bias dependence of the phase and amplitude in a three-
gap model by considering one more gap and a concomitant CM. The third CM we set
in-phase with the second, i.e 120° out-of-phase to the first. In Suppl. Fig. 8 we use the
same size and position of the gap (A; = 12 meV and ; = —8 meV) for the first CM
as in the optimized two-gap model, and we split the second gap of the optimized two-gap
model into two for the second and third CM of the three-gap model: A, = 30 meV, and
g9 = —43 meV, Az = 30 meV, and €3 = —123 meV. The obtained bias dependence of
the phase and amplitude of the CDW signal (Suppl. Figs. 8¢ and d) shows similarly good

qualitative agreement with the experimental data (Suppl. Figs. 8a and b) as in the two-gap

model (Fig. 3)

a b —d
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2150 s
2 100 . 32 ;e
i 50t . =1t - /
N\ L £ et
0 M 2o M <O M M M
-0.5-0.25 0 0.25 05 -0.5-0.25 0 0.25 05
Bias (V) Bias (V)
d ~
Sal
i‘5./8
o 6
e)
24r
Sl
£ 2|
0 . h . <y n . .
-0.5 -0.25 0 0.25 0.5 -0.5 -0.25 0 0.25 0.5
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Suppl. Fig. 8. Phase and amplitude in the three-gap model. a, b Bias dependence of the
phase and amplitude of the CDW signal in experiments (the same as in Fig. 3) and ¢, d in a

three-gap model model. The data in b and d are normalized to their V, = 0.5 V value.
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