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Abstract

Charge ordering is a phenomenon in which the electron field in a 
material spontaneously breaks the symmetry of the underlying 
crystal lattice, selecting out a new period and, in dimensions higher 
than one, a particular direction in space. 

In the first half of this thesis I study the consequences of charge 
ordering in 1D, applying a self-consistent mean-field approach. A 
system with rational filling p/q forms a period q charge density 
wave, which I demonstrate exhibits a quantized adiabatic particle 
transport upon being dragged through a full period. I show that an 
irrationally-filled system is quasiperiodic, and use the equivalence 
to show that 1D quasicrystals fit into the topological classification of 
free fermion systems known as the Tenfold Way. Using a free energy 
analysis I demonstrate that incommensurate charge order provides 
a new non-local growth mechanism for 1D quasicrystals,  potentially 
greatly increasing the number of known,  naturally-occurring, 
examples.

In the second half of this thesis I address the question of whether 
the 1D charge ordering mechanism, the Peierls instability, applies in 
dimensions higher than one, focussing on the prototypical 2D 
charge-ordered material niobium diselenide, NbSe2. In this case I 
definitively rule out such 'weak-coupling' theories, and show that it 
is necessary to consider a model of a strong electron-phonon 
coupling dependent on both the ingoing and outgoing electron 
momenta and the electronic bands scattered between. The model 
provides the first consistent theoretical account of the full range of 
experimental results on the system, including a particle/hole 
asymmetric gap centred above the Fermi level which opens in one 
band only, the softening of phonon frequencies over a wide range of 
momenta, and the existence of a pseudogap regime over a range of 
temperatures, with the latter explained as suppression of charge 
order through fluctuations of the phonon field.
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1 Introduction

Imagine a periodic array of atoms bonded to form a crystal. Where are the bonding

electrons most likely to be found? That is, where is the charge density peaked? Naturally

we would expect the answer to be that the charge density peaks at the locations of the ions,

forming a periodic modulation maintaining the translational symmetry of the underlying

lattice. In this thesis I will be considering what happens when this intuition breaks down,

and the charge density spontaneously breaks the symmetry of the lattice to form `charge

order' or, speci�cally, a `charge density wave' (CDW).

In fact, quasi-1D materials form CDWs generically by a mechanism known as the Peierls

instability [1]. The charge density selects out a period larger than the underlying ion

lattice. I treat such quasi-1D systems in a nearest-neighbour model in the �rst half of this

thesis. Despite being perhaps the simplest model in all of condensed matter physics, I will

demonstrate that it nevertheless exhibits a remarkable range of complex phenomena, from

superconductivity, topological charge transport, and the quantum Hall e�ect, through to

mathematical knots, fractal bandstructures, and quasicrystals. Underlying all of this is a

fascinating topological structure.

In dimensions higher than one charge ordering is a rare phenomenon, with only a handful

of examples known. The charge density in these cases breaks both the translational and

rotational symmetry of the lattice, forming a wave-like striped pattern along a preferential

direction. Despite the sparseness of known instances of CDWs in 2D and 3D there is a great

deal of interest in them, owing in part to their appearing coincidentally with many cases

of high-temperature superconductivity. In the second half of this thesis I will investigate

whether the mechanism responsible for CDWs in 1D carries over to higher dimensions,

focussing in particular on the prototypical quasi-2D CDW system niobium diselenide.

1.1 Charge Density Waves in 1D

In 1933 Rudolph Peierls demonstrated that (quasi-)1D chains are generically unstable to

the formation of Charge Density Waves. Evidently he considered the proof trivial - its �rst

published appearance is in a popular science book [1]. The reasoning is as follows: a 1D

system will always bene�t from having a gap open at the Fermi level EF , since the gap will

15
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Figure 1: The Peierls instability in 1D. Left: a 1D cosine bandstructure at half �lling,
with two states separated by 2kF marked. Right: coupling these states causes a CDW
gap at EF , so the occupied states are lowered in energy and the unoccupied states raised.

Figure 2: In 1D the Peierls instability causes the period of a crystal's charge density to
alter from the lattice spacing a (top) to half the Fermi wavelength 1/2kF (bottom, with
kF = 1/4a here).

push all the occupied states down in energy at the cost of pushing the unoccupied states

up - which at zero temperature is no cost at all1. Coupling all electron states separated by

crystal momentum 2kF opens such a gap and so is energetically favourable (see Figure 1).

This process is known as Fermi surface nesting [2].

The e�ect in real space is to change the period of the CDW from the lattice spacing a to

1/2kF . The new charge-ordered pattern's period can either be an integer multiple of the

lattice spacing, in which case it is known as a commensurate CDW, or it can be an irrational

multiple, with the result known as an incommensurate CDW or ICDW. The situation is

shown in Figure 2. In reality the CDW provides a small modulation to the charge density

�eld which is still peaked at the ionic locations due to the many non-bonding electrons,

but the system's periodicity is still a�ected. The CDW period can be either commensurate

or incommensurate with the lattice.

1In a full treatment the ions will adjust to the new charge con�guration, and these adjustments will
cost energy.
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In dimensions higher than one the generic bene�t of nesting no longer exists. With a single

�xed wavevector the number of states required to be coupled scales as the power of the

dimension, but the energy bene�t from the coupling happens only at isolated points. Part

II of this thesis concerns the driving mechanism for CDW formation in higher-dimensional

systems, where I argue that the Peierls mechanism is the incorrect starting point in the

general case.

Whatever mechanism drives a CDW transition, the end result will be a joint distortion

of the electron �eld plus a shifting of the ions. If the driving mechanism is nesting, an

electronic e�ect, the charge �eld distorts and the ions shift to minimize their energy in

the distorted �eld. If the CDW order is phonon driven the ions shift locations and the

electron �eld distorts to minimize its energy in the new ionic arrangement. A permanently

distorted ion lattice can be thought of as a softening of a phonon energy to zero at some

nonzero q vector, referred to as a Kohn anomaly [3].

1.2 Structure of Part I

The �rst half of this thesis concerns the topology of charge ordering in 1D. In Chapter 2

I give a more detailed account of the Peierls mechanism leading to charge order in a 1D

system at half-�lling, treated in the mean-�eld limit, and highlight the well-known mathe-

matical analogy to the BCS theory of superconductivity. In Chapter 3 I extend the working

from half-�lling to arbitrary rational �lling, and �nd an unexpected equivalence to the 2D

quantum Hall e�ect. I use the result to investigate quantized adiabatic particle transport

by CDWs. In Chapter 4 I further extend the results to arbitrary irrational �llings and

�nd that the resulting incommensurate CDWs break not only the translational symmetry

of the lattice, but in fact all translational symmetries, forming so-called `quasicrystals'. I

use the equivalence to address a recent debate regarding whether and how quasicrystals �t

into the classi�cation of free fermion systems known as the Tenfold Way. Using a free en-

ergy analysis I further demonstrate that incommensurate CDWs can generate a previously

unknown nonlocal growth mechanism for quasicrystals, and show that the resulting class

of systems could potentially massively increase the number of known natural quasicrys-

tals. In Chapter 5 I consider the results in the wider context and provide some concluding

remarks.
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2 Half-Filling: BCS Theory

In this Chapter I analyse the Peierls mechanism, in half-�lled quasi-1D systems, from the

viewpoint of quantum �eld theory applied to a simple model of spinless fermions with

nearest-neighbour interactions. While the working of Part I of this thesis is ostensibly

carried out with a Coulomb repulsion between electrons constituting the driving force for

the CDW transition, I �rst establish via a general �eld theoretical argument in Section 2.1

that in fact it is just as easy to consider a continuous range of possible couplings from purely

Coulombic to purely electron-phonon. In Section 2.2 I treat the interaction in the mean �eld

limit, demonstrating the equivalence to the BCS theory of superconductivity. I then solve

for the mean �eld self-consistently in Section 2.3. Finally, I consider a possible fundamental

problem regarding the existence of charge order in 1D raised by a renormalization group

analysis. Coming full circle I waylay fears by appeal to the work of Section 2.1.

2.1 Inter-Electron Couplings

The overview of CDW formation in Chapter 1 suggests that any arbitrary interaction

which couples states at the Fermi energy EF in 1D will cause a CDW phase transition

at su�ciently low temperature. Common interactions to consider are Coulomb repulsion

between electrons and electron-phonon coupling. While the precise form of the coupling is

indeed somewhat by-the-by in 1D, there are certain arguments which can be made much

more precise by establishing here the absolute operational equivalence of the two couplings

just mentioned. I will in fact consider the most general form of the argument which applies

in arbitrary dimensions; this also pleasingly sets the tone for the �eld-theoretical analysis

returned to repeatedly in the coming chapters.

The Coulomb repulsion and electron-phonon coupling can be conveniently combined into a

coupling of free electrons to a single bosonic �eld, a combined lattice distortion and charge

ordering. To see this, consider the action S of a generic �eld theory of spinless fermions in

an arbitrary dimension d with both phonons and an on-site Coulomb interaction:

S =
∑
k

ψ†kG
−1
k ψk +

∑
q

ϕ†qD
−1
q ϕq +

∑
kq

gqϕqψ
†
k+qψk +

∑
k

hknkn−k (1)

where the �rst term governs the free (non-interacting) electrons, the second governs the
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free phonon displacements, the third gives the electron-phonon coupling, and the fourth

gives the Coulomb repulsion between electrons. For this section only I will use non-bold

k to denote the combined crystal momentum and frequency, k = (ω,k). The Grassman

�eld ψ†k for electrons with energy and momentum k = (ω,k) is created by the action of

the �eld operator ψ̂†k on the vacuum state. The corresponding electron number operator

is n̂q ,
∑

k ψ̂
†
k+qψ̂k, and ϕ

†
q ≡ ϕ−q is a (complex, bosonic) phonon �eld with energy and

momentum q = (Ω,q). The coupling parameters are static but allowed to vary in space.

The electron and phonon propagators are Gk and Dq respectively; their precise forms are

not relevant to the present analysis.

The Coulomb term derives from the real space form

SCoulomb =
�

dd+1rdd+1r′h
(
r− r′

)
ψ†rψrψ

†
r′ψr′

with r = (t, r) and spatial dimension d, which is valid for any o�-site2 interaction h (r− r′).

The reciprocal space form in Equation 1 can be made more manageable by use of a

Hubbard-Stratanovitch transformation [4, 5]: consider a complex bosonic �eld ∆k, obeying

∆k = ∆†
−k, which satis�es

1
N

�
D∆ exp

(
−
∑
k

(
−1

4
hk

)
∆−k∆k

)
= 1.

The functional integral is over all possible ∆ con�gurations, so adding a second �eld �xed

with respect to the integral leaves the result unchanged, just as the change of variables

x→ x+ c leaves in�nite integrals
�∞
−∞ dx una�ected. Shifting ∆k → ∆k − n−k gives

1
N

�
D∆ exp

(
−
∑
k

(−hk)
(

1
2
∆−k − nk

)(
1
2
∆k − n−k

))
= 1.

Expanding the parentheses and taking the ∆-independent term out of the functional inte-

gral gives

1
N

�
D∆ exp

(
−
∑
k

(−hk)
(

1
4
∆−k∆k −

1
2
∆knk −

1
2
∆−kn−k

))
= exp

(
−
∑
k

hknkn−k

)
.

2The working also holds for on-site interaction, but care has to be taken to include spins explicitly
because of the Pauli exclusion principle ψ̂†

rσψ̂
†
rσ ≡ 0 for equal spins σ. I avoid this case for brevity.
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Considering this in the context of the partition function

Z =
1
N

�
DψDϕ exp (−S [ψ,ϕ])

it is clear that the Hubbard-Stratanovitch transformation has removed the quartic Coulomb

term at the expense of introducing a coupling to a new �eld ∆k:

SCoulomb [n] =
∑
k

hknkn−k

↓

SCoulomb [n,∆] =
∑
k

hk

(
−1

4
∆−k∆k + ∆knk

)
.

Note that the result is exact. The new bosonic �eld ∆k replaces an nk term in the action

and represents the electron charge density. Overall then, expanding nq =
∑

k ψ
†
k+qψk, the

result is

S =
∑
k

ψ†kG
−1
k ψk+

∑
q

ϕ†qD
−1
q ϕq+

∑
q

∆†
q

(
−1

4
hq

)
∆q+

∑
kq

gqϕqψ
†
k+qψk+

∑
kq

hq∆qψ
†
k+qψk

where I have assumed hq = h−q for simplicity.

The coupling of the electrons to the �elds ϕ and ∆ takes an identical form, and it would

seem sensible to write a combined �eld de�ned by

gqϕq + hq∆q , gqAq. (2)

In fact the substitution proves quite remarkable: it turns out that ϕ and ∆ can both be

eliminated entirely, resulting in a theory solely in terms of electrons ψ and a combined

charge density/phonon displacement �eld A. To see this, �rst use Equation 2 to eliminate

∆:
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S [ψ,ϕ,A] =
∑
k

ψ†kG
−1ψk +

∑
q

{
ϕ†q

(
D−1
q −

g2
q

4hq

)
ϕq −

g2
q

4hq
A†
qAq

+
gqgq

4hq

(
A†
qϕq + ϕ†qAq

)
+
∑
k

gqAqψ
†
k+qψk

}
.

Now, bearing in mind that the partition function

Z =
1
N

�
DψDϕDA exp (−S [ψ,ϕ,A])

is insensitive to linear shifts of the �elds, the ϕ �eld can be shifted using

ϕ′q , ϕq −
gqgq

4hq

(
D−1
q −

g2
q

4hq

)−1

Aq

which leads, after a bit of algebra, to

S
[
ψ,ϕ′, A

]
=

∑
k

ψ†kG
−1
k ψk +

∑
q

{
ϕ′†q

(
D−1
q −

g2
q

4hq

)
ϕ′q

−A†
q

 g2
q

4hq
+
(
gqgq

4hq

)2
(
D−1
q −

g2
q

4hq

)−1
Aq +

∑
k

gqAqψ
†
k+qψk

 .

The functional integral over the ϕ′ �eld is now a simple Gaussian, and cancels with its

normalization in front of the partition function. The �nal result, then, is

S [ψ,A] =
∑
k

ψ†kG
−1
k ψk +

∑
q

A†
qB

−1
q Aq +

∑
kq

gqAqψ
†
k+qψk (3)

where the propagator of the A �eld is

Bq ,

(
gq
gq

)2

Dq −
4hq

g2
q

. (4)

The physical signi�cance of this result is that the phonon and charge density �elds naturally

combine into a single object, the excitations of which are well-de�ned quasiparticles. An

illustration is given in Figure 3.
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Figure 3: The phonon and charge density �elds can be combined into a single �eld
with two degrees of freedom without approximation. The result provides a natural way
to describe combined distortions of the lattice and the electron �eld. Top: undistorted
lattice; bottom: lattice with combined charge density/lattice distortions.

This makes sense physically: if a localized lattice distortion were to propagate through the

system we would expect it to be accompanied by a localized distortion of the charge, and

vice versa. The combined lattice distortion / charge distortion would look like a single

object, which we can now describe as a quasiparticle excitation of the A �eld. Note that

no approximations have been introduced - the result is exact.

Various ground states are possible with di�erent values or forms of the couplings g and

h. The study of their stability at the mean �eld level is called `g-ology' [6]. The name

would normally be an amusing play on `geology' based on the fact that both couplings

are traditionally labelled g; I have ruined the joke by calling the Coulomb coupling h.

An illustrative schematic is reproduced from Grüner [6] in Figure 4. g-ology has gone

out of fashion with the advent of renormalization group analysis, which suggests amongst

other things that the mean-�eld result of a gapped CDW system is incorrect, and the true

ground state at su�ciently small couplings is a gapless `Luttinger Liquid' [7]. I return

to this point in Section 2.4. Regardless, g-ology remains relevant today with regard to

the (quasi-2D) high temperature superconducting cuprates and pnictides, which contain

the possibility that charge density waves, `spin density waves', and superconductivity all

compete for control of the Fermi surface, and that both phonons and Coulomb repulsion

may be playing a part (for a thorough review see [8]).

2.2 Mean Field Theory

Having considered a general �eld-theoretical argument in the previous section I will now

focus on the speci�c case of charge ordering in 1D, by considering a system of spinless
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g

h

SC CDW
SDW

SC>CDW CDW>SC

Figure 4: A schematic representation of the possible mean-�eld ground states of a 1D
system as a function of the electron-phonon coupling g and the Coulomb interaction
strength h, reproduced from [6] after [9]. The rather nebulous designations in the lower
half indicate that the response functions for the `less than' states are divergent but less so
than the other state. `SC' designates superconductivity and `SDW' denotes a spin density
wave, which is exactly analogous to a CDW but with spins ordering rather than charges.

`electrons' with nearest neighbour Coulomb repulsion3. From now on n will designate real-

space site n on a 1D lattice, and k will denote a 1D crystal momentum. With ψ†n the

electron creation operator at lattice site n, the Hamiltonian is

Ĥ = −t
∑
〈nm〉

(
ψ̂†nψ̂m + ψ̂†mψ̂n

)
− µ

∑
n

ψ̂†nψ̂n + h
∑
〈nm〉

ψ̂†nψ̂nψ̂
†
mψ̂m (5)

with 〈nm〉 indicating the sum is over nearest neighbours only. The hopping parameter t

can be taken to be real in the absence of magnetic �elds; the chemical potential µ is chosen

to be µ = h to ensure the system stays at half-�lling when the interaction h is turned on.

The lattice constant is set to unity. For positive h the �nal term biases against occupation

of neighbouring sites, and hence represents the repulsion of the electrons. Since spin is

neglected, double occupation of the same site is disallowed.

Fourier transforming by writing

ψ̂†n =
∑
k

exp (−ikn) ψ̂†k (6)

and noting that the sum runs over

m = n± 1

3Of course spinless electrons do not exist, but spin plays no part in this story, so to avoid factors of two
everywhere I will pretend they do. The name `Coulomb' is somewhat arbitrary as all repulsions are the
same, modulo strength, if the distance is �xed.
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gives the result

Ĥ =
∑
k

(−2t cos (k)− µ) ψ̂†kψ̂k + h
∑
kk′k′′

2 cos
(
k − k′′

)
ψ̂†kψ̂k′′ψ̂

†
k′ψ̂k+k′−k′′ . (7)

The quartic interaction term cannot be dealt with directly. To proceed it is necessary to

decouple it by means of a mean �eld approximation:

ψ̂†kψ̂k′′ψ̂
†
k′ψ̂k+k′−k′′ =

〈
ψ̂†kψ̂k′′

〉
ψ̂†k′ψ̂k+k′−k′′ + ψ̂†kψ̂k′′

〈
ψ̂†k′ψ̂k+k′−k′′

〉
−
〈
ψ̂†kψ̂k+k′−k′′

〉
ψ̂†k′ψ̂k′′ − ψ̂†kψ̂k+k′−k′′

〈
ψ̂†k′ψ̂k′′

〉
(8)

i.e. by considering all possible ways in which two of the four legs in the 4-vertex Coulomb

interaction can be replaced by a mean �eld of the form
〈
ψ̂†ψ̂

〉
. Note that making

〈
ψ̂†ψ̂

〉
type contractions was not the only possible way to approximate the quartic term by a

quadratic; this form was chosen as an ansatz on the basis that
〈
ψ̂†ψ̂

〉
will have a physical

signi�cance as an electron density later on4. An alternative pairing of the form
〈
ψ̂†ψ̂†

〉
would be considered were we concerned with BCS superconductivity [10], in which case the

coupling ∆ =
〈
ψ̂†ψ̂†

〉
would be the Cooper pair potential. The BCS case and the CDW

case in fact run completely in parallel, and I will point out the analogies when instructive.

The quartic term in Equation 7, with the Mean Field Theory (MFT) approximation of

Equation 8, after a little neatening, takes the form

∑
kk′k′′

cos
(
k − k′′

)
ψ̂†kψ̂k′′ψ̂

†
k′ψ̂k+k′−k′′ =

∑
kk′k′′

cos
(
k′′
) 〈
ψ̂†k′+k′′ψ̂k′

〉
ψ̂†kψ̂k+k′′

+
∑
kk′k′′

cos
(
k′′
)
ψ̂†k+k′′ψ̂k

〈
ψ̂†k′ψ̂k′+k′′

〉
−
∑
kk′k′′

cos
(
k − k′

) 〈
ψ̂†k′+k′′ψ̂k′

〉
ψ̂†kψ̂k+k′′

−
∑
kk′k′′

cos
(
k − k′

)
ψ̂†k+k′′ψ̂k

〈
ψ̂†k′ψ̂k′+k′′

〉
4It is a point of interest that this technique corresponds to applying Wick's theorem, or, equivalently, a

Hubbard-Stratanovitch transformation combined with the approximation that the Hubbard-Stratanovitch
boson operator be replaced by its mean �eld expectation value. By the method developed in Section 2.1
the current model could be extended to include electron-phonon coupling with no further work.

25



-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 0.2 0.4 0.6 0.8 1
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0.3 0.4 0.5 0.6 0.7

Figure 5: For a half-�lled system we anticipate that states k and k +Q with Q = 2π/2
will be coupled. The original bandstructure εk = −2t cos (k) is shown in red, with εk+Q

in blue (t = 1). The problem reduces to considering two copies of a reduced Brillouin
zone of half the size (shown on the right). The units of k are 2π.

where it is clear that the �rst and second terms are Hermitian conjugates, as are the third

and fourth, so the Hamiltonian is Hermitian. It takes the form

Ĥ =
∑

k εkψ̂
†
kψ̂k+ 2h

∑
kk′k′′

{(
cos
(
k′′
)
− cos

(
k − k′

)) 〈
ψ̂†k′+k′′ψ̂k′

〉
ψ̂†kψ̂k+k′′ + h.c.

}
(9)

where

εk , −2t cos (k)− µ.

Having approximated the Hamiltonian into a diagonal (quadratic) form I will proceed in

the next section to ensure that the mean �eld theory is self-consistent.

2.3 Self-Consistent Solution

The 1D band considered so far has the chemical potential µ set such that the system is

half-�lled. For the time being I will assume that the system su�ers a Peierls instability due

to coupling between states at EF , and will then show this to be a self-consistent solution

to the mathematical model. For the half-�lling case, then, I take as an ansatz the coupling

between states separated by Q = π, and substitute this �xed wavevector, q = Q, into the

mean �eld Hamiltonian of Equation 9. The situation is shown in Figure 5.

Anticipating a doubling of the real-space periodicity, it is convenient to rewrite the Hamil-

tonian in a `reduced Brillouin zone' (RBZ) of half the size. The unperturbed Hamiltonian,
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for example, is written

2π∑
k=0

εkψ̂
†
kψ̂k =

π∑
k=0

εkψ̂
†
kψ̂k +

2π∑
k=π

εkψ̂
†
kψ̂k

=
π∑
k=0

{
εkψ̂

†
kψ̂k + εk+πψ̂

†
k+πψ̂k+π

}
.

The full Hamiltonian in the RBZ is most conveniently written in matrix form:

Ĥ =
∑

k∈RBZ

(
ψ̂†k, ψ̂

†
k+π

)
Hk

 ψ̂k

ψ̂k+π


with

Hk =

 εk 4k

4k εk+π


4k , ∆k + ∆∗

k = 2Re (∆k)

and the self-consistency condition

∆k , −2h
∑
k′

(
1 + cos

(
k − k′

)) 〈
ψ̂†k′+πψ̂k′

〉
. (10)

Note that the k′ sum is still over the full Brillouin zone. The term 4k is a real-valued func-

tion of k, where 24k gives the CDW energy gap in the system. For a general bandstructure

the k-dependence is important, but for the simple case of cosine dispersion considered here

it should be possible to �nd a k-independent solution, since the band only crosses EF at

one point in the RBZ.

The o�-diagonal terms do not conserve crystal momentum - they relate to processes in

which electrons scatter and lose crystal momentum to the charge density �eld ∆. Alterna-

tively they can be thought of as corresponding to `reduced Umklapp processes' - that is,

Umklapp processes scattering between RBZs. In BCS theory these terms would be replaced
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Figure 6: The quasiparticle spectrum in the reduced Brillouin zone, setting a CDW gap
of 24 = 0.5t (here t = 1). The bands split at the degeneracies. The blue states are
occupied and the red unoccupied, so opening the CDW gap has lowered the energy of the
system. This is the Peierls instability (cf. Figure 5 which has 24 = 0).

by the fermion number non-conserving Cooper pair creation and annihilation operators.

The presence of o�-diagonal terms in Hk shows that the electrons and holes are no longer

good quasiparticles upon turning on the Coulomb interaction. Instead we should rotate to

a diagonal basis and �nd the well-de�ned quasiparticles of the interacting system. De�ning

the creation operators of these quasiparticles as γ†k, the desired form is

Ĥ =
∑
k

(
γ̂†k, γ̂

†
k+π

)
Dk

 γ̂k

γ̂k+π

 (11)

Dk ,


√
ε2k +42

k 0

0 −
√
ε2k +42

k

 (12)

 γ̂k

γ̂k+π

 , Uk

 ψ̂k

ψ̂k+π

 (13)

with

Uk ,
1√
2


αkq

1+α2
k−
√

1+α2
k

αkq
1+α2

k+
√

1+α2
k

1−
√

1+α2
kq

1+α2
k−
√

1+α2
k

1+
√

1+α2
kq

1+α2
k+
√

1+α2
k


αk ,

4k

εk
.
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The CDW energy gap 24 is apparent from the quasiparticle spectrum in Equation 12,

plotted in Figure 6. It is this which must be solved for self-consistently. From Equation

13 we have that

ψ̂†k+π = γ̂†kU12 + γ̂†k+πU22

ψ̂k =
(
U †
)

11
γ̂k +

(
U †
)

12
γ̂k+π.

The self-consistency condition, Equation 10, needs to be written in terms of these new

quasiparticle operators. The relevant term is

〈
ψ̂†k+πψ̂k

〉
=

αk√
1 + α2

k

(〈
γ̂†kγ̂k

〉
−
〈
γ̂†k+πγ̂k+π

〉)

+

 1√
1 + α2

k

+ 1

(〈γ̂†kγ̂k+π〉+
〈
γ̂†k+πγ̂k

〉)
. (14)

The power of the diagonalization method derives from the fact that the γ particles are

now well-de�ned fermions, so their occupation numbers are determined by Fermi-Dirac

statistics taking as input the energies of Dk in Equation 12. Thus we see that

〈
γ̂†kγ̂k+π

〉
= 0〈

γ̂†k+πγ̂k

〉
= 0〈

γ̂†kγ̂k′
〉

= f

(√
ε2k +42

k

)
δk,k′〈

γ̂†k+πγ̂k′+π

〉
= f

(
−
√
ε2k +42

k

)
δk,k′ (15)

with f (E) the Fermi-Dirac distribution. Substituting into Equation 14 gives
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〈
ψ̂†k+πψ̂k

〉
=

4k√
ε2k +42

k

(
f

(√
ε2k +42

k

)
− f

(
−
√
ε2k +42

k

))

≡ − 4k√
ε2k +42

k

tanh
(

1
2
β
√
ε2k +42

k

)

and so (twice the real part of) the self-consistency condition reads

4k = 4h
∑
k′

(
1 + cos

(
k − k′

)) 4k′√
ε2k′ +42

k′

tanh
(

1
2
β
√
ε2k′ +42

k′

)
.

As mentioned above it seems physically intuitive that there should exist a self-consistent

gap function independent of wavevector k, since the dispersion only crosses the Fermi level

once in the RBZ. Recalling that εk has period 2π, if 4 6= 4k the term multiplied by the

cosine drops out since the k′ sum is over a full 2π cycle in which the cosine spends half

the time positive, half negative. As a result there is indeed a nontrivial (4 6= 0) solution

of the form

1 = 4h
∑
k

1√
ε2k +42

tanh
(

1
2
β
√
ε2k +42

)
. (16)

This can be solved numerically without too much di�culty. Noting the expression's sim-

ilarity to the BCS gap equation [10, 7], however, it should be possible to �nd an analytic

solution following the standard arguments applied in that case. Taking the continuum

limit to turn the sum into an integral, only the energies close to EF (within a cuto� Λ)

contribute signi�cantly. Writing the density of states g (ε) the approximation is:

∑
k

≈
�

dk =
�

dε
dk

dε
=
�

dεg (ε) ≈ g (EF )
� Λ

−Λ
dε.

The 1D density of states at EF is given by
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g (EF ) =
1
2π

1
|∇kε|

∣∣∣∣
EF

=
1
2π

2
|2t sin (kF )|

=
1

2πt
1

|sin (Q/2)|
(17)

=
1

2πt
.

In the zero temperature limit β →∞ it follows that tanh (βx) ≈ 1 (x is any �nite number

with dimensions of energy), and so

1
4h

= g (EF )
� Λ

−Λ
dε

1√
ε2 +42

= 2g (EF ) asinh
(

Λ
4

)

or

4 = Λ/sinh (1/8g (EF )h)

≈ 2Λ exp
(
−π

4
t

h

)

for h � t. This expression, identical to the BCS gap equation [10, 7], is compared to the

numerical result in Figure 7 with good agreement.

In the results so far I have considered the phase of the order parameter to be set to zero.

In fact the phase can have a large e�ect: de�ning

∆ = |∆| exp (iθ)

∴ 4 = 2 |∆| cos (θ)

gap closures occur at θ = (2p+ 1)π/2 for integer p. This has a signi�cance to the case of
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Figure 7: The numerical solution of the self-consistent half-�lling gap equation 4 (h) ,
∆ (h) + ∆ (h)∗ (red crosses), with the curve 4 (h) = 4 exp

(
− πt

4h

)
overlayed. This corre-

sponds to the approximate BCS expression 4 ≈ 2Λ exp (−1/ (8g (εF )h)) with bandwidth
2Λ = 4t (hopping parameter t) and density of states at the Fermi surface g (EF ) ≈ 1/2πt.
The agreement is best at small h/t, as assumed in the BCS approximation.

general �lling, discussed at length in Chapter 3.

2.4 A Brief Comment on Renormalization Group Flow

The theoretical story told so far seems believable, and we know that many real quasi-

1D materials such as NbSe3, KCP, and TTF-TCNQ develop CDW instabilities at low

temperature [11, 12, 13, 14, 15]. A full renormalization group (RG) analysis, however,

suggests that the mean �eld theory presented here is misleading in its predictions regarding

spinless fermions at weak coupling. The argument is thoroughly explained in [7].

We found that an arbitrarily weak Coulomb interaction generates a CDW instability, and I

claimed that the working was analogous to BCS superconductivity. In fact, if the arbitrarily

weak interaction is attractive rather than repulsive, a superconducting instability develops

in exactly the same way. A full RG analysis, however, suggests that in fact the CDW and

SC e�ects cancel at small coupling, with the result being an ungapped Luttinger liquid [7].

It is only at larger couplings that the respective instabilities truly stabilize.

Loosely, the cancellation occurs when making the mean �eld approximation in Equation

8. There, a choice was made to decouple the quartic fermion interaction term by use of a

CDW ansatz
〈
ψ̂†ψ̂

〉
:
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ψ̂†kψ̂k′′ψ̂
†
k′ψ̂k+k′−k′′ ≈

〈
ψ̂†kψ̂k′′

〉
ψ̂†k′ψ̂k+k′−k′′ + ψ̂†kψ̂k′′

〈
ψ̂†k′ψ̂k+k′−k′′

〉
−
〈
ψ̂†kψ̂k+k′−k′′

〉
ψ̂†k′ψ̂k′′ − ψ̂†kψ̂k+k′−k′′

〈
ψ̂†k′ψ̂k′′

〉
.

Making instead a superconducting ansatz
〈
ψ̂†ψ̂†

〉
gives what turns out to be an opposite

contribution:

ψ̂†kψ̂k′′ψ̂
†
k′ψ̂k+k′−k′′ ≈ −

〈
ψ̂†kψ̂

†
k′

〉
ψ̂k′′ψ̂k+k′−k′′ − ψ̂†kψ̂

†
k′

〈
ψ̂k′′ψ̂k+k′−k′′

〉
.

The seemingly miraculous cancellation is guaranteed to all orders in the RG �ow by a

Ward identity (i.e. gauge invariance) [7]. If this claim is correct it invalidates the work in

Part I of this thesis, which is based on a mean-�eld analysis of spinless fermions in 1D.

I will present three ways around this issue. First, we could simply restrict attention to

strong enough couplings h, where the RG analysis agrees a nontrivial CDW state can

develop. Second, the RG argument holds only for truly 1D systems, whereas in reality

what we refer to as a 1D chain is at most quasi-1D: there may be strong coupling between

atoms along chains, and weak coupling between the chains, but the inter-chain coupling

can never go to zero. Third, the cancellation between BCS and CDW terms works only

for the Coulomb-type interaction I have focussed on so far. If I had instead considered an

electron-phonon coupling, or indeed any coupling to the ion lattice, the CDW wins the race

for control of the Fermi surface. This was Peierls' original formulation, and it withstood

the invention of the RG analysis.

The third retort is particularly appealing given the analysis of Section 2.1 because, by the

working of that section, we can consider there to already be an electron-phonon coupling

built into the model. I showed that any number of interaction terms of the form

Ĥint = g
∑
kk′

Âk′ψ̂
†
kψ̂k+k′

between bosons created by Â† and fermions created by ψ̂† can be exactly reformulated

in terms of a single combined bosonic �eld. Strictly, then, we can consider the model

presented here to include an in�nitesimal electron-phonon coupling to stabilize the CDW
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over the Luttinger liquid.
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3 Rational-Filling: Hofstadter's Butter�y and the Integer

Quantum Hall E�ect

In the previous chapter I considered a model of a half-�lled 1D chain with nearest-neighbour

Coulomb interactions. I will now generalize the result to arbitrary rational �llings p/q with

p, q ∈ N (natural numbers). This requires a more systematic solution, using a physically-

motivated ansatz, leading to a theory in terms of a Landau order parameter, which I then

solve for self-consistently.

In Section 3.1 I will motivate a choice of order parameter and write it in a form amenable to

applying self-consistent mean �eld theory. In Section 3.2 I take a small diversion to consider

the topology of the procedure with regard to Brillouin zone reduction. In Section 3.3 I set

up the mean �eld calculation as a generalization of the half-�lling case. Surprisingly, this

simple 1D problem turns out to have a very similar structure to the problem considered

by Hofstadter [16], of electrons hopping on a 2D lattice in a magnetic �eld, and in Section

3.4 I investigate the extent of the analogy. Hofstadter's problem, intimately linked to the

Integer Quantum Hall E�ect (IQHE), provided one of the earliest emergences of topology

and topological quantum numbers in condensed matter physics. In Section 3.5 I �nd the

analogous quantities by considering the Berry's phase of the di�erent sub-bands. In Section

3.6 I return to the self-consistent solution and show that it is adiabatically connected to

the Hofstadter case.

3.1 Mean Field Order Parameter

I begin by returning to the mean-�eld Hamiltonian from Equation 9:

Ĥ =
∑
k

(−2t cos (k)− µ) ψ̂†kψ̂k

+2h
∑
kk′k′′

{
cos
(
k′′
) 〈
ψ̂†k′+k′′ψ̂k′

〉
ψ̂†kψ̂k+k′′ − cos

(
k − k′

) 〈
ψ̂†k′+k′′ψ̂k′

〉
ψ̂†kψ̂k+k′′ + h.c.

}
.

In fact for the working of this chapter it will be convenient to rewrite the interaction term

as
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Ĥint = 2h
∑
kk′k′′

(
cos
(
k′′
)
, cos (k) , sin (k)

)
·


1

− cos (k′)

− sin (k′)


〈
ψ̂†k′+k′′ψ̂k′

〉
ψ̂†kψ̂k+k′′ + h.c.

(18)

To motivate an ansatz for the order parameter, consider the physical observables of the

system:


site order

bond order

current

 ,


〈
ψ̂†nψ̂n

〉
1
2

(〈
ψ̂†nψ̂n+1

〉
+
〈
ψ̂†n+1ψ̂n

〉)
i
2

(〈
ψ̂†nψ̂n+1

〉
−
〈
ψ̂†n+1ψ̂n

〉)
 . (19)

The top entry, site-centred order, gives the expectation value of the charge density at site

n. The second entry, bond-centred order, is a measure of the same quantity on the bond

between sites n and n+1. It refers to the spin-singlet p-wave CDW in Nayak's generalized

classi�cation [17]. The third entry relates to the current in the system (neglecting external

currents). This is expected to be zero here, since it would correspond to current �owing

into site n, a process which cannot conserve charge in 1D. Zero will indeed turn out to

be the self-consistent solution later on. If we were working in 2D the current term would

relate to currents running round plaquettes, and would thus measure the presence of a local

gauge �eld A. In this case it would pertain to d−wave symmetry, which in the spin-singlet

state gives the staggered �ux lattice [17, 18]. The physical quantities associated with the

order parameters are shown schematically in Figure 8.

Applying the Fourier transform

ψ̂†n =
∑
k

exp (−ikn) ψ̂†k

gives the k−space expression
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Figure 8: The order parameter of Equation 19 has components corresponding to site
order (left, upper), bond order (left, lower), and current order (right). The images show
pure examples of each type of order, with a wavelength of two unit cells in each case.
Note that current order is unde�ned in one dimension, and corresponds to magnetic �ux
through plaquettes in 2D.


site order

bond order

current

 =
∑
k′

exp
(
−ik′n

)∑
k


1

exp (−ik′/2) cos (k + k′/2)

− exp (−ik′/2) sin (k + k′/2)


〈
ψ̂†k+k′ψ̂k

〉
.

(20)

Considering this expression in combination with the interaction Hamiltonian in Equation

18, plus some trial-and-error and guesswork, resulted in my proposing the ansatz

2h
∑
k

Rk′/2


1

− cos (k)

− sin (k)


〈
ψ̂†k+k′ψ̂k

〉
=

∆Qδk′,Q + ∆∗
Qδk′,−Q

2
+


2hρ̄δk′,0

0

0

 (21)

with rotation matrix

Rk ,


1 0 0

0 cos (k) − sin (k)

0 sin (k) cos (k)

 .

The three-component complex vector ∆Q provides the order parameter for the phase tran-

sition. From the right hand side of Equation 21, it is clear that to implement the ansatz is

to make the physical assertion that it is energetically favourable to couple all states k and

k + Q with Q �xed. This is simply a statement of the existence of the Peierls instability
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in 1D systems.

Substituting the top component of the ansatz into Equation 20 and writing

∆j = |∆j | exp (iθj) ,

with j ∈ [1, 3] the component of the order parameter vector, gives

〈
ψ̂†nψ̂n

〉
=
|∆1|
2h

cos (Qn− θ1) + ρ̄. (22)

From this it is apparent that the ansatz gives a charge density wave with wavevector Q,

where ρ is the average charge density of the disordered system (which is located entirely

on the sites). Substituting the remaining components gives


site order

bond order

current order

 =
1
2h


|∆1| cos (Qn+ φ1) +2hρ

|∆2| cos (Qn+ φ2)

|∆3| cos (Qn+ φ3)

 (23)

with φ1 = −θ1, φ2 = Q/2 + π − θ2, and φ3 = Q/2 − θ3. The ansatz therefore leads to a

physically sensible charge distribution in real space. Treating n as a parametric variable,

Equation 23 parametrizes a closed curve in R3; in fact it is a planar ellipse5. As an

interesting aside, if the wavevectors Q were allowed to di�er between the components of

the vector in Equation 23, the closed curves would generalize to the family of Lissajous

knots [19]. Such a situation, however, would be rather unphysical.

The φj come from the complex phase of the order parameter. Without including a coupling

to the lattice we expect that the phase of ∆ is irrelevant to the free energy of the system,

giving a U (1) symmetry. If a coupling to the lattice, or any other mechanism for that

matter, preferentially selects a phase on ∆, the U (1) symmetry is broken. From Equation

23 we see that the associated Goldstone mode will correspond to sliding the CDW.

Substitution of the ansatz into the interaction Hamiltonian gives

5Strictly the second and third entries in the vector should also have constant terms added, corresponding
to the average kinetic energy and the average current in the unperturbed system. Both of these are set to
zero in our Hamiltonian - this constitutes a gauge choice E0 , 0 and Aµ , 0.
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Ĥint =
∑
k

ΞTkR−Q/2∆Qψ̂
†
kψ̂k+Q + ΞTkRQ/2∆

∗
Qψ̂

†
kψ̂k−Q + 4hρ̄ψ̂†kψ̂k (24)

de�ning

ΞTk , (cos (Q) , cos (k) , sin (k)) . (25)

The relatively simple form of Equation 24 makes use of the relation

RQΞk = Ξk+Q.

The full Hamiltonian now reads

Ĥ =
∑
k∈BZ

εkψ̂
†
kψ̂k + ΞTkR−Q/2∆Qψ̂

†
kψ̂k+Q + ΞTkRQ/2∆

∗
Qψ̂

†
kψ̂k−Q (26)

de�ning the energies

εk , −2t cos (k) + 4hρ̄− µ. (27)

As in the half-�lling case it is easiest to proceed by rewriting the theory in the reduced

Brillouin zone. Whereas, in the half-�lling case, the reduced Brillouin zone was half the

size of the original, in the case of rational �lling p/q the vector connecting states at EF is

given by Q = 2kF = 2πp/q, and so in this case BZ → BZ/q. The Hamiltonian becomes

Ĥ =
∑
k∈BZ

q

q∑
m=1

εk+mQψ̂
†
k+mQψ̂k+mQ (28)

+ΞTk+mQR−Q/2∆Qψ̂
†
k+mQψ̂k+(m+1)Q + ΞTk+mQRQ/2∆

∗
Qψ̂

†
k+mQψ̂k+(m−1)Q

where k+qQ ≡ k. The folding back of the band into the reduced Brillouin zone is shown for

di�erent �llings in Figure 9. The simplicity of the back-folding trick hides some interesting

topology which it is worth considering in more detail before proceeding.
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Figure 9: Reducing the Brillouin zone in the case of rational �lling p/q = p/3 (top) and
p/11 (bottom). The numerator changes the chemical potential but not the backfolded
structure. The original band is shown in red. The �gures show the unperturbed band
being folded back. This is simply a mathematical rewriting of the problem, but becomes
very useful when the interaction is turned on. In that case gaps open up at the crossing
points in the reduced zone. The hopping parameter t = 1.
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Figure 10: A torus, T 2, is the surface swept out in passing one circle S1 around another,
hence T 2 ≡ S1 × S1.

3.2 The Topology of Brillouin Zone Reduction

For matters of topology it will be convenient to again think in the continuum limit of

lattice spacing→ 0, so that the Brillouin zone (BZ) is a continuous line of �nite length

[0, 2π) with the ends of the line equated. Topologically this de�nes a circle, S1. In 2D

the Brillouin zone can be chosen to be a rectangle with parallel sides equated. Rolling the

rectangle up to match the edges appropriately reveals that this is a torus, T 2, often written

S1 × S1. The latter notation indicates that a torus can be considered to be the surface

swept out by a circle carried along a perpendicular circle (see Figure 10). In n dimensions

the Brillouin zone has the topology of an n−torus, Tn ≡ S1 × S1 × . . . S1.

I will restrict attention to 1D here, and will consider the case that it is desirable to express

the full BZ as q reduced BZs. Imagine the BZ as a length of string. Now take the

string, and make q equally-spaced marks on it. Reducing the BZ means treating any two

neighbouring marks as equivalent, so put a loop in the string to make the marks touch.

Before the splitting is introduced by Ĥint the marks all pile up, giving a bouquet of q

circles meeting at the same point. This sounds a bit singular, so to regularize we can

consider Ĥint to always be turned on at least in�nitesimally. Then the intuition a�orded

by the string is good: neighbouring points touch, but hopping two points is not equivalent

to hopping one. The situation is shown in Figure 11.
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Figure 11: Backfolding the Brillouin zone into the reduced zone scheme, points separated
by Q are made equivalent. If the original BZ is topologically a circle, the zone backfolded
q times is a circle with q loops, where overlapping lines are considered to be touching (but
hopping from one to the other costs energy ∆).

𝚫

k

k0
k0+Q

Figure 12: Continuing from Figure 11, our original BZ was a closed loop. Backfolding
to q reduced BZs introduces q sub-loops. An electron can either move along the reduced
BZ, k, via the �eld operator ψ̂†

k+k′ ψ̂k, or it can scatter between RBZs via a `reduced
Umklapp' process, costing it ∆.

The �eld operator ψ̂†k+k′ψ̂k, annihilating an electron at k and creating one at k+k′, `hops'

along the RBZ (sub-loop of the string) a distance k′. From Ĥint there is now a second

allowed process, costing energy ∼ ∆, which hops between neighbouring RBZs. Hopping

two RBZs costs ∼ ∆2 and so on. These hops correspond to `reduced Umklapp processes',

scattering events between reduced Brillouin zones. A convenient representation is to place

the string on a torus, which it winds q times at a constant rate (pitch). This is shown

in Figure 12. An electron has two options: to move smoothly along k, along the string,

in-keeping with the RBZ story, or to break the illusion and hop o� the string and back on

a distance Q further along. The latter option costs it ∆.

What about the numerator of the �lling fraction, p? The story so far has only concerned

the topology of k-space. In fact the BZ has an energy (εk before perturbation) associated

with each k. When backfolding the bands into the RBZ each segment of the full BZ brings

its piece of εk along with it. When the splitting perturbation is turned on the result is q

sub-bands in the RBZ, and p of them are �lled.

A p/q-�lled BZ also has a convenient representation in this scheme, as a string which wraps

the torus q times per circuit but which takes p circuits to return to itself. The string forms

a knot, in the mathematical sense of a closed 1D line embedded in 3D Euclidean space
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Figure 13: The (2, 4) torus knot. A simple way to generate the knots is to draw a
square with opposite sides equated; a (p, q) knot hits the right wall q times and the top
wall p times before returning to itself. Geometrically our system requires equal spacing
between the intersections with the walls (I have relaxed this constraint for the purposes
of simplifying the picture). Bringing the equivalent sides into contact forms the torus.
Removing the torus leaves the knot. In this case we see that the (2, 4) torus knot is
actually two linked `unknots'. In general an (lp, lq) knot decouples to l linked (p, q)
knots.

(the same as an everyday knot but with the ends stuck together) [20, 21]. The fact that

the knot lies on the surface of a torus de�nes it to be a (p, q) torus knot. If either p or q

are unity the knot is the trivial `unknot' (a circle with no complications). If the knot is of

the form (lp, lq) it decouples into l linked (p, q) torus knots, shown for the particular case

of (2, 4) in Figure 13.

3.3 The Self-Consistency Condition

Returning to Equation 28 and writing the Hamiltonian as a matrix gives

Ĥ =
∑
k∈BZ

q

(
ψ̂†k+Q, ψ̂

†
k+2Q, ψ̂

†
k+3Q, . . . , ψ̂

†
k+qQ

)
Hk



ψ̂k+Q

ψ̂k+2Q

ψ̂k+3Q

...

ψ̂k+qQ


(29)

with Hk de�ned by the matrix



εk+Q ΞTk+QR−Q
2
∆Q 0 . . .

(
ΞTkR−Q

2
∆Q

)∗(
ΞTk+QR−Q

2
∆Q

)∗
εk+2Q ΞTk+2QR−Q

2
∆Q 0 0

0
(
ΞTk+2QR−Q

2
∆Q

)∗
εk+3Q

. . . 0
... 0

. . .
. . . ΞTk+(q−1)QR−Q

2
∆Q

ΞTkR−Q
2
∆Q 0 0

(
ΞTk+(q−1)QR−Q

2
∆Q

)∗
εk+qQ


.
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As in the half-�lling case, the o�-diagonal terms are an indication that electrons and holes

do not form well-de�ned quasiparticles in the presence of the interaction. It should again

be possible to form a linear combination of them which is. Diagonalizing the matrix with

Hk = UkDkU
†
k

gives

Ĥ =
∑

k∈BZ/q

(
γ̂†k+Q, γ̂

†
k+2Q, γ̂

†
k+3Q, . . . , γ̂

†
k+qQ

)
Dk



γ̂k+Q

γ̂k+2Q

γ̂k+3Q

...

γ̂k+qQ


where the annihilation and creation operators for the new well-de�ned quasiparticles are

de�ned as linear combinations of the original particle/hole operators:

γ̂α =
∑
β

U †
αβψ̂

β

γ̂†α =
∑
β

ψ̂†βUβα

with the elements α, β ∈ [1, q]. Since Hk is Hermitian, U is unitary, i.e. U † ≡ U−1. I have

dropped the k subscript for clarity. A self-consistent solution involves �nding

〈
ψ̂†αψ̂β

〉
=

∑
µν

U †
αµUνβ

〈
γ̂†µγ̂ν

〉
(30)

and substituting into Equation 21.

The operator γ̂†k creates a well-de�ned fermion with momentum k, governed by the Fermi-

Dirac statistics f :

〈
γ̂†µγ̂ν

〉
= δµνf (Dµµ)
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which reduces Equation 30 to

〈
ψ̂†αψ̂β

〉
=
∑
µ

U †
αµUµβf (Dµµ) .

Returning to the ansatz, Equation 21, and choosing the k′ = Q term, gives the self-

consistency condition

∆Q = 4h
∑
k′∈BZ


1

− cos (k′ +Q/2)

− sin (k′ +Q/2)


∑
µ

U †
1µUµqf (Dµµ) (31)

where 1 and q could be any two neighbouring elements in the U matrices. As a quick

check, Q = 2π 1
2 gives

∆ = 4h
∑
k′∈BZ


1

sin (k′)

− cos (k′)


[
U †

11U12f (D11) + U †
12U22f (D22)

]

= 4h
∑
k′∈BZ


1

0

0


[
U †

11U12f (D11) + U †
12U22f (D22)

]

where the disappearance of the lower two components follows from the fact that the term

in brackets is not only periodic with the full BZ, but in fact has the periodicity of the RBZ

(in this case π). The expression agrees with the half-�lling case from Chapter 2, where the

self-consistency condition read

(∆ + ∆∗) = 4h
∑
k′∈BZ

(
1 + cos

(
k − k′

)) (∆ + ∆∗)√
ε2k′ + (∆ + ∆∗)2

tanh
(

1
2
β

√
ε2k′ + (∆ + ∆∗)2

)

and the cos (k − k′) term corresponds to what is now the bond order term in the new

formalism. Note that the half-�lling, 2× 2, case is the only one in which element (1, 2) ≡

(1, q). This explains why the equation features ∆+∆∗ whereas the general case now under
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consideration features only ∆.

3.4 Hofstadter's Butter�y

Before solving the rational-�lling problem self-consistently, I wish to consider the special

case ∆T
Q = t

cos(Q) (1, 0, 0). From Equation 23 this corresponds to a completely site-centred

CDW of the form

〈
ψ̂†nψ̂n

〉
=

t

2h
cos (Qn)
cos (Q)

and no current in the system.

In this special case the problem simpli�es to �nding the eigenvalues of the matrix6

Hk=t



−2 cos (k +Q) 1 0 0 1

1 −2 cos (k + 2Q) 1 0 0

0 1 −2 cos (k + 3Q) 1 0

0 0 1
. . . 1

1 0 0 1 −2 cos (k + qQ)


(32)

for all possible k and all rational �llings p/q. With the o�-diagonal perturbation set to

zero the allowed energies all range from −2t to 2t (the unperturbed bandwidth). Turning

on the interaction opens up a CDW gap at EF /t = 4p/q−2, but also opens gaps at a total

of q − 1 places in the band, whenever the backfolded bands cross.

For �xed k and Q = 2πp/q there will be q eigenvalues for each p, but many of these will

be degenerate. To solve numerically, it is necessary to pick a sampling of k ∈ [0, 2π), so I

de�ne

k = 2π
kint
kmax

with kint and kmax integers. Let q range from 1 to qmax, and p range from 1 to q. In Figure

14 I show the result of plotting the allowed energy states (eigenvalues of the matrix) against

6The o�set 4hρ− µ was set equal to zero for simplicity, since it causes a linear shift in eigenvalues and
has no e�ect on eigenvectors.
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Figure 14: Blue: the allowed energies, sampled at 200 k-points (y-axis from −4t to 4t),
versus �lling fraction p/q for integer p < q and q ≤ 50 (axis from 0 to 1), after forming a
purely site-centred CDW with order parameter ∆1

Q = t
cos(Q) . Red: the additional points

present in the Hofstadter butter�y.

the �lling fraction p/q, for the case qmax = 50, kmax = 200. The result appears at �rst

glance to be fractal; in fact it bears a strong resemblance to the famous fractal known as

the Hofstadter butter�y [16]. The two are contrasted in the �gure.

Hofstadter was considering the allowed energy states of electrons con�ned to a 2D lattice

with a perpendicular magnetic �eld applied. If a current is present, and the B �eld is strong

enough, the electrons will move in closed loops, and as they traverse the loops they pick

up a phase proportional to
�

A · dl = Φ, the �ux enclosed. Destructive interference rules

out any orbits other than those enclosing an integer multiple of the �ux quantum Φ0. Say

we set up a square lattice and magnetic �eld such that one �ux quantum is enclosed upon

hopping around one unit cell. The lattice spacing would be enormous in that case, but a

similar set-up has recently been realized through use of a Moiré superlattice in graphene

bonded to single-layer Boron Nitride with a di�erent orientation [22]. Now, if we halve the

�eld strength so that Φ/Φ0 = 1/2, the electrons must instead hop around two unit cells.

For Φ/Φ0 = p/q the electrons must hop around q unit cells, and the area of the Brillouin

zone has been reduced by a factor of q (the reduced Brillouin zone being referred to in this

case as the magnetic Brillouin zone).
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The di�erence between Hofstadter's case and that considered here comes about because

Hofstadter's case, and that of the quantum Hall e�ect, lives in a two-dimensional space

k = (kx, ky), whereas the CDW problem I am considering here is 1D. In fact, there is a

second degree of freedom hidden in the CDW problem in the form of the complex phase

of the order parameter; including this generates the full Hofstadter spectrum, a point

returned to in detail in Section 3.5.1.

Note that the strong magnetic �eld in Hofstadter's case e�ectively reduces that 2D problem

to one dimension by restricting the electrons to move on closed orbits, removing one degree

of freedom. This goes some way to explaining how it is that the same spectrum can result

from considering only a 1D band7.

Note that non-coprime �lling factors lp/lq, l ∈ Z should be excluded from the plot. In-

cluding them qualitatively changes the plot obtained. For half-�lling, 1/2, the expected

result from Chapter 2 is two sub-bands with a gap between them. Including the non-

coprime fractions 2/4, 3/6 etc. acts to �ll the gap in the limit of in�nite terms. Of course,

2/4 ≡ 1/2, since a density of 1 electron in 2 unit cells is the same as 2 electrons in 4 unit

cells. Here qmax merely refers to the largest denominator of �lling fraction considered, but

the system could well have a continuum of sites.

Mathematically this works as follows: for the 1/2 �lling case

Ĥ = t
∑

k∈BZ/2

(
ψ̂†k+π, ψ̂

†
k

) 2 cos (k) 1

1 −2 cos (k)


 ψ̂k+π

ψ̂k


and for the 2/4 �lling case

Ĥ = t
∑

k∈BZ/4

(
ψ̂†k+π, ψ̂

†
k, ψ̂

†
k+π, ψ̂

†
k

)


2 cos (k) 1 0 1

1 −2 cos (k) 1 0

0 1 2 cos (k) 1

1 0 1 −2 cos (k)





ψ̂k+π

ψ̂k

ψ̂k+π

ψ̂k


.

7The question of the dimension of the system is returned to in detail when considering the case of
incommensurate �lling in Section 4. In this case it has been argued [23], controversially, that it is conversely
the 1D system which takes on 2D properties.
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At �rst it appears that the 4× 4 matrix will have di�erent eigenvalues8 to the 2× 2. The

trick is that two sets of two of the components in the ψ̂ vector are identical, so we have to

be careful with diagonalizing the matrix. Whatever method is employed, the result should

be identical to the 2 × 2 case, so the easiest method is simply to neglect non-coprime

fractions.

The argument can be cast in the language of RBZ topology developed in Section 3.2. As

noted there, the p/q-�lling case corresponds to mapping the circular Brillouin zone to a

(p, q) torus knot. For lp/lq-�lling this gives an (lp, lq) torus knot, which is in fact a torus

link comprising l copies of a (p, q) knot. Physicality requires that we unlink the knots from

one another. The situation is shown in Figure 13.

As a �nal intriguing note, the image which is generated in the limit of erroneously including

all non-coprime fractions is precisely the full Hofstadter spectrum! I am at a loss to explain

this result either physically or mathematically.

3.5 The Topology of Hofstadter's Butter�y: Berry's Phase

The Hofstadter spectrum originally arose in the context of the integer quantum Hall ef-

fect. The experimental set-up has electrons con�ned to a thin sheet which I'll de�ne to

be perpendicular to ẑ. This is nowadays generally done by use of a semiconductor het-

erojunction, although Hall himself used a thin layer of gold leaf on a glass plate [24]. A

magnetic �eld is directed along ẑ, and an electric �eld along x̂ (pictured in Figure 15).

In the standard Hall e�ect a transverse `Hall voltage' is detected in the ŷ direction owing

to the de�ection of the current-carrying electrons by the B �eld. When the experiment

is carried out at su�ciently low temperature in a su�ciently high B �eld the `Hall con-

ductance' in the transverse direction, σxy, is precisely quantized into integer multiples of

e2/2π~ [25]. This precise quantization, now used as a standard of conductance, provided

the �rst major instance of topology playing a vital rôle in condensed matter physics [26],

although re-interpretations of work on superconductivity suggest that this provided an

earlier example [27]. In this section I will investigate whether and how topology enters our

case by considering the `Berry phase' [28] of CDW systems.

8In fact John Hannay has pointed out that the eigenvalues of the 4 × 4 matrix include those of the
2× 2 as a subset. More generally the eigenvalues of the lp/lq matrix contain those of the p/q matrix plus
q (l − 1) others.
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B

Vxy

Figure 15: The set-up of the quantum Hall e�ect. A current enters the sample through
the leads on the end; a magnetic �eld through the plane leads to a transverse voltage
Vxy, and at su�ciently low T and high B the transverse (Hall) conductivity σxy becomes
precisely quantized in units of e2/2π~.

The Berry phase, an example of a geometric phase, has become so ubiquitous in physics

that creating a de�nition encompassing all the e�ects associated with it is not an easy task.

The key requirement is that the quantum evolution equation (often Schrödinger's equation)

is parametrized by some continuous variable. Until the early 1980s it was believed that

the vectors of the Hilbert space completely specify the state of the system - overspecify

it, in fact, since a global phase cannot be observed. Berry's question was whether, upon

adiabatically traversing a closed loop in the parameter space, we necessarily return to the

same state in the Hilbert space. Remarkably the answer may be `no', in the case that the

parameter space has some nontrivial geometry or topology.

A classic illustrative example is the Aharonov-Bohm e�ect, in which a two-slit experiment

is carried out with electrons and a solenoid is used as the slit separator [29]. As the

magnetic �eld in the solenoid is increased, the two-slit pattern observed on the screen

shifts along, despite the fact that the magnetic �eld outside an in�nite solenoid is zero

(so the electrons never move through the B �eld itself). The continuous parameter in

this case is the magnetic �ux enclosed by a real space electron path, and the nontrivial

topology arises because the electronic wavefunction is required to be zero at the location

of the solenoid. The resulting punctured plane of allowed positions is multiply-connected:

winding di�erent numbers of times around the puncture causes the wavefunction to pick up

a di�erent phase, and interference of the paths leads to the observed shift in the interference

pattern.
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B

Figure 16: The Aharonov Bohm e�ect provides an illustrative example of the Berry
phase. The red and black paths enclose di�erent amounts of magnetic �ux, and interfere
with the blue path di�erently. The problem can be decomposed into the topologies of the
paths (speci�cally their linking numbers with the solenoid).

While one might have expected a unique wavefunction 〈x|u〉 (I will use ket |u〉 rather than

|ψ〉 to distinguish from second quantized operators ψ̂†) to be ascribable to each point in

space up to overall phase, in fact uniqueness is obtained only when additionally specifying

the linking number of the electron's path with the solenoid. The situation is shown in

Figure 16. In this case the phase at a point is quantized in units of the �ux: quantized

because for any de�nition of `encircling' the solenoid (any gauge choice) a path must

encircle it an integer number of times. The quantization is an indication of a nontrivial

topology rather than geometry, but in this case the observable e�ect is dictated by the

geometry, the continuously variable magnetic �ux. In other cases the observable relates to

a `topological phase' and leads to quantization of some quantity.

The e�ect is now commonly explained by borrowing the language of �bre bundles from

the mathematical literature. Taking a concrete example, it was noticed by Zak [30] that,

in condensed matter, we regularly appeal to Bloch's theorem to label Hamiltonians by

wavenumber k, and that k provides a continuously varying parameter of the form required

for Berry's construction. At each k we have a di�erent Hilbert space, with a di�erent

Hamiltonian Ĥk and eigenkets |uk〉9. Each Hilbert space forms a `�bre', and the set

of all these Hilbert spaces forms a `�bre bundle'. Varying k jumps us between �bres,

and returning to the original k may end up with us at a di�erent point on the original

�bre, depending on the curvature of the underlying manifold. The situation is illustrated

9Note that the ket itself if labelled by k; it is not projected into k space.
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Figure 17: The �bre bundle description of the Berry phase. The Hamiltonian is
parametrized by some variable taking a value on a continuous manifold, in this case
the Bloch wavevector k in the Brillouin zone. Each point on the manifold has a di�erent
Hilbert space associated with it called a `�bre' (the black lines, spanned by the possible
eigenvectors of Ĥk). The set of all �bres is a `�bre bundle'. Traversing the closed red path
on the base space (a Brillouin zone torus here) traverses the blue path through the �bre
bundle. Despite returning to the original �bre the state may have changed by a phase, in
this case |u〉 → exp (iθ) |u〉.

schematically in Figure 17.

The Berry phase acts as a measure of nontrivial geometry [28]. Quantized Berry phases

are an indication of nontrivial topology [31]. In all cases the phase can be thought of as

being the result of having `discarded' some information about the system10, and replacing

it with a parameter. In the Aharonov-Bohm e�ect the discarding of information comes

in by treating the electrons as living on a 2D punctured plane, where they really live

on a multi-sheeted Riemann surface. The appearance of Hofstadter's butter�y, with its

known topological associations, provides a motivation to search for a similar discarding

of information in the CDW story considered so far. Indeed, such a discarding does come

about during the formation of the CDW. Before discussing this I will �rst establish some

further background on the rôle of phases in the CDW problem, and the quantization of

the Berry phase in the integer quantum Hall e�ect.

3.5.1 The Order Parameter Phase: Sliding the CDW

Let us consider again the Hofstadter case of Section 3.4, but this time explicitly include

the CDW phase: ∆Q = t
cos(Q) (exp (iθ) , 0, 0). From Equation 23 this now corresponds to

10The idea of throwing away information brings to mind the concept of entropy. In fact the two concepts
are intimately related, as shown in reference [32].
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a CDW of the form

〈
ψ̂†nψ̂n

〉
=

t

2h
cos (Qn+ θ)

cos (Q)
.

The matrix requiring diagonalization is this time

Hk,θ =t



−2 cos (k +Q) exp (iθ) 0 0 exp (−iθ)

exp (−iθ) −2 cos (k + 2Q) exp (iθ) 0 0

0 exp (−iθ) −2 cos (k + 3Q) exp (iθ) 0

0 0 exp (−iθ) . . . exp (iθ)

exp (iθ) 0 0 exp (−iθ) −2 cos (k + qQ)


(33)

and I will be considering what happens as θ is caused to vary, i.e. the CDW is made to

slide. The sliding will be done adiabatically, which in this context means that θ changes

on a slow enough timescale that no band mixing occurs. Alternatively �rst order time-

dependent perturbation theory is valid, and the working presented here can be translated

directly into that language.

It is now clear that k and θ sensibly make up a two-dimensional parameter space. Accord-

ingly I will temporarily de�ne the 2D vector k , (k1, k2) , (k, θ). The eigenvectors must

be 2π periodic in k2 , θ, but in fact it turns out that for p/q �lling they are 2π/q periodic,

exactly as in k1 , k. For p/q �lling the Brillouin zone splits into q RBZs; splitting the

k2 direction similarly we can de�ne 1/q2 of the original Brillouin zone as the Magnetic

Brillouin Zone, MBZ (see Figure 18 for clari�cation). The terminology is borrowed from

[33] and makes use of the analogy to the quantum Hall e�ect; there is no true magnetic

�eld in our system.

The Berry phase in band n ∈ q is de�ned to be

γn =
�
∂RBZ

An · dk =
�
RBZ

Ωndk1dk2 (34)
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MBZ

RBZ

k

𝜃 BZ

Figure 18: Treating k and θ on the same footing, I maintain the de�nition of the RBZ
as BZ/q in the k direction, but introduce the de�nition of the magnetic Brillouin zone
MBZ = RBZ/q = BZ/q2 where the meaning of this is de�ned in the image (which has
q = 3). The total of the 9 squares is the BZ. The construction is convenient since the
eigenvalues and vectors have period 1/q in both directions.

with the Berry connection An and curvature Ωn de�ned to be

An = i 〈un|∇k |un〉

Ωn = ∇k ×An|ẑ (35)

with ∇k ,
(

∂
∂k1

, ∂
∂k2

)T
and ẑ de�ned to be perpendicular to the k = (k1, k2) plane. The

functions |un (k)〉 are de�ned to satisfy

Hk |un (k)〉 = εn (k) |un (k)〉

with Hk the q × q matrix de�ned in Equation 33 and

|un (k1, k2)〉 = exp (iφ)
∣∣∣∣un(k1 +

2π
q
, k2

)〉
= exp

(
iφ′
) ∣∣∣∣un(k1, k2 +

2π
q

)〉

with k considered a parameter to be varied.

Although the Berry phase and curvature are gauge invariant, the connection is not: it

encodes a mathematical redundancy in the system in which the combined transformation
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|u〉 → exp (iφ) |u〉

A → A−∇kφ

leaves the physical system unchanged. Four di�erent methods of calculating the Berry

phase are considered in the following section.

3.5.2 Methods of Calculating the Berry Phase

In this section I will outline four methods of calculating the Berry phase of a sub-band.

The four methods complement one another in calculations, and I employed all four in

producing the results of this thesis.

The primary calculational method was developed by Chang and Niu [33, 34], who consid-

ered the topology of the Hofstadter problem in detail. The method employs gauge invariant

quantities and involves surface integrals over the Berry curvature. From the de�nitions of

Equation 35 it follows that

Ωn (k) = i

[(
∂

∂k1
〈un|

)(
∂

∂k2
|un〉

)
− c.c.

]
= −2Im

(
∂

∂k1
〈un|

)(
∂

∂k2
|un〉

)
.

Inserting a complete set of states gives

Ωn (k) = −2Im
∑
n′ 6=n

[(
∂

∂k1
〈un|

)
|un′〉 〈un′ |

(
∂

∂k2
|un〉

)]

where the n′ = n term is dropped as it doesn't contribute to the sum11. After some algebra

the expression can be rewritten as

Ωn (k) = −2Im
∑
n′ 6=n

[〈un| ∂k1Hk |un′〉] [〈un′ | ∂k2Hk |un〉]
(εn′ − εn)

2 .

Note that this equation is explicitly gauge invariant. With the Hamiltonian of Equation

11The proof follows from∇k (〈un|un〉) = 0.
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Figure 19: The Berry curvature across the magnetic Brillouin zone (k, θ) ∈
[

BZ
3 , BZ

3

]
in

sub-bands {1, 2, 3} for 1/3 �lling. The integral across the RBZ (which happens to equal
the integral across the pictured regions in this case) gives the Berry phase γ, which comes
out as γ/2π = {1,−2, 1}. At 2/3 �lling we �nd γ/2π = {−1, 2,−1}.

33 it is a simple matter to take the derivatives analytically. Integrating the resulting Berry

curvature numerically over the RBZ to �nd the Berry phase gives 2π times an integer for

each sub-band. This is exactly what is expected by analogy to the quantum Hall e�ect,

discussed in more detail in Section 3.5.3. The sum of the phases over all bands is zero

point-by-point in k, since consideration of all sub-bands does not constitute a discarding

of information. For p/q = 1/3 the bands have Berry phases γn/2π = {1,−2, 1}. This is

shown in Figure 19.

To motivate the second Berry phase calculational method consider the following paradox.

From Stokes' theorem it seems a line integral of the connection around the boundary of the

RBZ should give the same result as a surface integral of the curvature across it - this was

assumed in Equation 34. However, the RBZ is topologically a torus, so has no boundary,

and an integral of the connection around the edge of the areas in Figure 19 does indeed

give zero in each sub-band individually.

To see what goes wrong it is necessary to make a gauge choice for A. Numerically, the

Hamiltonian is diagonalized by the Lapack ZHEEV routine, which has no speci�cation

for complex phase of the returned eigenvectors. This is a problem when dealing with the

connection since it is a gauge dependent quantity, and a randomized phase of the returned

eigenvectors causes randomized jumps in A across the Brillouin zone. To remedy this,

whenever ZHEEV is called we can multiply each eigenvector by exp (−i arg (u1)), where u1

is the �rst component of |u〉, making this component real. This is a form of gauge choice.

The resulting gauge-�xed connection should be well-de�ned everywhere.

What happens when u1 = 0, though? The answer is that there results a singular pole

in the connection. The location of the pole in the RBZ depends on the choice of gauge.
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Figure 20: The Berry connection An, a 2-component vector in each of the n sub-bands,
across the reduced Brillouin zone for the three sub-bands at 1/3 �lling. The height gives
the A vector's modulus, the colour its argument atan (A2/A1). The corresponding Berry
phases are γn/2π = {1,−2, 1}, which can be seen from the total `charge' (phase winding,
colour scale) of the poles. Note that singularities either correspond to zeroes or poles of
the connection, and it is the latter which dictate the Berry phase. The Brillouin zone is
slightly o�set from the origin for clarity.

Having made a choice the pole can be located, and a closed line integral of the connection

around this pole will give 2π times an integer. This is pictured in Figure 20.

In fact, if Chang's and Niu's method gives a result 2πm (m ∈ Z), there must be exactly

m poles in the connection per RBZ. These poles cancel the curvature arising from the

nonsingular part of the �eld. Stokes' theorem is recovered. The singularities will move

depending on the chosen gauge, but there must be m in total12.

This resolves the paradox of how the line integral of a �eld (in this case the connection)

around the reduced Brillouin zone can give zero when a surface integral of the curl of that

�eld is nonzero. A nice way to think of it is in terms of Riemann sheets. Assume for a

second there is exactly one pole in the connection per RBZ. Taking the line integral of A

on a path close to and surrounding the singularity gives 2π. Expanding the area of the

loop to include more of the reduced Brillouin zone, the value decreases as it picks up the

curvature in the rest of the �eld, until the loop hits the RBZ edge and the total exactly

hits zero (shown in Figure 20). The problem is, when the singularity is encircled, the line

jumps onto a di�erent Riemann sheet. To avoid this it is necessary to introduce a branch

cut, and it's this which provides the boundary needed to get a nonzero result from Stokes'

theorem. This is shown in Figure 21, along with a similar but distinct argument due to

Kohmoto [35].

Taking the correct contour gives the same result as the method of Chang and Niu, but

12Note that the zeroes of the wavefunction in real space, being observable, are �xed.
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Figure 21: Stokes' theorem states that the integral of the curl of a vector �eld across a
surface is equal to the line integral of that vector �eld around the boundary of the surface.
This suggests the surface integral of the Berry curvature across the RBZ should equal the
line integral of the Berry connection around the boundary of the RBZ - but the latter
has no boundary as it is a torus. A singular pole in the connection introduces a branch
cut, giving the required boundary. Top: at p/q �lling the space seen by the connection
is not a torus but q tori joined at the edges of the reduced Brillouin zones. Applying
Stokes' theorem to one torus, it is necessary to avoid the singularity but otherwise take
the obvious boundary. Bottom left: the situation with the two relevant reduced Brillouin
zones. Bottom right: Kohmoto's argument [35] is di�erent but related. He de�nes two
regions with di�erent gauge choices so that the phase is everywhere de�ned. The join
between the regions forms the boundary required, and the matching condition for the
gauges on the boundary gives the desired result.

an easier method in this case would be simply to count the singularities, and keep track

of whether they are positive or negative (depending on the direction of phase winding).

As expected for the 1/3 �lling case, in the three sub-bands there are {1,−2, 1} (positive)

singularities.

As an interesting aside, note that the argument just given applies to any vector �eld on a

closed manifold: if the �eld is to have a curl, it must also have singularities. An everyday

corollary of this is what John Hannay refers to as the `no wind theorem': given that the

Earth has no boundary (it's topologically a sphere, S2), and that the velocity �eld of the

wind is not everywhere zero (and therefore has a curl by the `hairy ball theorem' [21]), there

must be a point on the Earth's surface where the amplitude of the wind's velocity �eld

goes to zero in a singular manner (i.e. a vortex exists). The argument holds layer-by-layer

in the atmosphere.

The third method of Berry phase calculation, due to King-Smith and Vanderbilt [36],

allows calculation of closed line integrals of the connection without having to introduce

gauge dependent quantities. Their formula is
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γn = −Im ln
M−1∏
s=0

〈un (ks) |un (ks+1)〉

where s labels the sites along a closed path with the points s = 0, M equated. The phase

introduced by a gauge transformation at site ks gets cancelled by an exactly opposite

contribution from the next term on the path.

This method is computationally e�cient, but requires one to pick routes through the RBZ

based on the unknown pole structure of A. The logarithmic branch cut is quite apparent,

but the formula is clearly only valid on the �rst Riemann sheet (numerical logarithm

routines return the principal part of their kernel). A solution is to combine this method

with a choice of gauge. By examining the buildup of the Berry phase γ along the path

before it closes it is apparent whether the value is x or x+ 2π.

The �nal method is extremely computationally e�cient but is speci�c to the problem

considered here, and the equivalent problem of the quantum Hall e�ect. It was �rst stated

in reference [26], popularly known as TKNN according to the authors' initials. By the

admission of the �rst author, T (David Thouless), the derivation proceeds �with some

di�culty� [37], and I will omit the proof here. The result is a Diophantine Equation: an

equation containing integer coe�cients where integer solutions are sought.

In the present case, for �lling fraction p/q, the Berry curvature sn of the nth sub-band is

found from the equation

n = snp+ tnq (36)

where |sn| ≤ q/2 [26, 37, 31]. Solving the equation is extremely quick numerically. There

is a nice geometrical interpretation of Equation 36 which can be seen by de�ning vectors

sn ,

 sn

tn

 , p ,

 p

q


in which case the equation can be rewritten

n√
p2 + q2

= sn · p̂
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Figure 22: A geometrical interpretation of the Diophantine equation, Equation 36,
for the case p/q = 3/4 and n = 1. A vector sn = (sn, tn) is sought with projection
n/ |p| = 1/5 along p = (p, q). The vector is required to hit a site of the 2D (s, t) lattice,
and the vector with the smallest-magnitude s component is taken, in this case s1 = −1.

so solutions are vectors sn with a �xed projection n/
√
p2 + q2 along the line p. Note that

n ≤ q so the desired projection is always less than one. The situation is illustrated in

Figure 22.

3.5.3 The Berry Phase of CDWs: Quantized Particle Transport

In the previous section I demonstrated that when a p/q-�lled chain develops a period q

CDW, each of the resulting q sub-bands has a quantized Berry phase. Where is information

being discarded for this to be happening, and why is the phase topological rather than

geometrical?

When the Brillouin Zone, BZ, is restricted to a reduced Brillouin zone RBZ=BZ/q, there

are 1/q as many k states in the RBZ, but there are q times as many sub-bands. As this

is simply a mathematical reformulation there is no loss of information. Upon introducing

a coupling between states at EF , via the interaction Hamiltonian Hint, the bands split at

the degeneracies into q sub-bands, p of which are �lled. At this stage in the calculation,

however, we assign a label n ∈ [1, q] to each sub-band, and treat these sub-bands as in-

dependent. It is at this stage that information is lost: attention is restricted only to the

occupied sub-bands, and information about the unoccupied sub-bands is discarded. An in-

tuitive way to see how the Berry phase can enter is this: k-space is periodic with the period
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of the BZ, but upon forming a CDW it appears that the periodicity increases to BZ/q, and

therefore that |u (k = 0)〉 = |u
(
k = 2π

q

)
〉 = |u

(
k = 2 · 2π

q

)
〉 = . . ..; in fact these states are

only equal up to a phase, and the curvature of the sub-bands necessitates these phases be

nonzero. In this case the correct relation is |u (k = 0)〉 = exp (2πim/q) |u
(
k = m · 2π

q

)
〉,

so that the kets are still truly periodic over the full BZ.

In the IQHE the quantization of the Berry phase is observable either as a quantized Hall

conductivity σxy, seen by measuring the transverse voltage upon application of a longitu-

dinal current, or as an integer number of current-carrying 1D edge states on the boundary

of the 2D sample [25]. In the case of CDWs in 1D, the θ component of the parameter space

k = (k, θ) is rather abstract, and the observable quantity associated with the quantized

Berry phase is less clear.

Bearing in mind k2 = θ has been shown to give the phase of the CDW, it seems the problem

has to do with sliding a CDW and getting a current. This turns out to be the case [31];

varying θ over one cycle leads to a `quantized adiabatic particle transport'. The analogues

to the two currents jx, jy in the quantum Hall e�ect are now a current in real space j and

a current in the space of the CDW phase, jθ. By this it is meant that if the CDW were

dragged along the lattice through one wavelength (implementing a jθ current) a transport

of electrons (j current) would be induced from one end of the crystal to the other. The

number of electrons transported would be an integer given by the sum of the Berry phases

of the occupied sub-bands.

This result is surprising for a number of reasons. First, given that the system develops an

energy gap upon formation of the CDW, no conductance is expected at all. Second, there

is no a priori reason to expect an integer number of electrons to be transferred when the

electrons form a continuous probability distribution. Third, the sum of Berry phases of

occupied sub-bands up to a given gap can be negative, as in the upper gap at 1/3 �lling

which has sum of Berry phases equal to −1; in this case the net result of dragging the

CDW left through a full period is the transfer of one electron to the right! Perhaps most

fundamentally, by analogy to normal water waves, it is as if the movement of the wave

results in a net transfer of water molecules, which we know is not usually the case.
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Figure 23: Allowed energies (y-axis, range [−4t, 4t]) against �lling fraction p/q ∈ [0, 1].
The colour indicates the sum of the Berry phases up to and including each sub-band,
which gives the conductivity of the relevant gap (the number of electrons transferred
across the system upon dragging the CDW through a full period). The plot settings are
as in Figure 14.

3.5.4 Results: How the Butter�y Got its Colours

The methods of calculation of the Berry phases of the di�erent sub-bands have been ex-

plained in detail. For the purposes of colouring the butter�y with these phases, Figure 23,

the diophantine equation is the quickest, with a veri�cation of particular cases using the

method of Chang and Niu.

The colour of each sub-band in Figure 23 corresponds to the sum of the Berry phases of the

sub-bands up to and including that one. This corresponds to the Hall conductance of the

gap lying immediately above the sub-band, which is equal to the number of electrons which

would be transferred across the system if the CDW were dragged through one full period.

Of particular interest is the fact that the undersides of the wings of the butter�y have a

constant colour, indicating that the wing itself (band gap) has a constant conductance for

varying �lling fraction.
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3.6 Self-Consistent Solution

The results presented so far for rational �lling have been based on a carefully chosen order

parameter corresponding to a purely site-centred CDW. Mean �eld theory derives its utility

from its self-consistency. I will now consider the self-consistent solution, for the formation

of CDWs in 1D bands of rational �lling, by solving Equation 31 for each p and q at a

given h. As we don't meet true fractals in everyday life it would seem likely that the self-

consistent solution will lose its approximately scale-invariant quality. Hofstadter himself

considered this issue by allowing for �nite instrumental resolution, and showed that the

�ne-grained structure is washed out [16]. In fact the self-consistent butter�y loses its wings

even before appeal to sensible considerations such as Hofstadter's.

3.6.1 Varying Interaction Strength

The Coulomb interaction strength enters the Hamiltonian as the real variable h. I found

that for all �llings and interaction strengths the third component of the order parameter,

corresponding to a current, is zero: |∆3| = 0. This con�rms that there is no current in the

self-consistent 1D solution, as expected. Whatever complex phase is given to ∆ as a seed is

the result found self-consistently, so the U (1) symmetry of the problem is maintained. This

is again to be expected without a coupling to the lattice, as the CDWs have no knowledge

of absolute position and can slide without resistance.

The remaining components of the order parameter, corresponding to site- and bond-order,

are a good �t to

|∆1,2 (h)| ≈ 2Λ exp (−1/NQh)

where the cuto� energy Λ (cf. Section 2) is of the order of the bandwidth. The `generalized

BCS' guess for N , naïvely extrapolating the half-�lling approximate solution, following

Equation 17, would be

NQ = 8g (EF ) =
4

πt |sin (Q/2)|
.

For Q = 2π · 16 this predicts NQ = 8/πt, which is a surprisingly good match to the numerical
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Figure 24: Self-consistent solution for 1/6-�lling. Red: site-order|∆1 (h)|, blue: bond-
order |∆2 (h)|. The black line indicates the line 2.2 exp (−πt/h) which is of the form of
the `generalized BCS' guess. The hopping parameter t = 1 here.
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Figure 25: The self-consistent solution for di�erent interaction strengths h, with qmax =
18 and kmax = 200. Left, h/t = 0.5, middle, h/t = 1, right, h/t = 2. The abscissa is the
�lling fraction from 0 to 1, the ordinate the energy in units of the hopping parameter t.
Note that the unperturbed bandwidth is 4t, so these h values are unphysically high. A
point of interest is that even for large denominator q, say 10/17, a gap still opens up, so
∆ > 0.

result as shown in Figure 24.

In Figure 25 I show the self-consistent solution for the butter�y (allowed energies versus

�lling fraction) at di�erent couplings h. The symmetry about p/q = 1/2 is lost as a result

of including the Fermi function in the calculation: a signi�cant gap now opens up only at

the CDW wavevector, which is a more physical solution. For example, for 3/7 �lling, gaps

previously opened at 2π · p/7 for all p < 7, whereas now a signi�cant gap opens only at

p = 3.

Varying both the �lling and interaction strength it is evident that the site- and bond-order

parameters behave somewhat independently. Plots of |∆1,2 (Q,h)| are given in Figure 26.

Convergence of the self-consistent series requires about 20 iterations, so I applied a series-
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Figure 26: The self-consistent gap function as a function of Coulomb interaction
strength h/t and �lling fraction p/q. Left: site-order parameter |∆1| /t; Right: bond-
order parameter|∆2| /t.

acceleration method (speci�cally a Shanks transformation [38]). For all the cases I checked

this gave in 3 iterations the result of around 100 iterations of the original series. The cases

in which the Shanks converges more slowly are those where the self-consistent result is

zero. In these cases taking 3 iterations gives O
(
10−5

)
, which is still negligible compared

to the O
(
10−1

)
results of the other order parameter components.

Varying the magnitude of the start seed in the range [0, 1] has little to no e�ect on the

resultant magnitudes of the vectors, and the relative magnitudes of the three components

have similarly little e�ect. In all cases |∆3| = 0 up to the error given above. The phase of

the start seed exactly dictates the phase of the result. Using a seed (1, 1, 1) exp (iφ) and

varying φ ∈ [0, 2π] gave < 2% variation in magnitude of ∆1,2, but φ1,2 ≈ φ in each case

(with a small wobble).

3.6.2 Topology of the Self-Consistent Solution

Figure 27 shows the results for the self-consistent solution with h/t = 1, coloured by the

sum of Berry phases of the occupied sub-bands. Although the value of |∆Q (h)| varies

with �lling fraction Q = 2πp/q, the self-consistent value is never zero, meaning that no

gaps close up relative to the Hofstadter case of Figure 23. This means the two cases are

adiabatically connected, and the same diophantine equation can be used to colour Figure

27.

In reality the values of |∆| may become arbitrarily close to zero, and gaps should be
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Figure 27: The allowed energy levels (range ±2.5t) against �lling fraction p/q ∈ (0, 1),
q ∈ [0, 50] for the self-consistent solution with h = t. The colour of a sub-band indicates
the sum of the Berry phases of sub-bands up to and including that one. The full colour
scale C1 ∈ [−25, 25] is included (darker blue being more negative).
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Figure 28: The Berry curvature across the magnetic Brillouin zone for the case of
1/3 �lling, for the self-consistent solution with h = t. Although the values are di�erent
to the Hofstadter case of Figure 19, the integrals over the RBZ give the same results
{1,−2, 1}. This is expected since the value of ∆ is nonzero and the two cases are therefore
adiabatically connected.
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considered to be `closed' when of the order of thermal or disordering e�ects. When two

sub-bands meet, their Berry phases must add (proven in the next chapter). For a reasonable

choice of parameters this still allows at least the large gaps to remain open.
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4 Irrational Filling: Incommensurate Charge Order and Qua-

sicrystals

In previous chapters I have considered commensurate CDWs, where a rational �lling of

the system leads to a CDW with a period which is an integer multiple of the underlying

lattice. In this chapter I will consider the case of incommensurate charge density waves

(ICDWs). The �lling, being an irrational number, is no longer expressible as a fraction,

and the period of the resulting CDWs is an irrational multiple of the lattice spacing. I

will argue that such states are `quasicrystalline', in a sense to be described below, and will

use this fact to address a certain controversy which has arisen regarding the dimension of

quasicrystals as measured by the types of quantum number they are able to exhibit.

In Section 4.1 I provide some background on quasicrystals and a recent classi�cation scheme

of the possible topologies of free fermion theories known as the `Tenfold Way'. In Section

4.2 I investigate claims that quasicrystals are manifestations of higher-dimensional crystals

which, nevertheless, exist in our world. The argument is intricately tied to topology and

the aforementioned topological classi�cation scheme. I rephrase the issue in terms of

ICDWs and �nd agreement with the counter-argument - that it is only whole families of

quasicrystals which demonstrate a higher-dimensional topology. Finally, in Section 4.3,

I show how ICDWs can lead to a new, non-local, growth mechanism for quasicrystals,

potentially increasing the set of naturally-occuring real-world cases from two to in�nity.

4.1 Background

4.1.1 Quasicrystals

Figure 29 shows two examples of 2D quasicrystals. The de�nition of a quasicrystal is a

matter of some debate [39]. Loosely, the idea is this: a crystal is a periodic repetition of a

certain basic unit, the unit cell. The unit cell is tessellated to �ll all of space without any

gaps. A quasicrystal has two or more unit cells13. These are arranged in such a fashion

13Even this is debated. The Socolar-Taylor tile has been suggested as a one-tile quasicrystal in 2D,
but the tile requires markings and matching rules dictating which edges can touch which others. It is not
representable simply as a shape. In 3D the Schmitt-Conway-Danzer tile can form (something closely related
to) the brilliantly-named quasiperiodic structure Gyrobifastigium [39]. The task of �nding a single-tile
quasicrystal is known as the `einstein problem' (German for `one stone') and is closely related to Hilbert's
18th Problem.
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Figure 29: Two examples of quasicrystals in 2D: the left image has centres of 5-fold
symmetry, the right centres of 7-fold symmetry (this pattern has three unit cells). The
colours are purely aesthetic. I am indebted to Prof. Eric Weeks at Emory University for
the use of his C code to generate these images.

Figure 30: Generating a 1D quasicrystal by projecting a 2D crystal. Left: a 2D lattice
is drawn, in this case a square lattice. A line is drawn at angle θ, with tan (θ) irrational
such that the line hits precisely one lattice point. A second line is drawn parallel to the
�rst intersecting the opposite vertex of the same unit cell. Whenever a point of the 2D
lattice falls between the lines the point is projected perpendicularly. Right: the result
of the construction is a sequence of two unit cell lengths, cos (θ) and sin (θ), which is
never-repeating. The di�erent unit cells have been coloured di�erently for clarity.

that they �ll space, again without any gaps, but this time not in a periodic manner: there

is no minimal unit which can be tessellated periodically to generate the structure. The

quasicrystal is not periodic, but nor is it aperiodic: aperiodic tilings are random, but there

is an underlying structure to the arrangement of quasicrystal cells.

In fact, quasicrystals can be generated by the projection of crystals from a higher dimension

[40, 39]. This provides an elegant way to see the underlying order in the patterns. The

method is most easily demonstrated in the case of 1D quasicrystals formed by projection

of 2D crystals, shown in Figure 30.

In this case, a square lattice of unit side lengths is chosen in 2D. A line is drawn at an

angle θ to the lattice such that tan (θ) is an irrational number. It therefore hits precisely

one point of the 2D lattice. A second parallel line is drawn to intersect the opposite
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corner of the same unit cell. Whenever a point of the 2D lattice falls between the lines

it is projected perpendicularly onto them. It is easy to see that all distances between the

projected points are either cos (θ) or sin (θ), i.e. the construction generates precisely two

unit cell types. The sequence of Longs (L) and Shorts (S) contains no in�nitely repeating

�nite subsequence. This is guaranteed by the irrational tan (θ). The result is therefore

a quasicrystal as de�ned above. We also see that although the sequence of Ls and Ss is

not periodic it is still predictable, since we can appeal to the parent 2D lattice which is

periodic.

What would happen if we translated the parallel lines along the perpendicular connecting

them? There is a periodicity given by the 2D unit cell: once the lines are translated across

one cell's diagonal the original quasicrystal is returned. For each in�nitesimal shift en

route, however, points of the 2D lattice will drop in and out of the region between the

lines, changing the sequence of Ls and Ss. The lines will still hit precisely one lattice

site each. The original sequence of Ls and Ss has therefore been translated along the line

some amount. The family of quasicrystals generated by such a translation of the lines is

known as a `Local Isomorphism Class' [39, 40]. Two quasicrystals are locally isomorphic if

and only if every �nite string of Ls and Ss appearing in one appears in the other [40]. A

physical consequence is that two locally isomorphic quasicrystals have identical di�raction

patterns [39, 41].

The di�raction patterns of quasicrystals are particularly interesting. In real space a qua-

sicrystal is really a slice, rather than a projection, through a higher-dimensional crystal.

In reciprocal space, however, a quasicrystal is a true projection of a higher-dimensional

crystal. In the 1D case just considered, the 2D crystal's reciprocal lattice is formed in the

usual manner from the real-space lattice. All the points of this 2D reciprocal lattice are

then projected perpendicularly onto a line parallel to the slice direction. The result is a

dense covering of the space (similar to the di�raction pattern of a disordered system), but

a dense covering containing sharp, well-de�ned peaks (similar to the di�raction pattern of

a crystal). The situation is shown in Figure 31.

The dimension of the quasicrystal's reciprocal lattice is higher than that of its real-space

lattice. This is actually fairly intuitive: we now have two unit cell types, so the appearance

of two di�erent reciprocal lattice vectors is perhaps unsurprising. The di�raction pattern of
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Figure 31: The calculated Fourier transform of a 1D quasicrystal (arbitrary units) over
a range of viewing angles. The spectrum is dense, similar to disordered materials, but
also has sharp peaks similar to the Bragg peaks seen in crystals.

the 1D quasicrystal could just as easily be generated by considering the set of points which

can be reached by combinations of these vectors along a line - the covering will be dense

because the relative lengths of the vectors are incommensurate. The higher dimensionality

of the reciprocal lattice follows from rotating one set of vectors relative to the other, which

is a lot easier to visualise, but the true situation is returned to by projecting back onto

the one dimension which physically exists. Senechal argues for this as a de�nition of

quasicrystallinity: a quasicrystal is a system where the dimension of the reciprocal lattice

is higher than the dimension of the real-space lattice [39].

Some authors prefer a de�nition of quasicrystallinity which appeals to the violation of the

`crystallographic restriction theorem'. This theorem states that crystals in two or three

dimensions can have only 2-, 3-, 4-, or 6-fold symmetry [42]. In contrast, the quasicrystals

in Figure 29 show local regions of 5- and 7-fold symmetry respectively. The corresponding

di�raction patterns in fact have 5- or 7-fold global symmetry, following again from the fact

that the reciprocal lattice is a true projection of the higher-dimensional crystalline recip-

rocal lattice [39]. In Figure 32 I reproduce the �vefold-rotationally symmetric di�raction

pattern of the �rst known quasicrystal, which was found by D. Schechtman and others [43].

A de�nition of quasicrystallinity in terms of rotational symmetries rules out the possibility

of one-dimensional quasicrystals since there is no sense of rotational symmetry in 1D. As
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Figure 32: X-ray di�raction pattern of the �rst known quasicrystal, an alloy of Alu-
minium and Manganese. The pattern has 10-fold symmetry, forbidden by the crystallo-
graphic restriction theorem. Reproduced from [43].

I will be concerned solely with one-dimensional systems I will instead de�ne a 1D qua-

sicrystal to be a sequence of long and short unit cells generated by the projection method

in Figure 30. I will avoid further comment on higher-dimensional quasicrystals.

4.1.2 The Tenfold Way

In what has come to be known as Wigner's Theorem, the symmetries of a Hamiltonian fall

into two classes: unitary, U , or antiunitary [44]. An antiunitary operator can be written

as UK where K denotes complex conjugation:

KiK−1 = −i

↓

{K, i} = 0.

As an example, the time-reversal operator T in a basis of spin J can be written [45]:

T = exp (−iπJy)K

where the following relations hold:

{T , i} = 0

{T , J} = 0

{K,J} = 0.
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The square of an antiunitary operator is unitary; for T , noting that the above relations

imply [K, iJ ] = 0, we have

T 2 = exp (−iπJy)K exp (−iπJy)K

= exp (−2πiJy)K2

≡ exp (−2πiJy) .

The eigenvalues of Jy move in half-integer steps from zero, so the eigenvalues of T 2 are ±1

depending on the spin. We can therefore classify all possible gapped Hamiltonians14 into

three sets: symmetric under T 2, antisymmetric under T 2, and those with no T symmetry,

which I will label as T 2 = 0 in-keeping with convention. This classi�cation, developed by

Freeman Dyson in 1962, is known as the `Threefold Way' [46, 47]. The reasoning is based

on a general anti-unitary operator, not necessarily T . Dyson's work showed that15, writing

the Hamiltonian in a second-quantized basis,

Ĥ =
∑
k

(
ψ̂†k, ψ̂

†
k+Q, . . . , ψ̂

†
k+qQ

)
Hk



ψ̂k

ψ̂k+Q
...

ψ̂k+qQ


the elements of the Hermitian matrices Hk are either real R, quaternionic H, or complex

C, for the three cases T 2 = 1,−1, 0 respectively. More precisely:

1. if T 2 = 1 there exists a basis ei such that T ei = ei, and in this basis Hk is real and

symmetric.

2. As an example of a T 2 = −1 situation consider the interaction Hamiltonian with a

disordered potential Udis and spin-orbit coupling: Ĥint = Udis (x̂)+
∑

ijk εijkV
i
SOσ

jp̂k

with σ the vector of Pauli matrices, ε the Levi-Civita symbol and {i, j, k} ∈ [1, 3].

The Pauli matrices form a basis for SU (2), isomorphic to the group of quaternions

14Gapped Hamiltonians, with a nonzero energy gap between the ground and �rst excited state, are
assumed throughout this chapter.

15This is actually a re-interpretation of Dyson's work in the modern framework.
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(set H) [47].

3. If no symmetry is present, `T 2 = 0', the Hamiltonian is unrestricted and is therefore

complex Hermitian.

The disordering potential in (2) is important. Dyson was working with random matrices,

and assumed disordered systems. In any ordered systems there are many more symmetries

present, and while the above general reasoning should hold the three classes may not be

of much use.

Dyson's working, and the earlier work of Wigner on which it is based, makes heavy use

of group theory, and the technical aspects are beyond the limits of this thesis (and my

understanding) [46, 44]. It su�ces to say that Dyson's three classes can be given labels

according to the Killing-Cartan classi�cation of simple Lie groups. In particular,

1. T 2 = 1, group AI (orthogonal)

2. T 2 = −1, group AII (symplectic)

3. T 2 = 0, group A (unitary).

In 1996 Altland and Zirnbauer, also considering random matrices and disordered systems,

extended the classi�cation by adding a second distinct anti-unitary operator16, charge

conjugation symmetry C. As before, if C symmetry is present all Hk matrices are classi�ed

by C2 = ±1, otherwise the convention is to label the set C2 = 0. Among the physical

motivations for extending the scheme included the observation of Andreev re�ection, which

did not �t into the existing classes [47]. Choosing C as the second anti-unitary extends

Dyson's work de�ned on Hilbert space to the general multi-particle Fock space [49, 47].

The combinations of C and T give nine possible classes. A tenth comes about because a

system can have neither C nor T symmetry but can still have the combination S , CT .

Note that S is unitary, and if present as a symmetry its eigenvalue is unity. The full set

of ten possible symmetry classes is given in Table 1, where the corresponding simple Lie

groups which lend the classes their names are also listed.

The additional restrictions allow a more precise speci�cation of the possible forms of Hk.

The remaining classes fall into two categories. In the �rst set, C symmetry is present,

16In particle physics C is de�ned to be unitary [48]. The K is added here to give the correct conjugation
properties of BdG Hamiltonians in the usual form.

75



Class diagonal o�-diagonal simple Lie Group

A C C U (N) Unitary

AI R R U (N) /O (N) Orthogonal

AII H H U (2N) /Sp (2N) Symplectic

D C antisymmetric C SO (2N) BdG

C C symmetric C Sp (2N) BdG

CI 0 symmetric C Sp (2N) /U (N) BdG

DIII 0 antisymmetric C SO (2N) /U (N) BdG

AIII 0 rectangular C U (N +M) /U (N)× U (M) Chiral Unitary

BDI 0 rectangular R O (N +M) /O (N)×O (M) Chiral Orthogonal

CII 0 rectangular H Sp (N +M) /Sp (N)× Sp (M) Chiral Symplectic

Table 1: The classi�cation of possible quadratic Hamiltonians according to their be-
haviour under anti-unitary symmetries, after [50]. `Class' is the Killing-Cartan label for
the appropriate Lie group, the group itself listed in the rightmost two columns. This
restricts the possible forms of the on-diagonal and o�-diagonal parts of the Hamiltonian
matrix Hk as discussed in the text. The top three classes form Dyson's threefold way. The
next four fall into the Bogoliubov-de Gennes formalism, and the �nal three form the chi-
ral classes (except for AIII these are also BdG). The total result is the Altland-Zirnbauer
tenfold way [49, 50, 51, 47].

so Hk can be decomposed into 2 × 2 blocks corresponding to particles and antiparticles.

This is just the Bogoliubov-de Gennes basis used in superconductivity, or charge density

waves at half-�lling as we saw in Chapter 2. The on-diagonal blocks are either general

Hermitian or zero. The o�-diagonal blocks are either symmetric, M † = M , or anti-

symmetric, M † = −M . This gives four of the classes, listed as BdG in Table 1. The

remaining three cases are known as the chiral classes, where the operator S is known

as the chiral operator. These cases have zeroes for diagonal entries and rectangular o�-

diagonal matrices. The elements of these matrices follow those of the threefold way. Note

that any entry on the table with a nonzero C2 element can be written in the BdG form,

so of the additional seven entries introduced by Altland and Zirnbauer six are BdG type.

The remaining case has C2 = T 2 = 0, CT = 1.

Although I will not go into details regarding the simple Lie groups, an important result of

Altland and Zirnbauer was to observe that the �rst homotopy groups of these simple Lie

groups give the sets of possible edge states / topological phases in the di�erent classes in

di�erent dimensions. The �rst homotopy group can be thought of as the set of inequivalent

1D loops one can draw in a space, where two loops are equivalent if they can be continuously

deformed into one another. For example, the �rst homotopy group of the circle S1 is Z,

since the loop can wind the circle any integer number of times (the set of integers being

76



Class T 2 C2 S2 d = 0 1 2 3 4 5 6 7
A 0 0 0 Z 0 Z 0 Z 0 Z 0

AIII 0 0 1 0 Z 0 Z 0 Z 0 Z
AI 1 0 0 Z 0 0 0 Z 0 Z2 Z2

BDI 1 1 1 Z2 Z 0 0 0 Z 0 Z2

D 0 1 0 Z2 Z2 Z 0 0 0 Z 0

DIII -1 1 1 0 Z2 Z2 Z 0 0 0 Z
AII -1 0 0 Z 0 Z2 Z2 Z 0 0 0

CII -1 -1 1 0 Z 0 Z2 Z2 Z 0 0

C 0 -1 0 0 0 Z 0 Z2 Z2 Z 0

CI 1 -1 1 0 0 0 Z 0 Z2 Z2 Z

Table 2: The `Tenfold Way', after [50]. The rows are re-ordered relative to Table
1. Given the dimension of the parameter space d there are three possible topological
classi�cations: 0 for no non-trivial phases; Z2 for one non-trivial phase and one trivial
phase; and Z for any number of non-trivial phases. These sets are the homotopy groups
of the corresponding simple Lie groups, in the stated dimension [51, 52].

denoted Z). Thus π1

(
S1
)

= Z. On a sphere S2, however, all loops can be contracted to a

point, so π1

(
S2
)

= 0.

Although the working is complicated, the result is both very elegant and very relevant

to this thesis. It is shown in Table 2. The dimensions in question are the dimensions of

the parameter space rather than the physical space: to return to the familiar example of

rationally-�lled CDWs in 1D, while the physical space is 1D the parameter space, spanned

by k and θ, is 2D.

To illustrate some well-known examples from Tables 1 and 2: if d = 2 and no symmetries

are assumed (class A) we have the standard quantum Hall e�ect. In this case the dimension

of the parameter space matches that of real space. In the same system, if we add in time

reversal symmetry by removing the external magnetic �eld, but maintain T 2 = −1 by

having permanent spin-up and spin-down edge currents running in opposite directions (by

some mechanism), we have instead the quantum spin Hall e�ect (class AII) with its famous

Z2 topological number found by Kane and Mele [53]. In the same symmetry class but with

d = 3 is the Z2 topological insulator of Fu, Liang and Kane [54]. Other examples are the

topological superconductors in d = 2, with T 2 = 0 due to the non-zero angular momentum

of the Cooper pairs: C2 = 1, class C, d+ id; and C2 = −1, class D, p+ ip [55].

As a �nal note in this introduction, although the work to date has largely concerned disor-

dered systems, recent advances have been made in extending the classi�cation to include
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lattice symmetries (space groups) [56, 57, 58, 59]. In this thesis I will only be concerned

with 1D systems, which have only two possible space groups: trivial, and dihedral (mir-

rored). In fact it will turn out that even in the dihedral case the symmetry is spontaneously

broken by the CDW. This means that no complications arise due to the space group in

1D, and the Tenfold Way applies even in the crystalline case.

4.2 Are 1D Quasicrystals 2D?

A debate has arisen recently as to whether quasicrystals �t into the Tenfold Way directly,

or whether they instead adopt the topological properties of the higher-dimensional parent

crystal from which they are a mathematical projection (or, more precisely, a slice). In this

section I will outline both sides of the argument, before demonstrating the equivalence

between 1D quasicrystals and incommensurate CDWs. The mapping gives a new perspec-

tive from which to view the debate, and from this perspective it would seem it is only

families of quasicrystals, rather than individual members of the family, which demonstrate

the topological properties in question.

4.2.1 The Harper Equation

Kraus et al. consider a 1D tight-binding model with a periodic on-site modulation potential

[23]. The Hamiltonian takes the form

H (θ)ψn = t (ψn+1 − ψn−1) + λ cos (2πbn+ θ)ψn (37)

with lattice sites n, hopping parameter t, and modulation amplitude λ. In this case the

periodic modulation is considered to be externally enforced somehow, so the period b

and phase θ can be chosen arbitrarily. The similarity of the expression to the formulæ

appearing throughout Chapter 3, such as Equation 29, is no coincidence. In fact they

are all instances of the Harper equation [16], considered by Hofstadter in his study of the

quantum Hall e�ect which was discussed in Section 3.4. The parameter b, for example,

appears in Hofstadter's work as the �lling fraction Φ/Φ0 (the ratio of the magnetic �ux

through a plaquette to the �ux quantum), or in Chapter 3 of this thesis as the �lling

fraction of the band.
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Figure 33: A lattice with a periodically modulated on-site potential, where the periods
are incommensurate. The combination is quasiperiodic in the sense that, if we label the
sites A and the peaks of the potential B, the sequence of As and Bs forms a quasicrystal.
In this case the two unit cell types are BAAA and BAAAA.

If b is chosen to be irrational the period of the modulation is incommensurate with the

lattice spacing. The combined system, with its two incommensurate periods, can be con-

sidered quasicrystalline. In particular, if we assign an A to each lattice site and a B to

each peak in the on-site modulation, the sequence of As and Bs forms a quasicrystal, as

shown in Figure 33. There is some sleight of hand here: this labelling procedure removes

information about the proximity of the peaks, and in a true quasicrystal it is sometimes

(although not always) required that there be a shortest distance between peaks [39]. How-

ever, Kraus and Zilberberg show separately that the topological properties of Equation 37

are identical to those of true quasicrystals [60].

As explained in Section 4.1.1, 1D quasicrystals can be generated as projections of 2D

crystals by drawing two parallel lines which intersect the `parent' 2D lattice once each,

and projecting all points of the parent lattice which fall between the lines (Figure 30). By

way of close analogy, in Equation 37 we see that varying the parameter b has the e�ect of

rotating the parallel lines used in the projection. The rôle of θ, which gives the relative

o�set of the lattice and the periodic potential, is less clear. In fact varying θ corresponds to

translating the parallel lines perpendicularly to their direction. In terms of the quasicrystal

this generates di�erent quasicrystals in the same local isomorphism class. In the 1D picture

of Figure 33, if we vary θ and change the relative o�set of the lattice and potential, we mix

up the sequence of As and Bs, but all the generated sequences can be seen to be closely

related as the period of the potential is unchanged. In the 2D picture of Figure 30, if we

vary θ and translate the parallel lines, some of the points of the 2D lattice drop out of the

projection region and others drop in, mixing the sequence of quasicrystal unit cells, but

the sequences can be seen to be closely related as the angle of the lines is unchanged.

Kraus et al. used optical waveguide arrays to realize Equation 37. The spacing of the
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waveguides was made quasiperiodic along a line, then neighbouring waveguide arrays had

orderings of cells so as to e�ectively sweep through θ. The entire apparatus thus recognised

a whole `family' (local isomorphism class) of quasicrystals. The setup was used to demon-

strate topological optical pumping: injecting light into one end of the �rst quasicrystal

leads to its transference to the other end as the family of quasicrystals is swept though

[23, 61]. The pumping is quantized in precisely the same manner as the transverse Hall

conductivity in the quantum Hall e�ect, or the quantized adiabatic particle transport in

commensurate CDW systems given in Chapter 3.

When considering this particle transport in 1D CDW systems it was important to note

that there are two degrees of freedom in the problem: wavevector k and CDW o�set

from the lattice, θ. This explained the mathematical link to the 2D quantum Hall e�ect:

the second degree of freedom comes from θ rather than a second spatial dimension. The

same is true in the case of optical pumping in quasicrystals, this time with the degrees of

freedom being movement along the quasicrystal (translations generated by the wavevector

k coming from the Fourier transform of Equation 37) and θ switching between members

of the local isomorphism class. Physically, in the CDW systems I found that dragging the

CDW through a full period lead to the transfer of an integer number of electrons across

the sample. The equivalent here is that re-ordering the cells of the quasicrystal in the

correct manner, so as ultimately to return to the initial con�guration, transfers an integer

number of electrons across the system17. Mathematically the calculation proceeds in a

similar manner to that considered in Chapter 3, with an integral of the Berry curvature

over the 2D parameter space.

The claims so far are uncontroversial. The disputed argument is that, while the curvature

must be integrated over the full 2D space (k, θ) to �nd an integer Berry phase, for qua-

sicrystals the calculation is independent of θ, allowing us to assign a `Chern density' to

each individual quasicrystal18. The statement sounds innocuous enough; certainly there

exist functions of two variables which are in fact independent of one. The problem comes

in when considering the Tenfold Way. A 2D family of quasicrystals has no C, T , or S

17The experimental set-up involves observation of localized photonic edge states and does not involve
electrons, so I am imagining the quasicrystals being realized as 1D tight-binding systems.

18The quantized Berry phase of a sub-band is an example of the �rst Chern class, or more loosely the
Chern number.
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symmetries, placing the family in class A alongside the quantum Hall e�ect19. Families of

quasicrystals have two degrees of freedom, meaning the Tenfold Way predicts a set of Z

possible edge states (Table 2). This agrees with the waveguide experiment. If an individ-

ual quasicrystal already `knew about' the total integer Berry phase (a.k.a. Chern number)

of the family, via its Chern density, this would mean a truly 1D system in class A was

also demonstrating knowledge of the Z classi�cation - but the Tenfold Way states that 1D

systems in class A have trivial topologies.

If we take the Tenfold Way to be a statement of physics, the assignment of a Chern

density to an individual quasicrystal would mean that 1D quasicrystals are physically 2D

objects, as opposed to simply being mathematical projections of 2D crystals. This is

extremely exciting - the same group has subsequently proposed an experiment to measure

4D quantum numbers in 2D quasicrystals in a bid to show the �rst evidence of higher-

dimensional objects in the lab [62, 63].

An objection to the claim was stated clearly in a response by Madsen et al., who showed

that quasicrystals in fact have no special topological properties compared to ordinary crys-

tals, and that the two cases can be adiabatically connected without any gap closures [64].

It is only families of 1D quasicrystals which can demonstrate 2D topological behaviour.

Rather than reproduce the convincing arguments of reference [64] I will rephrase the debate

as a question about CDWs.

4.2.2 Quasicrystals as Incommensurate CDWs

The quasicrystalline systems in the previous section are closely related to incommensurate

CDWs. Kraus et al. consider a 1D lattice with a periodic on-site potential. ICDWs natu-

rally generate their own periodic modulation with period 2kF , so provide a real physical

example of such a system.

A clear way to see that ICDWs in combination with their parent lattices form quasiperiodic

systems is via a projection method, shown in Figure 34. Say we wish to make an ICDW

with period between one and two lattice lengths, such as
√

2. In this case we draw a

second copy of the lattice but with twice the spacing. We then rotate the new lattice

relative to the �rst until the sites, projected perpendicularly onto the original lattice, have

19Proven in Section 4.2.2.
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Figure 34: CDWs can be generated by a projection method. If the period of the CDW
is between one and two (left) we take a lattice with period two then rotate through φ
such that the projections onto the ion lattice gives the desired period. Provided cos (φ)
is irrational the generated CDW is incommensurate. The method demonstrates that the
system of ICDW-plus-lattice is quasicrystalline, since the sequence of CDW peaks (B) and
atomic sites (A) is never-repeating, but is `long-range ordered'. Commensurate CDWs
can trivially be made by the same method for example by setting φ = 0 (right).

the correct spacing of
√

2. Wherever there is a site of this projected lattice we place a

peak of the ICDW. Labelling these peaks B and the original lattice sites A the sequence

is quasiperiodic, just as in Figure 33. The sequence of As and Bs is never-repeating, as

guaranteed by the incommensurate periods, but it is `long-range ordered' in the sense that

the cell-type any distance along the line can be inferred by considering the second lattice

being projected onto the �rst.

The working of Chapter 3 demonstrates that commensurate CDWs support quantized

adiabatic particle transport. It is interesting to consider if and how they �t into the

Tenfold Way. Although the classi�cation was created for disordered systems, crystalline

systems in 1D can have only two space groups: trivial or dihedral. Varying the o�set of the

CDW from the lattice, θ, so that the CDW peaks move o� the lattice sites, any dihedral

symmetry which did exist is lost, leaving only the trivial space group. The Tenfold Way

applies.

In terms of topology the maths of commensurate 1D CDWs is identical to that of the

quantum Hall e�ect, coming from Harper's equation, suggesting they �t in class A with no

symmetries. The quickest way to verify this is via Table 1, which gives the symmetry class

based on the elements of the matrix Hk. In the case of commensurate CDWs Hk is given

in Equation 29 of Chapter 3. The matrix is dimension q× q for p/q �lling, meaning that it

cannot be represented as a 2× 2 matrix except in the special case of half-�lling (Chapter

2). This rules out the four BdG cases D, C, CI, DIII. The diagonal elements are non-zero,

which additionally rules out classes AIII, BDI, CII. Of the remaining three classes, the fact

that the o�-diagonal elements are necessarily complex places us in class A, with no C, T ,
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Figure 35: The order parameter ∆Q corresponds to scattering between reduced Bril-
louin zones (`reduced Umklapp' processes). The complex phase of ∆Q gives a current
in reciprocal space, breaking time reversal symmetry. Destructive interference with ∆∗

Q

means there is no corresponding current in real space.

or S symmetries, except at half-�lling where the additional particle/hole symmetry places

the CDW in class C. Note that with a two-dimensional parameter space (k, θ) both classes

A and C are expected from Table 2 to show a set of Z possible edge states, in agreement

with the �ndings of Chapter 3.

Physically the absence of particle/hole symmetry is clear enough in CDWs away from half-

�lling. Why time reversal symmetry is absent is less clear. From Equation 21 (slightly

simpli�ed) we see that the CDW order parameter in reciprocal space is

〈
ψ̂†k+Qψ̂k

〉
= ∆Q

at �lling fraction Q. It is the complex phase of ∆Q which leads to the breaking of T . The

form of this order parameter suggests a current in k-space via scattering events k → k+Q.

The change in momentum Q corresponds to a scattering across the reduced Brillouin zone.

These `reduced Umklapp processes' are shown schematically in Figure 35 (cf. Figure 12).

The current in k-space breaks time reversal symmetry, but for every scattering k → k+Q

there is a reverse process k → k − Q guaranteed by the Hermiticity of Hk. This causes

destructive interference and cancels the corresponding real-space current.

The reasoning so far demonstrates that commensurate CDWs �t �rmly into the Tenfold

Way. Incommensurate CDWs cannot be treated by the methods of Chapter 3, but it is

possible nevertheless to deduce certain properties of their topological behaviour. Consider

the gap which forms the lower left wing of the Hofstadter butter�y, Figure 23, or equiva-

lently the lower left wing of the self-consistent CDW solution (equivalent as the cases are

adiabatically connected). A reproduction of the wing in the Hofstadter case is given in
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Figure 36: A zoomed look at the lower left wing of the butter�y from Figure 23 (allowed
energies plotted against �lling fraction). The colour of each point indicates the Hall
conductivity of the gap above it (scale truncated at ±4). The important point to note
is that the gap formed by the wing itself is assigned a single conductivity, +1. Each gap
can be similarly labelled, and several more can be seen in the image.

Figure 36. The conductivity of the gap is given by the sum of Berry phases (Chern num-

bers) of the sub-bands below the gap. This conductivity is independent of �lling fraction,

as evidenced by the fact that the underside of the wing is `painted' a single colour (light

pink, C1 = 1). In fact this is necessary for the self-similarity of the fractal. Thus the

conductivity of an incommensurate CDW with a �lling which places it in the same gap

will demonstrate the same quantization. The ICDW at �lling p/q + η, with in�nitesimal

irrational η, has the same topological properties as the CDW at �lling p/q, and the cases

are again adiabatically connected by tuning the chemical potential (∝ η). The argument

is made somewhat more mathematically precise in the next section.

4.2.3 The Gap Labelling Theorem

The arguments of the previous section give a physical intuition that the topological proper-

ties of incommensurate CDWs can be adiabatically connected to those of the commensurate

case. This implies that, since the latter obey the Tenfold Way, so must the former, and

since the former are 1D quasicrystalline systems it follows that quasicrystals obey the Ten-

fold Way. This is in agreement with Madsen et al. [64], who similarly give an adiabatic
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Figure 37: A Cantor set can be formed by removing the central third of a line segment,
then removing the central third of the remaining line segments, and so on. The set is what
remains after an in�nite number of iterations. The sub-band distribution of CDW systems
at irrational �llings is homeomorphic to the Cantor set as demonstrated by Hofstadter
and proven rigorously by Avila and Jitomirskaya [16, 65].

connection to commensurate systems. In particular, individual 1D quasicrystals cannot

show a nontrivial topology; it is only families of locally isomorphic quasicrystals which

can.

The reasoning of the previous section was based on the self-similarity of the Hofstadter

spectrum, but it could be argued that the incommensurate cases are strictly absent from

this construction. Hofstadter himself considers the limit of incommensurability by a recur-

sive argument, and establishes, for example, that the sub-band distribution at irrational

�llings is itself fractal20, and is homeomorphic to the Cantor set (shown in Figure 37) [16].

Hofstadter did not factor in Berry phases to his calculations (he was working eight years

before its development), so strictly his arguments do not concern the coloured-in butter�y

which includes such e�ects [28].

There is a wide literature associated with the mathematical properties of the energy spectra

of quasicrystals. A key result is the `gap labelling theorem' attributed to J. Bellissard

[66, 67]. The gap labelling theorem states that there is a consistent way to label each

of the in�nity gaps in the irrational �lling spectrum with a unique integer, and that this

labelling is robust to perturbation of the energy levels. The integer in the case of the

Harper equation is precisely the sum of Berry phases of the sub-bands below the gap - the

quantized Hall conductance [66, 67].

As an interesting aside, it follows from the Diophantine equation used to generate the Berry

phases of the sub-bands (Equation 36) that there are only two possible Berry phases for

20The general proof that the bands of the almost-Matthieu operator (of which the Harper equation is
a special case) form a Cantor set, and that all the band gaps except the central one are open, is known
as the `Ten Martini Problem' after M. Kac promised that set of beverages to anyone able to prove it. It
took until 2009 until A. Avila and S. Jitomirskaya solved the problem [65]. Kac died in 1984 and failed
to make appropriate provisions in his will. Perhaps as part-compensation, Prof. Avila received the 2014
Fields medal. Prof. Jitomirskaya informs me that she received an olive. This reveals the drinks to be dry
Martinis, but it remains unclear whether they were intended to be gin- or vodka-based.
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any of the sub-bands at a given �lling [26]. For incommensurate �llings there are in�nitely

many sub-bands and in�nitely many gaps. Each sub-band's Berry phase is taken from a

set of two integers which depends on the �lling fraction. Bearing in mind that the label

assigned to each gap is the sum of Berry phases of the sub-bands below it, and that all gap

labels are unique, it follows that the sequence of phases of the sub-bands must itself be

quasiperiodic. That the sequence can be neither aperiodic nor periodic is fairly intuitive,

both cases following from the fact that the lowest gap always has a �nite Chern number,

and the highest `gap' (the energies above the highest sub-band) always has Chern number

zero. This is too much structure for an aperiodic series, and no repeating sequence can

ful�ll the conditions21.

Importantly, a perturbation to which the gap labels are invariant, where they continue

to exist, is changes to the �lling, including passing through rational values. When two

sub-bands meet, their Berry phases must add in order to keep the label of the highest (still

unclosed) gap constant. This makes rigorous the claim that all charge transport in the

gap of the lower left butter�y wing, for example, is adiabatically connected to the simplest

case of 1/3 �lling. In terms of topological charge transport there is nothing special about

ICDWs compared to commensurate CDWs, or, correspondingly, quasicrystals compared to

crystals. It is therefore only families of quasicrystals, generated by varying θ, which exhibit

topological non-triviality, but the families are 2D (existing in a space spanned by (k, θ)),

and so quasicrystals behave like crystals in the Tenfold Way.

As a �nal point, note that the invariance of the gap labels to shifts in the �lling does

not apply at the singular point of half-�lling, which is topologically distinct from the rest

of the butter�y. This is because it is in class C, rather than A, of the Tenfold Way, or

equivalently because half-�lling has particle/hole symmetry. This too can be inferred from

requiring the coloured butter�y to be self-similar.

4.3 Are Quasicrystals Generic in 1D? Free Energy Analysis

The systems considered so far in this chapter are `quasicrystalline' if one considers the

combination of atomic sites plus the incommensurate CDW sat on top of them. To recap,

21Further motivation that the sequence is quasiperiodic comes from considering the geometrical `projec-
tion method' of solving the Diophantine equation in Figure 22 of Chapter 3.
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Figure 38: An incommensurate CDW (top row) might be expected to adjust in�nites-
imally such that each peak in the charge density shifts to the nearest positive ion. In
this case the ICDW has period 7

2 − η, for irrational η, so the resulting sequence has
cells of length 3 or 4. The lattice would similarly be expected to adjust into the same
quasiperiodic sequence (not shown). The sequence is now a true quasicrystal.

if we move along the system and write an A every time we �nd a lattice site (ion), and a

B every time we �nd a peak in the CDW, the sequence of As and Bs will be quasiperiodic.

At the same time this seems to fall short of a true `quasicrystal', which would ideally have

the CDW peaks separated by one of two di�erent distances Long, L, and Short, S, with

the sequence of Ls and Ss being quasiperiodic. Better still would be to have the ions

themselves in such an arrangement.

Until now I have not considered the reaction of the positive ions to the presence of the

modi�ed charge density, nor the back-reaction of the charge density in the presence of

these modi�ed ion locations. In fact I have implicitly assumed the Born-Oppenheimer

approximation: that the slow and fast degrees of freedom, the movement of the ions and

electrons, are separated22.

Going beyond the Born-Oppenheimer approximation analytically is a di�cult matter.

Physically, though, the following scenario seems plausible: each positive ion will shift

in�nitesimally towards the nearest region of high charge density, and the regions of high

charge density will similarly move towards the nearest ions. The situation is shown in

Figure 38, where the case of an incommensurate CDW of period between three and four

is demonstrated.

What is the resulting structure of the charge density �eld? The sequence of left/right

shifts is quasiperiodic, since the sequence of As (ions) and Bs (peaks in the CDW) was

quasiperiodic. The end result then is a quasiperiodic sequence of long and short unit

cells, in this case period three and period four. The charge density now forms a truly

quasicrystalline pattern. After the ion lattice adjusts to this charge distribution the entire

22I thank Nikitas Gidopoulos for making this clear.
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system is precisely what is required of a true 1D quasicrystal.

The argument seems plausible, but to test whether the system really prefers the quasicrys-

talline state over incommensurate order it will be necessary to consider the free energies

of the respective states. In fact, there is a third option which I will introduce in the next

section.

4.3.1 Discommensurations in ICDWs

The standard story of incommensurate charge ordering, dating to the 1970s, is due to a

series of papers by McMillan [68, 69, 70]. The incommensurate nature of the CDWs in

question guarantees that the charge density can be maximum on at most one lattice site.

This seems like an untenable situation, and one would imagine that the energy might be

lowered by shifting to a commensurate period, in which an in�nite number of CDW peaks

can match with lattice points. McMillan's solution is more elegant still. He proposes that

the ICDW adopts the closest commensurate period available to it over a large range of unit

cells, before phase slipping, and repeating. The phase slip, termed a `discommensuration',

is such that the average period over the enlarged unit cell is the incommensurate period

(2kF )−1. This way most of the negative charge sits at regions of high positive charge,

but the energy gain due to the Peierls instability is also present. There is an energy

cost associated with the discommensurations, and the period of the discommensuration

lattice comes about through a balancing of these terms. Figure 39 shows the four possible

cases: incommensurate CDW, commensurate CDW, discommensuration state, and the

quasicrystal I proposed in the previous section.

McMillan made the argument quantitative by considering a phenomenological free energy

expansion for the ICDW system, and was able to show that the discommensuration state

is indeed of a lower free energy than either the commensurate or incommensurate states,

interpolating between these two extremes. Note that all three cases McMillan considered

are periodic, despite potentially having a very large unit cell. Periodicity was a natural

assumption to make when the theory was developed in the late 1970s as quasicrystals were

yet to be discovered. In the next section I will extend the free energy analysis to include

the possibility of quasicrystallinity, where the periodicity is lost.
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b)
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Figure 39: The four possible low energy states when the Fermi wavevector is incommen-

surate with the lattice spacing. (a) an incommensurate CDW with period 7
2 − η; (b) a

commensurate CDW with period 3; (c) a discommensuration state (period 3 CDW with
phase slips); (d) a quasicrystal.

4.3.2 Free Energy Analysis

For a quantitative investigation of the relative stabilities of the quasicrystal and the four

periodic states outlined in the previous section it will be necessary to specify a free energy

functional. The majority of the calculations of this section were carried out by my su-

pervisor Jasper van Wezel, and for this reason I will provide less calculational detail than

elsewhere in this thesis.

McMillan suggested a phenomenological free energy functional for investigating the CDW

phase transition as well as the incommensurate-to-commensurate `lock-in' transition [68,

69, 70]. The motivation is that many compounds which have (2kF )−1 incommensurate with

their lattice spacing initially develop incommensurate CDWs upon cooling, but have their

CDW wavevector shift towards a commensurate value as temperature decreases within the

ordered state. At a lower temperature the (inverse of the) CDW wavevector locks into a

rational multiple of the lattice spacing, forming a commensurate CDW. Examples include

TaSe2 [71, 68, 69] and TTF-TCNQ [72].

Positing an ansatz for the CDW order parameter of the form ∆ cos (θ (x)), with �xed

magnitude ∆, McMillan's free energy functional reads

F [θ] =
�

dx
{
a∆2 cos2 (θ)− b∆3 cos3 (θ) + c∆4 cos4 (θ) + eQ2∆2 |∇θ −Q|2

}
(38)

where the terms a, b, and c form the standard Landau free energy expansion, and the e

89



term favours the incommensurate CDW with wavevector Q = 2kF . McMillan's expression

was created for TaSe2 which has a discommensurate period lying close to period three; in

this case the period-three lock-in is accounted for by including the lattice structure in the

third-order coe�cient:

b = b0 + b1 cos (Kx) + . . .

with reciprocal lattice vector K. In general, including such structure in the nth-order coef-

�cient allows for a period n lock-in. Intuitively the quasicrystal is likely to form when the

incommensurate CDW wavevector sits close to half way between two commensurate peri-

ods, where discommensurations will be tightly packed into the lattice causing a signi�cant

energy cost. A generalization of Equation 38 is necessary which accounts for at least two

commensurate lock-ins.

The O
(
∆2
)
terms are more naturally written in k-space, as it is a divergence in the

electronic susceptibility χ (k) at the point k = Q which leads to the Peierls instability.

The expression is given by

χk , −
∑
k′

Re

(
f (ξk′)− f (ξk′+k)
ξk′ − ξk′+k + iΩ

)

regularized by the in�nitesimal real number Ω, and f (ξk) the Fermi-Dirac distribution at

electronic energy ξk. The expression diverges whenever k is such that ξk = ξk+k′ . This

is exactly the Fermi surface nesting condition, and happens generically in 1D whenever

k = 2kF . Note that χk is always positive.

A suitable generalization of McMillan's free energy is

F = −
∑
k

a0χ̂k∆̃
2
k +

�
dxc0∆4 cos4 (θ (x))

−
�

dx
∑
n

bn∆n cos (nθ (x)−Kx) (39)

with
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χ̂k ,
χk∑
k χk

∆̃k , ∆
�

dx exp (ikx) cos (θ (x)) .

The �rst term favours a CDW with the period dictated by 2kF , which is chosen here to be

incommensurate with the lattice. The bn term favours a lock-in to the lattice by a com-

mensurate CDW with period n. The charge density �eld ∆ is de�ned to be dimensionless

so that all coe�cients a0, c0, bn have dimensions of energy.

Returning to the form of the ansatz for the CDW order parameter, ∆ cos (θ) , if θ (x) = Qx

this is simply a sinusoidal CDW with period 2π/Q, covering both commensurate and in-

commensurate CDWs by di�erent choices of Q. On the other hand the discommensuration

state, in the form of a period q commensurate CDW with periodic phase slips, can be

written in the form

θDC (x) = δx+
N∑
n=1

An sin (qnδx)

where δ and An are variational parameters found by minimizing the free energy, and N is

a chosen cut-o�. Finally, the quasicrystal can be constructed piecewise out of single cells

of two di�erent commensurate CDW states. The cases are shown graphically in Figure 39.

Cooling from high temperature, ∆ becomes nonzero at TCDW . This happens smoothly so

that, immediately below the transition, the quadratic term in the free energy dominates and

an incommensurate CDW forms. As the temperature lowers further, ∆ increases, allowing

the higher-order terms to have an e�ect. These solely bene�t commensurate CDWs, and

the dominant contributions can be expected to come from those commensurate CDWs with

periods either side of (2kF )−1. To take a concrete example, if (2kF )−1 =
√

11.7 ≈ 3.42,

only period three and four CDWs need be considered (bn>4 = bn<3 = 0).

Figure 40 shows the free energies of the di�erent states for this �lling as a function of

the (dimensionless) cubic coe�cient b3/a0 which multiplies the term favouring a period

three commensurate CDW. In the �gure, b3 > b4 (> 0), so the period three CDW is always

energetically favourable to the period four. As expected, the incommensurate CDW is
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Figure 40: The free energies of di�erent orderings for (2kF )−1 =
√

11.7 as a function of
the parameters b3/a0, a dimensionless form of the period 3 lock-in coe�cient (Equation
39). Red: quasicrystal; blue: discommensuration; grey solid: incommensurate CDW
period 1/

√
11.7; grey downward triangles: commensurate CDW period 3; grey upward

triangles: commensurate CDW period 4. The quasicrystal has the minimum energy
con�guration from 0.5 . b3/a0 . 2.

favoured over both at low values of the lock-in coe�cient, but for a su�ciently large

value of b3/a0 the commensurate period three CDW stabilises. At even larger values the

commensurate period four CDW also becomes more stable than the incommensurate state

as the ratio b4/b3 is held constant. The discommensuration state, being able to adapt and

interpolate between the three states, always has a lower free energy than any of them.

At low b3/a0 it can simply take An = 0∀n and δ = Q, mimicking the incommensurate

state. As b3/a0 increases, phase slips begin to nucleate to take advantage of the lock-in. It

begins to mimic the commensurate period three CDW, but maintains an advantage over

that state through its global agreement with Q = 2kF . Note that the gradient of the

discommensuration line tends asymptotically to that of the period three CDW line at high

b3/a0.

The gradient of the quasicrystal line in Figure 40 is a weighted average (weighted by

the proximity of (2kF )−1 to each commensurate value) of those of the two commensurate

CDWs' lines, which is expected since it is locally pieced together from bits of each. With

a global CDW wavevector of Q = 2kF the quasicrystal beats both commensurate states at

low b3/a0 where lattice coupling is unimportant. Failing to match the 2kF condition lo-
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Figure 41: The di�raction intensity (arbitrary units) of the quasicrystal (red) and dis-

commensuration state (blue) for 2kF = 1/
√

11.7 ≈ 0.29. In black is a Lorentzian �t to
the susceptibility χk. Both di�raction patterns are peaked at 2kF , but the quasicrystal
has more Bragg (-like) peaks close to 2kF giving it a lower free energy over a range of
parameters.

cally, however, the quasicrystal loses out to both the incommensurate state and its mimic,

the discommensuration state, in this regime. As b3/a0 is increased both the commensurate

parts of the quasicrystal begin to bene�t locally, and it quickly stabilises relative to the

incommensurate CDW. The competition is now between the quasicrystal and the discom-

mensuration. At very large b3/a0 the discommensuration state takes on the character of

the period three CDW, while the quasicrystal still has a large component of period four

which is not as e�ective at taking advantage of the cubic lock-in. The discommensuration

wins. At intermediate values of b3/a0, however, the quasicrystal is able to bene�t relative

to the discommensuration state by taking advantage of the �nite spread of wavevectors

covered by the susceptibility χk. This can be seen most easily from the di�raction patterns

of the two types of order, shown in Figure 41. While both have a Bragg(-like) peak at 2kF ,

where χk peaks, the quasicrystal has more peaks clustered in the vicinity of 2kF . This

set of secondary peaks stabilises the quasicrystal as the lowest-energy state over a range

of b3/a0. A phase diagram is given in Figure 42.

The result shows that it is theoretically possible for quasicrystals to form naturally in

quasi-1D systems. The requirements for this to happen23 are:

1. a quasi-1D material with (2kF )−1 incommensurate with the lattice spacing and close

23Originally laid out by Jasper van Wezel.
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Figure 42: The phase diagram for the free energy of Equation 39 as a function of the
dimensionless parameters b3/a0 and b4/2b3. Blue: discommensurations, red: quasicrystal,
white: period four CDW (this would actually be a discommensuration state very close in
character to a period four CDW).

to half way between two commensurate values

2. a sharply-peaked electronic susceptibility, nevertheless broadened over a range of k

3. a momentum-independent electron-phonon coupling (necessary to ensure that the

CDW lattice coupling does not favour any particular commensurate value of the

CDW wavevector).

Quasi-1D materials occur whenever there is strong bonding along chains relative to the

coupling between them. In this case point (2) is guaranteed, and the incommensurate

wavevector required in point (1) is the natural expectation given that the cardinality of

the irrational numbers is greater than that of the rationals24. The question then arises

as to why we are not overwhelmed with naturally-occuring 1D quasicrystals in quasi-1D

materials. First, the charge density modulation ∆ is small compared to the unaltered

charge distribution, suggesting that (having not known to look for it) the quasiperiodicity

may easily have been overlooked in existing data. Second, despite the fact that the inter-

electron coupling (say electron-phonon coupling g or Coulomb repulsion h) is often assumed

24Strictly a multi-band model is required for a CDW period incommensurate with the lattice.
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independent of the electrons' momenta, this is rarely an accurate simpli�cation. As I

show thoroughly in Part II of this thesis, except in cases where the 1D approximation is

particularly good, or where electronic nesting is very strong, a momentum- and orbital-

dependent electron-phonon coupling is generally a necessary condition for the formation

of CDWs.

In all, then, it seems there may be a large class of 1D quasicrystals in existence which have

previously gone un-noticed, and which a directed search of the known incommensurate

CDW systems should reveal.
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5 Summary of Part I

In this �rst part of the thesis I have considered the formation of charge density waves

in quasi-1D systems of di�erent �llings, from half-�lling (Chapter 2), through arbitrary

rational �lling (Chapter 3) to arbitrary irrational �lling (Chapter 4).

CDWs at half-�lling are a shadowy re�ection of BCS superconductivity; aside from be-

ing mathematically analogous, a renormalization group analysis suggests the two perfectly

cancel if the instabilities are driven by a weak Coulomb repulsion. Aside from known ways

around this issue, I provided a new explanation by way of a general �eld-theoretical argu-

ment, showing that Coulomb repulsion and electron-phonon coupling can be conveniently

amalgamated into a single coupling to a combined charge/lattice distortion �eld. Consid-

ering the electron-phonon coupling to be turned on in�nitesimally is su�cient to stabilize

the CDW state and explain the observation of CDWs in real quasi-1D materials.

In the case of rational �lling I demonstrated that CDWs are inherently topological in

nature. Choosing a purely site-centred CDW with a particular magnitude, a plot of the al-

lowed energies against �lling fraction is identical to the famous fractal image of Hofstadter's

butter�y. The reproduction of this image is no coincidence; rather, it is a consequence of

the mathematical description of 1D CDWs matching that of the 2D integer quantum Hall

e�ect. The second degree of freedom derives from the CDWs' ability, in the mean �eld

model, to slide relative to the underlying lattice at no energy cost. A testable consequence

of this topological phenomenon is a quantized adiabatic particle transport, i.e. the transfer

of an integer number of electrons across the system upon sliding the CDW through a full

period. The physical, self-consistent solution to this mean-�eld treatment is adiabatically

connected to the Hofstadter case, in the sense that the two results can be interchanged

by varying the gap magnitudes without the magnitudes passing through zero. While real

systems cannot be expected to maintain an in�nitely-�ne fractal structure, the topology

of the Hofstadter butter�y is una�ected by gap closures so long as the gap of interest

remains open. The largest gap in the Hofstadter spectrum of Figure 14, and probably

the easiest-implemented, occurs at 1/3 �lling. Physical CDW systems would therefore

be expected to exhibit quantum transport, closely related to what has become known as

`Thouless Pumping' [37].
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Some comment is necessary on the possibility of seeing this topological charge transport

in experiment. There are at least two major obstacles to dragging a CDW along the

lattice. First, although not included directly in the mean-�eld treatment in this thesis,

there will be a coupling between the CDW and the lattice which will attempt to keep the

peaks of the CDW matched to the ionic locations. Second, pinning to defects is often an

insurmountable barrier in quasi-1D systems, as can be seen on purely topological grounds:

whereas in 2D and higher a point defect can be `got around', in 1D a point-like defect

blocks o� any passage along the line [73].

The �rst point can be overcome by use of incommensurate CDWs, which lack a predilection

for aligning with a certain lattice site. Various experiments have established the possibility

of generating charge transport by sliding incommensurate CDWs with an applied voltage,

although these did not distinguish the contributions from the topological charge transport,

considered here, and a non-adiabatic pushing of charge through the system, which would

involve e�ects of band mixing [74, 75, 76, 2]. Rather than attempt to �ght against the

two problems it may be possible to work with them. Recent work has established the

possibility of realizing CDWs, the Hofstadter spectrum, and 1D quasicrystals, in cold

atom condensates in optical lattices [77, 78, 79]. Such an experimental set-up allows for

much more control of the system than would be obtained by using real quasi-1D materials.

Imagine purposefully introducing a defect into the optical lattice, with an energy scale

large enough that it can be assumed to be the dominant pinning centre in the system, but

small enough that it does not cause band mixing between the �lled and empty sub-bands.

By construction the CDW will peak on this defect, so by moving the defect it should be

possible to move the CDW.

When considering irrational �llings I showed the equivalence of the resulting incommen-

surate CDWs to 1D quasicrystals, and used the relation to provide some insight into the

question of whether quasicrystals �t into the Tenfold Way classi�cation of free fermion

systems. I found that the irrational case is again adiabatically connected to the rational

case, made rigorous by appeal to Bellissard's Gap Labelling Theorem [80, 66], and so the

topological properties of incommensurate CDWs are the same as those of commensurate

CDWs. This suggests that quasicrystals �t into the Tenfold Way in the same manner as

normal crystals.
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Considering incommensurate CDWs in combination with their underlying lattices, the

resulting system is quasiperiodic, although the claim seems something of a cheat. In fact

any system containing two incommensurate periods could be argued to exhibit the same

quasiperiodicity. A simple example from quantum mechanics could be a 2D quantum

harmonic oscillator with potential chosen such that the (dimensionless) eigenenergies take

the form

Enx,ny = nx + φny +
1
2

(1 + φ)

with nx, ny integers and where φ is some irrational number such as the golden mean. A

simpler example still, of course, could come from looking at a row of gardens with picket

fences, viewed from a distance such that the spacing of one row of pickets appears to be an

irrational multiple of another. An example receiving some mainstream coverage recently

was so-called `Golden Stars', whose luminosity is seen to vary with two incommensurate

periods related by the golden mean, argued to provide the �rst example of a natural non-

chaotic strange attractor [81].

In the case of ICDWs, however, I demonstrated through a free energy analysis that this

system of two incommensurate periods can, under the correct circumstances, form a true

quasicrystal, through adjustments of the charge density pro�le, and corresponding adjust-

ments of the ion locations. There are precedents in the development of (what can now be

seen as) quasiperiodic ground states in both the quantum Hall e�ect [82] and the Hub-

bard model [83]. It would be interesting to consider what would happen when taking into

account a similar coupling between the incommensurate periods in other systems such as

the Golden stars, or even the incommensurate 2D harmonic oscillator suggested above.

The growth mechanisms of quasicrystals are an interesting topic in their own right, since

quasiperiodicity is a global topological property of a system. Even in 1D where the qua-

sicrystal simply takes the form of a sequence of long and short cells, when adding an

additional cell on the end it is frequently necessary to know about all the other cells to

know which of the two types to place. In 2D it appears even harder. Proposed growth

mechanisms in 2D and higher include: recognising vertex matching rules which imply

`forced tiles', random tiling models, and relaxation processes from non-quasiperiodic sys-
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tems [41]. A neat and realistic growth mechanism is based on nucleation from a defect,

much like crystal growth: given a certain type of defective start cluster (a `decapod' in a

Penrose tiling, for example [41]), there will always be at least one forced tile on the surface.

A tile is forced if there is only one possible option as to what can be placed, based only on

the immediate neighbours (rather like a con�dently-�agged square in minesweeper). By

always �lling in the forced tile �rst the entire quasicrystal can be �lled in very e�ciently.

The mechanism was shown by Janot to be similar to, but more e�cient than, a screw

dislocation nucleating a crystal [41].

All these growth mechanisms are local, circumventing the perceived di�culty of needing to

know the global structure. In the development of the quasicrystal out of incommensurate

charge order, although the adjustments to charge density happen locally, the order develops

in a co-ordinated manner simultaneously along the length of the system, providing the �rst

example of a realistic non-local quasicrystal growth mechanism. It is relatively easy to think

of generalizations of the method to higher dimensions, but thinking of physically plausible

scenarios in which they might occur is much more di�cult.

Despite the plethora of arti�cial quasicrystals developed in the lab since Schechtman's

original Al-Mn alloy [43], to date only two naturally occurring quasicrystals have been

found, both in the same Siberian meteorite [84, 85]. The new method of quasicrystal

growth from incommensurate charge order I have outlined in this thesis promises to greatly

increase the number of naturally-occuring quasicrystals we know about, albeit with the new

examples all taken from 1D.

In summary, despite being perhaps the simplest system in all of condensed matter physics,

a model of spinless fermions hopping on a 1D chain in a self-consistent mean-�eld treatment

demonstrates a truly remarkable level of complexity. The resulting charge-ordered states

provide a naturally occurring analogue to a number of complicated physical phenomena,

from superconductivity, through topological charge transport, to quasicrystals, and, in so

doing, provide a di�erent perspective from which to think about these systems. In the

second half of this thesis I will consider the development of charge order in dimensions

higher than one, where it turns out the ordering mechanism is in general quite di�erent.
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Part II

The Charge Ordering Mechanism in

Dimensions Higher Than One: the

Necessity of Including Strong Coupling

E�ects Evidenced by Niobium Diselenide
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6 Introduction

6.1 Charge Density Waves in Higher Dimensions

In Part I of this thesis I considered quasi-1D systems, in which the system can always be

expected to develop charge order through the Peierls mechanism. Nesting of the Fermi sur-

face (matching a signi�cant amount of the states at EF onto themselves under translation

through a �xed wavevector Q) is generic in 1D, since the `surface' is 0D. Translating one

point onto another with a �xed 1D vector is always possible. In dimensions higher than

one the argument does not hold: in quasi-2D systems the Fermi surface is one-dimensional,

and shifting the entire surface through a single �xed wavevector is still expected to cause

it to map onto itself only at isolated 0D points. The situation is shown in Figure 43. In

three dimensions nesting is less likely still.

ky

kx

ky

kx

Figure 43: In quasi-2D systems Fermi surface nesting is not generic. A circular Fermi
surface, left, meets itself only at an isolated point under coupling all states k to k+Q for
�xed Q. There is unlikely to be an energy gain from such a coupling. In some cases, like
the square on the right, nesting can occur, but it requires a matching of both the line of
the Fermi surface and its gradient.

At the same time, charge density waves are seen in dimensions higher than one. An

early 2D CDW system to be found was niobium diselenide, considered at length in the

remainder of this thesis [86]. Additional 2D examples include various related transition

metal dichalcogenides such as TaS2, TaSe2, NbS2 and TiSe2 [87, 88, 89, 90], and, of much

current interest, the layered high-TC superconductors (cuprates and pnictides) such as

Bi2122 [91, 92, 93], Ba1−xNaxTi2Sb2O [94], and YBCO [95, 96]. Perhaps the most famous

three-dimensional density wave system is Chromium, which supports a spin density wave

through Fermi surface nesting as indicated in Figure 44 (for a review see [97]).

In dimensions higher than one the CDW not only breaks translational symmetry but
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Figure 44: Cross sections of the Chromium Fermi surface (left (001), right (011)).
Chromium demonstrates a density wave instability driven by Fermi surface nesting, in
this case between the �at faces of the pockets around Γ and those around H. Figure
reproduced from Laurent et al. [98].

also rotational symmetry of the underlying lattice, selecting out a preferential direction

in space. The name charge density wave makes a little more sense in this case - charge

density always looks wavelike in 1D. Aside from forming a CDW with one �xed wavevector

(`1Q' CDW) it may be possible to form multiple coexisting CDWs. In the layered cuprate

superconductors, which have a square lattice within the layers, it may be possible to form

a 2Q CDW, with CDWs along both in-plane lattice directions [5]. In hexagonal layered

materials it is possible to form 3Q CDWs - that is, three superposed 1Q CDWs at angles

of 2π/3.

Given that nesting is not generic in two- and three-dimensional systems, but that CDW

order is nevertheless observed experimentally in a number of cases, it is natural to ask

whether the CDW order derives from nesting. In the coming chapters I will consider the

charge ordering mechanism in the speci�c quasi-2D material niobium diselenide (NbSe2).

6.2 Niobium Diselenide

The 2H-NbSe2 polytype of Niobium Diselenide has a simple hexagonal crystal structure,

space group P63/mmc (D
4
6h) [86], with two niobium atoms per primitive unit cell [71, 87].

The material is layered, with a small ratio of interlayer to intralayer coupling, meaning

quasi-2D models can be expected to capture most if not all of the important physics [87, 99].
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Figure 45: Left: the crystal structure of 2H-NbSe2. Niobium atoms are shown in blue
and selenium atoms in red. Two formula units �ll one primitive unit cell, since the relative
positions of the seleniums and niobiums di�er between the two pictured `sandwiches'.
Right: the 2D unit cell used in this thesis, with S ≈ 0.13c.

The unit cell, shown in Figure 45, has two `sandwiches' where each has a layer of selenium

atoms as the bread and a layer of niobium atoms as the �lling. In the lower sandwich three

of the six interstices in the 2D hexagonal niobium structure have selenium atoms above

and below them, and in the upper sandwich it is the other three.

NbSe2 undergoes a phase transition to a 3Q incommensurate CDW state at 33.5K. From

neutron di�raction the CDW wavevectors are seen to sit along the
−−→
ΓM directions at

QCDW = (1− δ) 2
3

−−→
ΓM , with δ ≈ 0.014 [71, 100]. There is a second phase transition,

to a superconducting state, at 7.2K [101]. In a recent scanning tunneling spectroscopy

(STS) study [102] it was found that NbSe2 can also support a 1Q CDW along the same

directions, with wavevector selected from QCDW = (1− δ) 2
3

−−→
ΓM this time with δ ≈ 0.143

(still incommensurate, but close to QCDW ≈ 2
7

−−→
ΓM). An STS image featuring domains of

both symmetries is given in Figure 46. In X-ray di�raction studies of the phonon dispersion

[103, 104] it is found that a Kohn anomaly develops in the longitudinal acoustic phonons

over a broad range of momenta around the aforementioned locations in the Brillouin zone,

shown in the same �gure.

The breadth of the phonon softening in k-space for NbSe2 is one of a number of anomalies
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Figure 46: Experimental results for NbSe2. Left: STM image of the surface of the
material cleaved along the (001) direction. The top half of the image shows a 1Q CDW
domain, whereas the lower half shows a 3Q domain (from [102]). Right: the dispersion of
the longitudinal acoustic phonon which develops the Kohn anomaly. The mode softens
to zero around QCDW at 33.5K as expected. The plot, obtained via X-ray di�raction, is
from [103].

associated with the CDW state in the material. In Angle Resolved Photo-Emission Spec-

troscopy (ARPES) the gap is seen to open only at select points on the Fermi surface, on

the inner pockets around K, meaning the material remains metallic and conducting below

the CDW transition [105, 106, 95, 101]. Why only one band develops a gap is currently a

mystery. There is large disagreement regarding the gap size, with estimates ranging from

0meV [105] to 35meV [107]. There is also disagreement regarding a possible o�set of the

gap from EF [108], and the extent of the asymmetry in the particle and hole states near

the gap [102].

Finally, it has been postulated [105, 109] that NbSe2 demonstrates a pseudogap in analogy25

to that seen in the layered high-TC superconductors [93]. The pseudogap is characterized

by a reduction in the observed density of states at EF at discrete regions of the Brillouin

zone. The reduction could be due either to an actual reduction in the DOS, or a mechanism

which stops the observation of these states in available experiments [110]. The pseudogap

occurs in all hole-doped cuprate superconductors; a particular subset of these also form

what appears to be a �uctuating CDW under the same conditions [93]. In NbSe2 a reduced

DOS is seen over an energy range of ≈ 35meV for a range of temperatures both above and

below TCDW [107, 105]. In the temperatures above TCDW large �uctuations in the phonon

25I use the word `analogy' as the mechanism in NbSe2 may be unrelated to that in the cuprates; I later
claim to explain the former but do not address the latter.

106



Γ

KM

Figure 47: The Fermi surface of NbSe2. On the left is the Brillouin zone used in this
thesis (marked in red), with high symmetry positions indicated. In blue are the three
experimentally observed CDW wavevectors. They are placed at the locations considered
(and largely dismissed) as candidates for nesting in previous studies [106, 86, 95]. A detail
of the mapped states is shown on the right. The CDW gap is seen in ARPES to open at
three points in the inner pocket around K [105, 106], at approximately the locations the
blue arrows intersect the pocket.

�eld are observed [109].

A number of bandstructure �ts exist for NbSe2 of both theoretical and numerical origin

[86, 87] and as phenomenological �ts to experimental data [106]. The latter paper considers

a tight binding �t to a 2-independent band model constrained with ARPES data, and

provides a particularly useful expression in this thesis; the Fermi surface is shown in Figure

47.

It is notable from Figure 47 that there is no clear nesting exhibited by the NbSe2 Fermi

surface. The right hand image depicts the inner K pockets, in which the CDW gap opens,

translated through the observed CDW wavevectors. The unconvincing nesting has lead

to a number of alternative proposals for the driving mechanism of the CDW transition,

including nested saddle-points in the electronic dispersion [111], local �eld e�ects [112],

or a combination of weak nesting with momentum-dependent electron-phonon coupling

[99, 103]. The lack of agreement regarding the ordering mechanism provides a convenient

opportunity to examine the rôle of nesting in CDW transitions more generally in systems

of dimension higher than one.

In subsequent chapters I will set up a �eld theoretical description of the CDW transition in

NbSe2. For this reason I will brie�y comment on the relevant couplings between electrons26.

NbSe2 is a metal above TCDW , and in fact maintains its metallic character below TCDW

26cf. Section 2.1.
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as large parts of the Fermi surface remain ungapped [105]. For this reason there is a high

density of states at EF , leading to a large screening of the Coulomb repulsion [42]. I will

therefore take the Coulomb interaction, denoted h in Section 2.1, to be zero in the following

working.

In the closely related system of TiSe2 both h and the electron-phonon coupling g are

of importance as the system is believed to be a semiconductor (with an indirect band

gap) [113, 114, 115] or a semimetal [116, 117]. The system orders to a chiral CDW state

[90] at around 200K [113]. In that case, which of g and h drive the phase transition is

debated, and two recent papers have suggested that it is in fact a combination of electron-

phonon coupling and exciton condensation which leads to ordering [89, 118]. The method

of combining the terms g and h provided in Section 2.1 gives a convenient rephrasing of

the results of these papers in terms of a well-de�ned emergent quasiparticle: a hybrid

phonon-exciton.

6.3 Honorable Mention of Relevant Experimental Techniques

When comparing my calculations to experimental results in later chapters I will employ

various abbreviations. I will very brie�y outline the experimental procedures to which

these abbreviations refer.

In Angle Resolved Photoemission Spectroscopy, ARPES, the photoelectric e�ect is utilized

as a direct probe of the electronic bandstructure of a material in reciprocal space. Incoming

photons cause the ejection of valence electrons from the material, and by knowing the

ingoing photons' energies and momenta, and measuring those of the ejected electrons, the

energies and crystal momenta of the allowed states in the material can be deduced [119].

In particular ARPES can provide an accurate image of the Fermi surface of the material,

or the band energies away from the Fermi level. A drawback to the technique is that the

states must be occupied in order for them to be detected, meaning that, for example, states

signi�cantly above the Fermi level are ruled out [120].

Scanning Tunneling Microscopy (STM) and Scanning Tunneling Spectroscopy (STS) are

two closely related experimental techniques. In the former, a sharp metallic tip is held

close to a sample, with a potential di�erence maintained between the sample and tip.

The two are close enough for signi�cant overlap of the electronic wavefunctions, allowing
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electrons to tunnel through the gap. The tip is moved across the sample, and in `constant

current topography mode' the height of the tip is adjusted so as to maintain a constant

current [121]. The tip height as a function of position on the sample can give information

about atomic con�gurations, or, more relevantly to this thesis, the local electron density

in the sample. The image of 1Q and 3Q domains in Figure 46 was made using STM

[102]. Limitations of the STM apparatus include poor temporal resolution of around 1ms

(signi�cant for CDW studies as charge order �uctuations are faster than this [101, 108])

and the �atness of sample required, although the latter is not a signi�cant hindrance to

the layered dichalcogenides with their easy cleavage planes [108].

STS is an alternative mode of operation of the STM in which the bias voltage is varied;

dI/dV is measured, which is proportional to the local density of states [121]. Important

later on is the fact that while the proportionality constant is unknown, the zero of the

density of states is �xed to zero potential di�erence between sample and tip. A major

advantage to STS is that the states do not have to be occupied to be probed, meaning

information about the states above the Fermi level can be obtained. A disadvantage is that

contributions to the density of states may not come purely from electrons, but could also

come for example from phonons coupled to the electrons, giving an arti�cially large reading.

Fortunately in the results relevant to the later chapters of this thesis the contributions are

clear.

Inelastic X-ray Scattering (IXS) consists of X-ray scattering processes in which the energy

of the photons is not conserved. As opposed to elastic X-ray scattering, which samples the

crystal structure, inelastic scattering acts as a probe of excitations in the system. Relevant

here is the procedure's use in revealing phonon dispersions. The procedure has been carried

out in a range of CDW studies to date [122, 103, 104].

6.4 Format of Part II

The Peierls instability, ubiquitous in quasi-1D systems and investigated throughout the

�rst half of this thesis, is a `weak coupling' mechanism, meaning that the CDW order it

leads to is guaranteed by the divergent electronic susceptibility, and it is merely a matter

of �nding out which coupling (Coulomb repulsion, electron-phonon coupling, etc.) drives

the transition.
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In this half of the thesis I will demonstrate that such weak-coupling models of the CDW

transition in NbSe2 are doomed to fail. Instead I present a `strong-coupling' model: while

still a perturbative quantum �eld theory, it is necessary to include information about the

speci�c form of the electron-phonon coupling, in particular including information about

the ingoing and outgoing electron momenta, and the orbital character of the electronic

bands scattered between.

In Chapter 7 I carry out a Slater-Koster tight binding �t in order to establish both the

bandstructure and orbital make-up of the bands in NbSe2, and to establish a physically

motivated form for the electron-phonon coupling. In Chapter 8 I use these results to de-

velop a �eld theoretical description of the CDW order in NbSe2 via the free energy. I

rule out weak-coupling mechanisms in Section 8.2. Treating the free energy in the Ran-

dom Phase Approximation (RPA), and including uniaxial strain in the model, I develop

a temperature/strain phase diagram in Section 8.5. In Chapter 9 I extend the model to

include �uctuations of the phonon �eld in the so-called Mode Mode Coupling Approxima-

tion (MMA), and �nd that this extension is necessary to obtain the correct temperature

dependence. I discuss the relevance of the RPA and MMA transitions to the existence of

the NbSe2 pseudogap and extend the phase diagram to include this regime. In Chapter 10

I employ the Nambu Gor'kov technique to investigate properties of the CDW gap within

the ordered state, and demonstrate that the strong-coupling model reproduces a range

of experimental results including STM/STS and ARPES measurements. In Chapter 11 I

conclude by discussing the relevance of the NbSe2 results to the bigger picture of charge

ordering in dimensions higher than one. I argue that strong-coupling models are in fact

the natural starting consideration whenever CDW order is seen.
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7 The Electronic Structure of NbSe2

In this chapter I establish the bandstructure of NbSe2, including the bands' orbital com-

position, via a Slater-Koster tight-binding calculation. The orbital make-up turns out to

be the key to resolving the mystery of why the CDW gap in NbSe2 opens in one band only.

In Section 7.2 I use the electronic properties to deduce a form for the electron-phonon

coupling, which is a vital part of the model developed in later chapters.

7.1 Slater-Koster Tight-Binding Fit

7.1.1 22 Band Model

The primitive unit cell of NbSe2, shown in Figure 45, contains two niobium atoms and four

selenium atoms. The electronic structure of these elements prior to bonding is (...) 5s14d4

and (...) 4s24p4 respectively [123]. This means the niobium atoms contribute �ve d-orbitals,

traditionally labelled dxy, dyz, dxz, dx2−y2 , d3z2−r2 , and the seleniums three p-orbitals,

labelled px, py, pz. This gives 22 orbitals in total, which will mix to form 22 bands. The

probability densities of the orbitals are plotted in real space in Figure 48.

pypx dyz dxzdxypz dx2-y2 d3z2-r2

Figure 48: The probability density of the p and d orbitals (constant probability surfaces).
The diagrams are schematic since, for instance, a di�erent basis could be picked in which
the shapes are di�erent. The two colours indicate the signs of the orbital wavefunctions.

The tight binding method consists of solving the Schrödinger equation

H|n〉 = EnS|n〉 (40)

where the overlaps S are introduced because of the non-orthogonality of the orbitals: the

set of orbitals on the same atom form an orthonormal basis, but orbitals on neighbouring

atoms obey no such constraint. The starting point is the pair of 22× 22 matrices
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ppσ ppπ pdσ pdπ ddσ ddπ ddδ

Figure 49: The orbital overlaps of the Slater-Koster �t, taken as free parameters.

Hnm = 〈φm|H|φn〉

Snm = 〈φm|φn〉

with Hnm the hopping amplitudes, and Snm the overlaps, between orbitals |φn〉. The

method of Slater and Koster [124] amounts to treating orbital overlaps as free parameters

in a numerical minimization of the di�erence in energies between a model tight-binding

bandstructure and experimental band data. For example, the overlap between a d-orbital

and a p-orbital could be either pdσ or pdπ depending on the orientation of the bonds

(see Figure 49); pdσ and pdπ are taken as free parameters, since the quantum mechanical

calculation required to �nd their true values would be too complex and too dependent on

the speci�c crystal-�eld environment to make it feasible. The full set of seven possible

overlaps is shown in Figure 49.

Slater and Koster tabulated the overlap functions between each pair of orbitals in terms

of the direction cosines between them. For example if a px orbital and a dxy are separated

by a vector r the direction cosines are

l = r̂ · x̂

m = r̂ · ŷ

n = r̂ · ẑ

and the corresponding element in the Slater-Koster table [124] is

Ex,xy =
√

3l2m (pdσ) +m
(
1− 2l2

)
(pdπ) .
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This expression forms element n = px, m = dxy of the matrices Hnm and Snm, after Fourier

transform (in this case a simple multiplication by exp (ik ·R) with R the vector connecting

the unit cells of the two orbitals) [124]. The ppσ (etc.) seen by Hnm may be di�erent to

that seen by Snm, giving 14 free parameters if all �rst-nearest neighbours are considered.

This approximation will be employed here. The overlaps within a sandwich in the unit cell

may be di�erent to those between sandwiches, giving 28 free parameters. Additionally the

diagonal entries of the Hamiltonian contain the chemical potential associated with each

orbital, giving another 8 free parameters. However, considering the form of the orbitals in

real space, and the crystal structure of NbSe2, there are certain symmetry constraints on

the chemical potentials27:

µx = µy

µxy = µx2−y2

µxz = µyz.

This gives a total of 33 degrees of freedom considering only the �rst-nearest neighbours.

For a given set of parameters the eigenvalues and eigenvectors of Equation 40 can be found.

This gives the band energies, and orbital contributions to each band, respectively. The

problem is known as the generalized eigenvalue problem, and is readily solved numerically28.

By comparing the calculated En to experimental values the accuracy of the free parameters

can be determined.

To constrain the bandstructure �t I used two sets of data. The �rst set was ARPES data

from Rahn et al. [106] which gives accurate information about the two bands crossing

the Fermi level. The data come with a phenomenological tight-binding �t, to �fth-nearest

neighbour in-plane, giving an analytic expression for the two bands across the ΓMK plane

of the Brillouin zone. As ARPES is generally only capable of probing states near EF , other

data were required for the remaining bands. For these I used the results of a previous LDA

27The chemical potential of orbitals with angular momentum l ≤ 2 varies at most as cos2 (θ). If the
lattice has any rotational symmetry greater than twofold the only compatible symmetry of the potential
is full circular symmetry. I thank John Hannay for pointing this out.

28Speci�cally I employed the routine ZGGEV in the LAPACK library for Fortran 90.
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Figure 50: The Brillouin zone with high symmetry points indicated. The image is
stretched disproportionately along ΓA for clarity - in fact the crystal's c/a ratio is 18.1/6.5
[86, 87].

calculation by Rossnagel et al. [95] which are likely less accurate than the direct ARPES

measurement but have data available for all 22 bands. The band energies give 22 constraints

per point in the Brillouin zone.

Initially I used data from high symmetry points in the Brillouin zone (Γ, M , K, A, L, H;

see Figure 50), but later included additional points along the line ΓMKΓ, giving a total

of 18 sampling locations and therefore 18× 22 = 396 constraints. Note that ARPES data

are only available in the ΓMK plane; I assumed the behaviour to be identical in the ALH

plane - an accurate assumption in the limit of no interlayer coupling.

De�ning a parameter matrix P = (ppσ, . . . , µ3z2−r2) the problem amounts to minimizing

the functional

D [Etb (P )] ,
18∑
j=1

22∑
n=1

fn ·
(
Enjexpt − Enjtb (P )

)2

where Enjtb are the tight-binding energies of band n at point j , Enjexpt are the energies

measured in ARPES or derived from LDA, and fn is a weight function, used to increase

the accuracy of the �t for the two bands at EF . For the �t itself I employed the Monte

Carlo algorithm plus a `point dragging' routine explained shortly.

The Monte Carlo algorithm is as follows: randomly generate a P . If the resulting D is

smaller than the previous guess accept the new P . Otherwise accept the new P with

probability exp
(
−
√
D/T

)
where T is an arti�cial `temperature'. At higher temperatures

it is more likely worse con�gurations will be accepted. The purpose of the temperature is

to allow the search to jump out of local minima in the energy landscape of
√
D. For the
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Figure 51: The result of the 22-band Slater-Koster �t. The blue crosses indicate the
data being �t to, taken from ARPES for the two red bands crossing EF , and LDA for
the remaining 20 bands. The red bands were given approximately ten times the weight in
the �t (approximate since the weighting was increased as the �t progressed). The energy
tics correspond to tenths of a Rydberg.

seed P I used the values of a previous tight binding �t by Doran et al. [87].

The naïve way to apply the �t would be to use the seed value of P and run the Monte

Carlo routine at high temperature down to low temperature (annealing). The problem

with this is that between the band con�guration generated by the seed, and the best �t

values, there may be introduced unphysical band crossings. To account for this I instead

introduced a 22-component alteration vector mapping Eexpt onto Etb:

Enjexpt + δnj = Enjtb

let Enjexpt → Enjexpt + αδnj

with α = 1 initially. The Monte Carlo routine was then applied to the altered energies

until the system had equilibrated, with equilibration being de�ned to be no change in D

in 104 steps. An exponential temperature decrease was used to anneal the system. Once

equilibrated, α was decreased, so that the experimental bands moved slightly towards their

true values. The process was repeated until α = 0. The advantage of this band dragging

method is that the minimization can be adjusted if a band crossing is developing. The

results of the �t are given in Figure 51.
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Figure 52: The percentage of the two bands crossing EF being contributed by the two
niobium d3z2−r2 orbitals. Red is the lower energy (inner) band, blue the outer. As noted
by Doran [99] the contribution is approximately 60%. Given that there are 22 orbitals
which could potentially contribute, a two-band model is surprisingly accurate.

The orbital make-up of the bands can be deduced from the eigenvectors. A given eigen-

vector |n〉 corresponds to one band En, and the 22 components of |n〉 give a measure of

the contribution from each orbital to that band. Inspecting the components of eigenvec-

tors |13〉 and |14〉, i.e. the two bands at EF , I found that throughout the Brillouin zone

these two bands are composed primarily of the two niobium d3z2−r2 orbitals. As shown in

Figure 52 I �nd agreement with the approximate �gure of 60% stated in a previous study

by Doran [99]. Calling these two orbitals |d1
3z2−r2〉 and |d

2
3z2−r2〉 the contribution to the

two bands coming from these orbitals is precisely

|13〉 =
1√
2

(
|d1

3z2−r2〉+ |d2
3z2−r2〉

)
|14〉 =

1√
2

(
|d1

3z2−r2〉 − |d
2
3z2−r2〉

)
.

That the relation is exact follows from the d3z2−r2 orbitals seeing identical environments

to �rst-nearest neighbour.

Given this discovery the physics of the system will be well-described by a model of two

non-interacting bands. This more restricted model should give a clearer physical picture

as to the behaviour of the system.
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7.1.2 2 Band Model

Having established that a model of two independent bands is a good approximation to

the behaviour of NbSe2, I will employ the phenomenological tight-binding �t to ARPES

data of Rahn et al. [106] for the bandstructure, taking the two bands to be derived from

the two d3z2−r2 orbitals of the previous section. That �t considered in-plane hoppings

to �fth-nearest neighbour, and no inter-plane hopping. Having an analytic form for the

energies is convenient, but a second tight binding �t must be carried out for this simpli�ed

model.

The method proceeds as in the previous section29. The generalized eigenvalue problem

now reads


 H11 H12

H∗
12 H22

− En

 S11 S12

S∗12 S22


 |n〉 = 0. (41)

In the absence of time reversal symmetry breaking it is always a legitimate choice of gauge

to take the elements of H and S, the hopping amplitudes and orbital overlaps, to be

real. The two sandwiches of niobium atoms in the NbSe2 unit cell are identical (as we are

neglecting the selenium orbitals). Therefore we have that H11 = H22 and S11 = S22. With

these restrictions in place the problem is

 H11 − S11En H12 − EnS12

H12 − EnS12 H11 − S11En

 |n〉 = 0.

The eigenvectors are

|±〉 =
1√
2

 1

±1

 (42)

completely independent of k.

The �tting problem rapidly becomes over-constrained when increasing the number of neigh-

bours included in the �t, meaning it is possible to get an exact match to the experimental

band energies for a range of (potentially unphysical) parameters. A physical restriction

29The Slater-Koster �t of this section was carried out by my supervisor Jasper van Wezel.
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is necessary. To this end we included terms to �fth-nearest neighbour in-plane but only

second-nearest neighbour out of plane. This allows for a very good �t to the band energies

with a physically motivated choice of parameters. In fact the bandstructure �t is nearly

indistinguishable, so I continued to use the expression of [106].

Discussion of the best-�t values of the matrices is saved for the following section where

they can be considered in the proper context of their contributions to the (measurable)

electron-phonon coupling.

7.2 Electron-Phonon Coupling From the Electronic Bandstructure

As mentioned in Chapter 6 the Coulomb interaction is small compared to the electron-

phonon coupling in NbSe2. I will therefore restrict attention to a model with Coulomb

coupling h = 0 from now on. In this section I will deduce a functional form for the

electron-phonon coupling g.

7.2.1 General d-orbital Transition Metal Compounds

Varma et al. [125] derived an expression for the electron-phonon coupling in transition

metal compounds with a predominantly d-orbital character at the Fermi level. Since the d-

orbitals are well-localized to their parent atoms the (non-orthogonal) tight-binding picture

is a good approximation. The expression is

gµ,νk,k′ = vµk
[
A†

kSkAk′

]µν
−
[
A†

kSk′Ak′

]µν
vνk′ (43)

with

vµ ,
∂ξµk
∂k

(44)

the electron velocity in band µ. An overall (purely imaginary) prefactor has been omitted.

The vector nature of v and g accounts for the Cartesian real space directions. The matrix

A is the matrix of eigenvectors solving the generalized eigenvalue problem of Equations 40

and 41.

Equation 43 is quite remarkable. Naturally one would assume that any expression for the

electron-phonon coupling would require a knowledge of both the electron and phonon �elds
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separately, whereas this expression refers only to electronic properties. Nevertheless it has

been well-tested in various transition metals and their compounds [125]. The catch is that

knowledge of the orbital composition is required, which is di�cult to ascertain with any

certainty in general systems. In our case we have this information with some con�dence

by the working of the previous sections.

7.2.2 The Speci�c Case of NbSe2

I will now apply Equation 43 to the speci�c case of the two-band model of NbSe2 developed

in Section 7.1. From Equation 42 we know that in this case we have

Ak =
1√
2

 1 1

1 −1

 (45)

completely independent of k. The overlap matrix S takes the general form

Sk =

 αk βk

βk αk


with α, β ∈ Re. The expression for the electron-phonon coupling in the two bands therefore

simpli�es drastically to

gk,k′ = (αk ± βk)vk − (αk′ ± βk′)vk′ (46)

with the + corresponding to the lower energy inner band and the − to the outer band.

The two extremes are α = 0 xor β = 0, in which case the coupling in the two bands is

identical, and α = β, in which case the coupling in the outer band is zero. In fact, as a

general measure across the Brillouin zone, 2α ≈ β, meaning the coupling is around three

times stronger in the inner band than the outer by this loose measure.

Plotting gk,k′ directly would be di�cult and not especially desirable. A physically measur-

able quantity, explained in detail in Chapter 8, is the generalized electronic susceptibility

D2 (k− k′). A plot of this is shown in Figure 53 for the two bands, where it can be seen

that the coupling in the inner band (cf. Figures 47 and 51) leads to approximately three

to four times the susceptibility of that in the outer band around the CDW wavevector.
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Figure 53: The generalized susceptibility D2 in the two bands, using the analytically
calculated electron-phonon coupling. Red corresponds to the inner band in Figure 47
or equivalently the lower red band in Figure 51, i.e. the band in which the CDW gap
opens. The vector coupling has been projected along the direction of momentum transfer.
Note that the susceptibility is peaked at precisely the experimentally observed CDW
wavevector. This point is returned to in Section 8.3.

This resolves one of the controversies regarding NbSe2, introduced in Chapter 6: why does

the CDW gap open in one band only? If the CDW order were created through nesting

it is not clear why a gap opens in the inner band but not the outer band, given that the

CDW wavevectors lie somewhere between the two. If the CDW transition is in fact driven

by electron-phonon coupling, and Equation 43 is trusted to give the form of that coupling,

it is now clear it follows that the orbital composition of the bands can lead directly to the

observed relative gap magnitudes.

Equation 46 is a vector expression with components corresponding to the Cartesian di-

rections in space. The CDW is seen in X-ray scattering to correspond to a softening of

the longitudinal acoustic phonon mode, with little to no softening of the transverse modes

[103, 104]. For this reason it is convenient to project into a basis parallel and perpendicular

to the momentum transfer at each point in reciprocal space. The scalar quantity of interest

is therefore the longitudinal projection

gµk,k′ ,
k− k′

|k− k′|
· gµk,k′ . (47)

The overall scale of g is the only remaining free parameter in the theory. An order of

magnitude estimate for the magnitude of the coupling is ∼ 100meV [126]; the value will

be constrained by the transition temperature in the next chapter.
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8 Modelling NbSe2 in the Random Phase Approximation

In this chapter I apply the bandstructure �t, orbital band composition, and electron-

phonon coupling, deduced in Chapter 7, to the modelling of the CDW transition in NbSe2

using quantum �eld theory. In Section 8.1 I set up the basic �eld theory, then use it

in Section 8.2 to eliminate the hypothesis that Fermi surface nesting drives the CDW

transition. Having established the need for a strong-coupling theory, I re-introduce into

the model the full electron-phonon coupling deduced in the previous chapter, and treat the

model in the Random Phase Approximation in Section 8.3. I show that this approximation

gives an accurate phonon dispersion compared to that seen in IXS. Finally in Sections 8.4

and 8.5 I add uniaxial strain into the model and �nd a phase diagram for the di�erent

CDW geometries (3Q and 1Q) over a range of strains and temperatures.

8.1 Field Theory Preliminaries

I begin by de�ning a partition function

Z =
�

DψDϕ exp (−S [ψ,ϕ])

with the action S being a functional of the electron �eld ψk and phonon displacement

�eld ϕq. Note that the phonon �eld is real in real space, meaning that ϕ†q = ϕ−q. As

explained in Chapter 6, NbSe2 is well-approximated as a quasi-2D layered material, and I

will assume a two-dimensional space from here on in. De�ning `3-momenta' k = (iωn,k)

and q = (iΩn,q) the precise form of the action is

S =
∑
kν

ψ†kνG
−1
kν ψkν +

∑
q

ϕ†qD
−1
q ϕq +

∑
kqµν

gµνk,k+qϕqψ
†
k+q,νψk,µ

with electronic band indices µ, ν. The electron propagator Gkν is of the standard [127]

Schrödinger form:

Gkν , (iωn − ξνk + µ)−1 (48)

with fermionic Matsubara30 frequencies ωn = (2n+ 1)π/β and electron dispersion ξνk in

30Matsubara frequencies are probably most conveniently thought of simply as a mathematical abstraction
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band ν. The symbol µ appears both as a band index and to signify the chemical potential;

both notations are standard, and band indices appear only as subscripts or superscripts.

The phonon propagator

Dq =
−2Ωq

(iΩn)
2 − Ω2

q

(49)

with bosonic Matsubara frequencies Ωn = 2πn/β is derived from �rst principles in Ap-

pendix A. The bare phonon frequency is Ωq. The �nal term in the action couples the

electron �eld to the phonon �eld. Without it the model would contain only free, non-

interacting particles, but with it the model contains the possibility of an electron being

scattered from state k in band µ to state k + q in band ν, via a phonon which conserves

energy and momentum.

I will proceed by integrating out the electron �eld. To `integrate out' a �eld means to carry

out the functional integral over that �eld, and arrive at an e�ective action in terms of the

remaining degrees of freedom, giving a low-energy e�ective �eld theory which hopefully

captures the relevant physics of the system. In our case the nonlinear interaction term

must be dealt with perturbatively via a Taylor expansion of the exponential:

Z =
�

DψDϕ exp (−Sψ) exp (−Sϕ)
(

1− Sint +
1
2
S2
int − . . .

)
(50)

with Sψ and Sϕ the free electron and phonon actions respectively. The lowest-order non-

vanishing contribution comes from the quadratic term:

S2
int =

∑
µνρσ

∑
kk′qq′

gµνk,k+qg
ρσ
k′,k′+q′ϕqϕq′ψ

†
k+qνψkµψ

†
k′+q′σψk′ρ. (51)

A functional average over the electron �eld is de�ned as

〈O [ψ]〉ψ , Z −1

�
Dψ exp (−Sψ) O [ψ] (52)

(I will drop the subscript ψ from now on with the understanding that functional averages

introduced through the Wick rotation t→ iτ , wherein the imaginary time dimension is seen to be cyclic,
allowing a Fourier decomposition of functions in the τ coördinate. The di�erent frequencies decomposed
into are designated ωn. See for example [128].
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are always taken with respect to the electron �eld). The electrons, being fermions, are

described by a Grassman �eld, de�ned by the anticommutation relation

{
ψ†kν , ψqµ

}
, 0 (53)

and the two-point correlator is derived from the action in Appendix B, taking the form

〈
ψ†kνψqµ

〉
ψ

= Gkµδkqδµν . (54)

Finally we need Wick's theorem, which states that (time-ordered) averages of products of

�elds can be replaced by the sum of possible pairwise contractions of those �elds [127].

Combining these results we have for the expansion of Equation 50, after carrying out the

integral over the ψ �eld,

Z ≈
�

Dϕ exp (−Sϕ)

1 +
1
2

∑
µνρσ

∑
kk′qq′

gµνk,k+qg
ρσ
k′,k′+q′ϕqϕq′

〈
ψ†k+qνψkµψ

†
k′+q′σψk′ρ

〉
or �nally

Z =
�

Dϕ exp (−Sϕ)

1− 1
2

∑
µν

∑
kq

gµνk,k+qg
νµ
k+q,kϕqϕ−qGk+qνGkµ

 .

Hermiticity of the interaction Hamiltonian requires gνµk+q,k = gµν∗k,k+q. Finally we consider

the term in the second set of parentheses to be the truncation of an exponential31, giving

the result

Z ≈
�

Dϕ exp (−Seff [ϕ])

with

31This `reëxponentiation' always works; the rigorous proof is via the moment generating function.
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Seff [ϕ] =
∑
q

ϕ†q

(
D−1
q +

1
2

∑
µν

∑
k

gµνk,k+qg
νµ
k+q,kGk+qνGkµ

)
ϕq.

The `generalized electronic susceptibility', referred to in Chapter 7, is now properly de�ned

through the �nal term:

Dµν
2 (q,Ω) , −

∑
k

gµνk,k+qg
νµ
k+q,kGk+qνGkµ.

Following Doran [99] I have named this D2, where the symbol indicates the second term

in a series of increasing number of external phonon legs, starting with the one-legged bare

phonon propagator D. The name correctly implies that the usual `electronic susceptibility'

in linear response theory [127] is given by the case g ≡ 1:

χµν (q,Ω) , −
∑
k

Gk+qνGkµ.

The Matsubara sum over electronic frequencies is carried out in Appendix C, giving

Dµν
2 (q,Ω) = −

∑
k

gµνk,k+qg
νµ
k+q,k

f
(
ξµk
)
− f

(
ξνk+q

)
ξµk − ξνk+q + iΩ

(55)

χµν (q,Ω) = −
∑
k

f
(
ξµk
)
− f

(
ξνk+q

)
ξµk − ξνk+q + iΩ

(56)

with f the Fermi-Dirac distribution function and Ω the frequency of an externally applied

phonon used to probe the system in linear response. Although I'll be considering the

DC response of the system, a small nonzero Ω acts to regularize the numerical sum over

k. In this case the real part of the susceptibility should be taken, although it has been

argued that for some systems the imaginary part also has relevance to the investigation of

electronic nesting [112]. The negative sign in front ensures that the expression is always

positive.

124



M2/3Γ
χ

Figure 54: The electronic susceptibility, χ, for three cases. The magnitude is arbitrary in
each case - only the shape is relevant. Blue: 1D bandstructure with cosine dispersion and

nesting vector 2
3

−−→
ΓM . Red: NbSe2 bandstructure assuming a 2-band model with equally

weighted inter- and intra-band scattering. Black: NbSe2 with inner band scattering only.
All plots at T = 33K with Ω = 5meV regularization.

8.2 The Extent of Nesting in NbSe2

Nesting is only guaranteed in 1D, and, while some higher-dimensional density wave systems

such as chromium certainly exhibit it, there is no reason to believe it is the generic ordering

mechanism in such cases. In Chapter 6 I showed that qualitatively NbSe2 does not appear

likely to exhibit nesting. To make this statement quantitative it is convenient to consider

a restricted electron-phonon coupling which is a function only of the magnitude of the

momentum transfer: gk,k+q → g|q|. In this case the generalized susceptibility is simply

the product of the square of the electron-phonon coupling with the standard electronic

susceptibility: D2 (q) = g2 (|q|)χ (q). From Equation 56 it is clear that the susceptibility

χ should diverge if the Fermi surface nests, since this means that ξµk = ξµk+q for a range of

possible k, sending the denominator close to zero.

In Figure 54 I show the susceptibility for three cases: a prototype 1D bandstructure;

equally-weighted inter- and intra-band scattering for NbSe2 (gµν ≡ 1); and intra-band

scattering for the NbSe2 inner band only (gµν = δµ,innerδν,inner). The last case is of interest

since the true NbSe2 coupling is known from Chapter 7 to be approximately of this form

owing to the orbital make-up of the bands themselves. The case of equally-weighted inter-

and intra-band scattering has been the focus of previous studies [112, 106, 102], and would

be the natural consideration without the additional knowledge of the orbital composition

of the bands gleaned from Chapter 7.
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The 1D bandstructure has a divergence in the susceptibility at the nesting vector, chosen to

be 2
3

−−→
ΓM . The NbSe2 bandstructures, on the other hand, are rather �at. The susceptibility

of the inner band is maximum around the CDW ordering vector, which is suggestive, but

comparing with the true divergence of the 1D case it appears qualitatively that NbSe2 does

not exhibit nesting. For a quantitative assessment I now turn to the free energy.

Expanding the inverse phonon propagator the e�ective action now reads

Seff [ϕ] =
∑
q

ϕ†q

(
(iΩn)

2 − Ω2
q

−2Ωq
− 1

2

∑
µν

(gµν)2 χµν
)
ϕq

=
∑
q

ϕ†q

(
(iΩn)

2 − Ω2
q + Ωq

∑
µν (gµν)2 χµν

−2Ωq

)
ϕq. (57)

The term in parentheses can be considered to be a renormalized inverse phonon propagator,

with renormalized frequency

Ω2
RPA = Ω2

q − Ωq

∑
µν

(gµν)2 χµν (q,Ω) (58)

with RPA indicating that this constitutes the `Random Phase Approximation'. The name is

largely historical, but an alternative derivation gives some motivation for it while revealing

the physical meaning: neglecting indices for clarity, the free phonon propagator is corrected

by an in�nite series of electron-hole loops

DRPA = D +Dg2χD +Dg2χDg2χD + . . .

where the behaviour of each loop is uncorrelated with the others, hence `random phase'.

Taking out a common factor on the right gives

DRPA = D +Dg2χ
(
D +Dg2χD + . . .

)
= D +Dg2χDRPA

and rearranging
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Figure 55: The Random Phase Approximation (RPA). The bare phonon is renormalized
by a process of splitting into an electron-hole pair and recombining to a phonon. It can do
this an in�nite number of times, but each splitting introduces two factors of the coupling
g. The in�nite sum can be carried out exactly provided the loops are uncorrelated.

DRPA =
(
D−1 − g2χ

)−1
.

Inserting Equation 49 for the bare phonon propagator D gives

DRPA =
−2Ωq

(iΩn)
2 − Ω2

q + Ωqg2χ

and Equation 58 follows from consideration of the new pole location. The approximation

is shown diagrammatically in Figure 55.

A few words on the philosophy of renormalization are in order. The programme just carried

out assumed that `bare' phonons existed in the material and had dispersion relation Ωq.

When the phonon and electron �elds interact via electron-phonon coupling, neither bare

phonons nor bare electrons are any longer good quasiparticles. The well-de�ned excitations

of the system are a mix of the two. However, by integrating out the electron �eld we can

approximate the new �eld as a perturbation to the original phonon �eld - it is still possible

to de�ne a propagator, but the e�ect of the electrons is to renormalize the dispersion

Ωq → ΩRPA (q) (at this order of approximation). In fact, since the electron-phonon

coupling was always present, it is the renormalized �eld we can probe in experiment, and

the bare �eld is something of a mathematical abstraction.

The phonon spectrum in NbSe2 has been measured directly by Weber et al. using inelastic

X-ray scattering (IXS) [103, 104]. The group measured the energies of longitudinal acoustic

phonons at a range of temperatures (250K, 50K, 33K, 8K) and found a softening of the

frequencies at a range of wavevectors around the CDW ordering vector, dipping to zero at
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Figure 56: Using the phonon dispersion data of [103], from X-ray di�raction, and
the bandstructure of [106], estimated from ARPES, in combination with Equation 58, I
estimated the electron-phonon coupling g point by point. I then made a least-squares �t
to a parabola.

33K as expected. Some of the results are reproduced in Figure 46.

Despite the �at electronic susceptibility χ of Figure 54 the RPA could still account for

the data in Figure 46 if the electron-phonon coupling g|q| itself has a shape. In fact,

using Equation 58, it is possible to work out what the shape must be for consistency.

The bare phonon spectrum is a mathematical abstraction, but we can imagine that in the

limit of in�nite temperature the �elds become decoupled. We therefore take the highest

temperature (250K) data as an approximation to the bare phonon dispersion. Using the

bandstructure of Rahn et al. to calculate χ, there remain two sets of data (50, 33K) to

constrain g|q|.

I extracted the data points from the plot of reference [103] reproduced in Figure 46. For

each I calculated the required g at both temperatures. The value of g varied very little

between the two, suggesting it is largely temperature independent in the temperature

range of interest. I therefore focussed on the 33K data, for which the most data points are

available. Figure 56 shows the calculated coupling, plus a parabolic �t of the form

g|q| = −a (qpeak − |q|)2 + gmax (59)

found using GNUPlot's least-squares �tting algorithm applied to the points around QCDW .

The best-�t values were a = 5813.8meV
∣∣∣−→ΓΓ
∣∣∣−2

, gmax = 131.9meV with qpeak constrained

to the value observed at TCDW in IXS and STM [129] of qpeak = 0.986 · 2
3

∣∣∣−−→ΓM
∣∣∣.
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Figure 57: The RPA prediction of the CDW ordering vector QCDW as a function of the
peak location of the electron-phonon coupling. Blue: a 1D bandstructure with nesting

vector 2
3

∣∣∣−−→ΓM
∣∣∣. Red: NbSe2 bandstructure including inter- and intra-band scattering in

the two-band model. Black: NbSe2 bandstructure with scattering in the inner band only.
Grey (dotted) is a line at 45◦. Compare to Figure 54 for the corresponding susceptibilities
χ.

Upon cooling the system the RPA predicts the development of a CDW with wavevector Q

when ΩRPA (Q) �rst softens to zero.

The CDW ordering vector is given in the RPA by the convolution of g2 with χ. In a nested

bandstructure the divergence in χ would set QCDW , and the result would be independent

of qpeak. In a �at bandstructure qpeak would set QCDW .

In Figure 57 I show the QCDW predicted from RPA as a function of qpeak, with qpeak varied

over a wide range about the best-�t value. In the case of a 1D bandstructure there is a

wide plateau at the nesting vector 2
3

∣∣∣−−→ΓM
∣∣∣, indicating that the CDW ordering vector is

dictated by the peak in χ and is ambivalent to the form of the electron-phonon coupling.

This is to be expected since the phase transition is certainly driven by nesting in 1D.

Two cases are again considered for NbSe2: all inter- and intra-band scatterings, and inner

band scatterings only. In both cases the lines are approximately diagonal. In the inner

band there is a slight plateau around 2
3

∣∣∣−−→ΓM
∣∣∣, due to the small bump (or `nubbin') in that

band's susceptibility at that wavevector.

In the combined case given by the red line (the case considered in previous studies [112,

106, 102]), it is clear there is no nesting. The diagonal line indicates that qpeak completely
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dictates QCDW , and consequently the electron-phonon coupling completely dictates the

CDW order. From the working of Chapter 7, however, we know that a model of two

independent bands is a more accurate description of NbSe2, and so the inner-band only

(black line) is the more appropriate consideration. In this case the line is still approximately

diagonal, ruling out true nesting, but there is a slight levelling-o� which is best inferred

from the small jump around 0.75
−−→
ΓM . This implies some limited matching of states on

the Fermi surface, certainly believable from Figure 47, which ultimately acts to cause the

nubbin at QCDW evident in the electronic susceptibility χ in Figure 54.

It is therefore a combination of the electronic contribution and electron-phonon coupling

which drives the CDW transition in NbSe2. The orbital content of the bands, a strong-

coupling consideration introduced via gµν , isolates the bands' contributions to the general-

ized susceptibility g2χ. The shape of g|q| provides the peak in the generalized susceptibility

necessary to drive the CDW phase transition, but it is the limited matching of states sep-

arated by QCDW on the inner K pockets of the Fermi surface which causes a nubbin in χ

and selects the precise CDW wavevector.

8.3 The CDW Wavevector in the RPA

Having used the reduced form g|q| to investigate the extent of nesting I now return to the

full expression found in Section 7.2 and particularly Equation 47. The only free parameter

is the overall magnitude of g. The RPA was introduced in Section 8.2, and from Equation

58 it follows that the renormalized phonon frequency takes the form

Ω2
RPA (q) = Ω2

q − ΩqD2 (q,Ω) . (60)

For the bare phonon frequency Ωq I used a phenomenological �t to X-ray scattering results

using Brillouin functions, as proposed in [104]. Speci�cally the form I employed is

Ωq = 11.2meV ·
[
3
2

coth
(

3
2
· 12 |q|

)
− 1

2
coth

(
1
2
· 12 |q|

)]
. (61)

Figure 58 shows D2 for the longitudinal phonon mode in the inner band at 33.5K, where

the magnitude of g has been set to give the RPA phase transition at this temperature.

Figure 59 shows the corresponding renormalized phonon frequency.
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Figure 58: Left: generalized susceptibility D2 in the RPA across the Brillouin zone for
longitudinal phonons in the (inner) band forming the CDW. The maxima lie along ΓM
(units meV). Right (reproduction of Figure 53): a cut along ΓM reveals that the peak
exactly corresponds to the observed CDW ordering vector (red line). The blue line shows
the corresponding expression for longitudinal phonons in the outer band. The plots are at
33.5K. The numerical sums have approximately 200 steps in each direction and a 10meV
regularization is employed.

The plot across the Brillouin zone shows that the phonon mode �rst softens to zero along

the lines
−−→
ΓM. Taking a cut in this direction reveals a remarkable agreement with experi-

ment: the point at which ΩRPA �rst touches zero, which dictates the CDW ordering vector,

exactly corresponds to the 3Q ordering vector QCDW = 0.986 · 2
3

−−→
ΓM seen, for example, in

neutron scattering [71, 100], or X-ray di�raction [103, 104] (see Figure 46). Additionally

there is a plateau encompassing lower Q values, which allows for the 1Q ordering value of

Q1Q ≈ 2
7

−−→
ΓM considered shortly. The broadness of the phonon softening was considered

anomalous in NbSe2, but is in fact quite reasonable now that nesting has been eliminated

as the driving mechanism.

The shape of the RPA curves is impressively accurate. The weakness of the method lies in

the temperature dependence: since only uncorrelated electron-hole loops are included in

the phonons' renormalization there is no contribution from the phonon �eld itself. As it is

clear at this stage that phonons, via the electron-phonon coupling, are playing a decisive

rôle in driving the phase transition, a proper account of their entropy should be included

through additional diagrams [130, 131]. The relevant terms form the so-called Mode-Mode

Coupling Approximation, MMA, and are dealt with in Chapter 9.
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Figure 59: Left: the RPA renormalized phonon frequency across the Brillouin zone, in
units of meV. Right: a cut along ΓM . The dashed line is the bare phonon frequency Ωq

and the solid line is the RPA renormalized frequency ΩRPA, seen to soften to zero at the
experimental CDW ordering vector.

8.4 Higher Order Diagrams

8.4.1 Free Energy Expansion

The Random Phase Approximation alters the form of the two-point correlator for the

phonon �eld. Provided the phase transition is second order this term (order ϕ2) dictates

the transition. To include the possibility of a �rst-order transition, and to gain knowledge

of the form of the ordered phase, I will now consider higher order terms in the free energy

expansion.

The free energy of the system, F , is de�ned through the relation

exp (−βF ) , Z (62)

=
�

Dϕ exp (−Seff [ϕ])

with partition function Z and e�ective action (after integrating out the electron �eld

perturbatively) Seff . I relegate the mathematical details of the perturbative expansion to

Appendix E. Aside from more complicated combinatorics the method is identical to that

used for the ϕ2 term already considered. Diagrammatically the Feynman rules are shown

in Figure 60 and the free energy expansion in Figure 61.

Expanding to fourth order in number of external legs (phonon propagators) the result is
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Figure 60: The Feynman rules for the perturbative expansion of the �eld theory.
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Figure 61: The Feynman diagrams constituting the weak coupling �eld theory. The
expansion is in terms of number of external legs (phonon �elds).

Seff [ϕ] =
1
2

∑
q

ϕq

(
Ω2
n

Ωq
+ Ωq +

∑
µν

∑
k

gµνk,k+qg
νµ
k+q,kGkµGk+qν

)
ϕ−q

+
1
3

∑
µνρ

∑
kqp

gµνk,k+qg
νρ
k+q,k+q+pg

ρµ
k+q+p,kϕpϕqϕ−p−qG

µ
kG

ν
k+qG

ρ
k+p+q

+
1
4

∑
µνρσ

∑
kpql

(
gµνk,k+qg

νρ
k+q,k+q+pg

ρσ
k+q+p,k+q+p+lg

σµ
k+q+p+l,k·

·ϕqϕpϕlϕ−l−p−qGµkG
ν
k+qG

ρ
k+p+qG

σ
k+p+l+q

)
.

The Matsubara sums over electron frequency are calculated in Appendix C. Recalling the

de�nition of the generalized susceptibility

Dµν
2 (q,Ω) , −

∑
k

gµνk,k+qg
νµ
k+q,k

f
(
ξµk
)
− f

(
ξνk+q

)
ξµk − ξνk+q + iΩ

I will also de�ne similar terms for loops coupling three and four phonons, D3 and D4,

respectively:
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Dµνρ
3 (q,p) ,

∑
k

gµνk,k+qg
νρ
k+q,k+q+pg

ρµ
k+q+p,kG

µ
kG

ν
k+qG

ρ
k+p+q

=
∑
k

gµνk,k+qg
νρ
k+q,k+q+pg

ρµ
k+q+p,k ·

·

 f
(
ξµk
)(

ξµk − ξνk+q

)(
ξµk − ξρk+p+q

) + 2 cyclic perms.

 (63)

and

Dµνρσ
4 (q,p, l) ,

∑
k

gµνk,k+qg
νρ
k+q,k+q+pg

ρσ
k+q+p,k+q+p+lg

σµ
k+q+p+l,kG

µ
kG

ν
k+qG

ρ
k+p+qG

σ
k+p+q+l

=
∑
k

gµνk,k+qg
νρ
k+q,k+q+pg

ρσ
k+q+p,k+q+p+lg

σµ
k+q+p+l,k · (64)

·

 f
(
ξµk
)(

ξµk − ξνk+q

)(
ξµk − ξρk+q+p

)(
ξµk − ξσk+q+p+l

) + 3 cyc. perm.

 .
As D2 corresponds to the generalized susceptibility in the linear response regime, Ω can

be interpreted as the frequency of an externally applied probe phonon. There is no similar

interpretation available in the nonlinear response D>2, so I set Ω = 0 and regularized the

numerical calculation analytically. When two energies ξ meet, the expressions appear to

diverge, but in fact there is a cancellation between the cyclically permuted terms [4] (see

Appendix E for details).

Taking the mean �eld solution for ϕ, and so neglecting the functional integral in Equation

62, the zero frequency case becomes

βF [ϕ] = Seff [ϕ] =
1
2

∑
q

|ϕq|2 [Ωq −D2 (q)]

+
1
3

∑
qp

ϕqϕpϕ−p−qD3 (q,p)

+
1
4

∑
pql

ϕqϕpϕlϕ−l−p−qD4 (q,p, l)

where I have suppressed band indices for clarity. The system will order into the �eld

134



Q'

-Q-Q'
Q

-Q-Q'

Q'
Q

D3a D3b

Q

-Q

Q

-Q

D4a

Q

Q

-Q

-Q

D4b

Q

-Q

Q'

-Q'

D4c

Q

Q'

-Q

-Q'

D4d

Figure 62: The Feynman diagrams in the free energy expansion after restricting atten-
tion to the CDW vectors q ∈ Qi (Equations 65 and 66). The labels Q and Q′ indicate
di�erent members of the set of six vectors {Qi}. External phonon legs should be consid-
ered to be amputated.

con�guration of minimum free energy. Considering all possible phonon momenta is too

computationally demanding, and is not necessary - as we will only be concerned with the

�rst ordered state the system drops into, all the phonon order parameters are zero for all

q except the �rst one in which order develops. We can therefore neglect the sums over

momenta in what follows. I consider instead only the �xed momenta of the CDW ordering

vectors seen in experiment, along the
−−→
ΓM directions, ±Qi i ∈ [1, 3]. Writing ϕi , ϕ (Qi)

and considering all possible momentum conserving combinations this gives

βF =
1
2
× 2× [Ωq −D2]

(
|ϕ1|2 + |ϕ2|2 + |ϕ3|2

)
−1

3
× 6× (D3a +D3b)ϕ1ϕ2ϕ3

+
1
4
× 2× (D4a + 2D4b)

(
|ϕ1|4 + |ϕ2|4 + |ϕ3|4

)
+

1
4
× 8× (D4d + 2D4c)

(
|ϕ1|2 |ϕ2|2 + |ϕ1|2 |ϕ3|2 + |ϕ2|2 |ϕ3|2

)

where the negative sign on the cubic term is added since the minimum energy solution will

always have a negative cubic part. The terms are de�ned in Figure 62. De�ning

135



r = −Ωq +D2

a = 2 (D3a +D3b)

b = D4a + 2D4b

bc = 4 (D4d + 2D4c) (65)

the �nal expression for the free energy of the system is

βF = −r
3∑
i=1

|ϕi|2−aϕ1ϕ2ϕ3 +
1
2
b

(
3∑
i=1

|ϕi|4 + c
(
|ϕ1|2 |ϕ2|2 + |ϕ1|2 |ϕ3|2 + |ϕ2|2 |ϕ3|2

))
.

(66)

Minimizing this expression is still too arduous a task. Instead we can put in more physical

information, namely that the system is seen to order into one of the two states:

3Q : ϕ1 = ϕ2 = ϕ3, Q = 0.986 · 2
3
−−→
ΓM

1Q : ϕ1 = ϕ, ϕ2 = ϕ3 = 0, Q =
2
7
−−→
ΓM

giving the results

βF3Q [ϕ] = −3rϕ2 − aϕ3 +
3
2
b (c+ 1)ϕ4 (67)

βF1Q [ϕ] = −rϕ2 +
1
2
bϕ4.

Note that if b < 0 then strictly the sixth-order term should be included. Alternatively it

could be argued that the regions with b < 0 are too far away from the minimum in F [ϕ];

in either case, b is greater than zero in all the cases I consider in this thesis. Minimizing

the functionals of Equation 67 gives the minimum energy solutions. For the case of the 1Q

CDW the result is

136



βFmin1Q =


−r2/2b,

0,

r > 0

r ≤ 0

where order develops through a second order phase transition at r = 0 when approaching

from the disordered regime with r < 0. For the 3Q case the situation is complicated by

the cubic term. The free energy of the ordered system is

βFmin3Q =
−1

64b3 (c+ 1)3
(
a4 + 24ra2b (c+ 1)

+96r2b2 (c+ 1)2 + |a|
(
a2 + 16rb (c+ 1)

) 3
2 sgn (c+ 1)

)

and the order develops via a second order phase transition if

r > 0, c > −1 (68)

or a �rst order phase transition if

r < 0, c > −1, b (c+ 1) < −a2/18r. (69)

8.4.2 Proximity of Phase Transitions

The question of the order of the phase transition in NbSe2 is an old one. Early work

assumed a (bulk) 3Q ordered state; in 1975 McMillan used a free energy calculation to

argue that the transition should be �rst-order or `weakly �rst-order' in the case that the

third-order term (a in our case) is small [68, 69, 70]. Weakly �rst-order means there exists a

small but noticeable discontinuity in CV . Moncton, Axe, and DiSalvo predicted a weakly

�rst-order transition, and found a lack of evidence for a strongly �rst-order transition

experimentally, so deduced a small a term via McMillan's argument [71, 100]. They also

predicted a second-order transition to a hypothetical 1Q state, although they considered

such a state merely as a mathematical simpli�cation rather than a stable CDW geometry

in NbSe2. Harper et al. inspected the heat capacity of the system and deduced that the

transition is either weakly �rst-order or second-order [132]. In a 1980 review Rice states
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that from free energy considerations the transition is second order to O
(
ϕ4
)
but �rst order

if O
(
ϕ6
)
terms are kept [133].

Inspecting the ordering conditions of Equations 68 and 69 an interesting fact presents

itself. Say the system is disordered, cooling towards a second-order phase transition via an

increasing r (T ) (recalling that r (T ) < 0 in the disordered phase). As r passes through zero

the system orders to either a 1Q state, or a 3Q state if c > −1. Which one wins requires an

examination of the free energies themselves, but for the sake of argument assume the state

will be of the 3Q geometry. Just before r = 0 it must be the case that r → 0−. In this

limit, for the case c > −1 and any nonzero a, the term a2/r diverges, and the �rst-order

condition is ful�lled. The second-order 3Q transition can never occur.

This leaves three options as temperature is lowered: a second-order phase transition to the

1Q geometry; a �rst-order phase transition to the 3Q geometry; or a weakly �rst-order

phase transition to the 3Q geometry, in which a would-be second-order phase transition

is `intercepted' by a �rst-order one. The second-order transition to 3Q always occurs at

a lower temperature than the �rst-order, although the two will be in�nitesimally close in

any case where the ordering is due to a decreasing r (T ) as opposed to a changing a (T ) or

b (T ).

8.4.3 Including Strain

Once the magnitude of the electron-phonon coupling g is constrained by requiring TRPA =

33.5K the only parameter in the theory is temperature. In order to make new predictions

for experiment it is necessary to consider an additional degree of freedom. I will consider

uniaxial strain, which one might intuitively expect to stabilize a 1Q CDW over 3Q or

disorder.

To include strain it is necessary to break the sixfold symmetry which is present in both the

disordered and 3Q states. One way to do this is by giving the bare phonons di�erent fre-

quencies in the di�erent directions: physically, stretching the lattice in one direction might

be expected to lower the frequency of vibrations in that direction, just as cosmological

redshift decreases the energy of photons traversing an expanding universe. If we assume

as a �rst approximation that the volume of the system is conserved in the stretch, the

perpendicular direction will contract and the corresponding phonon energies will increase.
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Q1

Q3Q2

|Q1|

|Q1|
2

Figure 63: As the three Q vectors making up the 3Q state add to zero it is natural, when
increasing the phonon energies by Ω1 → Ω1 (1 + σ) in one direction, that half the amount
should be subtracted from the other two (to a �rst approximation): Ω2,3 → Ω2,3

(
1− σ

2

)
.

The uniform volume assumption corresponds to a Poisson's ratio of unity; this is likely

too large, but will work as a proof of concept. If we assume further that phonon energies

are linear in extension32, the result is that if Ω1 → Ω1 (1 + σ) with σ the dimensionless

strain parameter (positive for `blue shift' in the cosmology analogy). The constant volume

condition then leads to Ω2,3 → Ω2,3

(
1− σ

2

)
, shown visually in Figure 63.

The e�ect on the free energy is to give di�erent quadratic coe�cients in the now-inequivalent

directions:

r1 = −Ωq (1 + σ) +D2

r2,3 = −Ωq

(
1− σ

2

)
+D2.

Since none of the D2,3,4 diagrams contain internal phonon lines they remain una�ected.

8.5 RPA Phase Diagram

The phase diagram for NbSe2 treated in the RPA as a function of temperature and strain

is given in Figure 64. While the 3Q geometry is stable at zero strain it only takes around

0.1% anisotropic reduction in the bare phonon energy to break the symmetry down to 1Q.

An estimate for the corresponding lattice strain would require knowledge of the in-plane

Grüneisen parameter33 −d lnΩ/d ln a with in-plane lattice parameter a. In the layered

32Thinking about a spring we might be tempted to assume instead that Ω ∝ x2, but the spring in the
analogy is under tension and not sat around the minimum energy.

33I am indebted to Bruno Amorim for bringing the concept of the Grüneisen parameter to my attention,
and for pointing me to the listed references.
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Figure 64: The RPA phase diagram as a function of temperature and strain. The one
free parameter in the theory, the overall strength of the electron-phonon coupling, has
been set to give TCDW = 33.5K at zero strain. Dashed lines bounding the 1Q regions
indicate second-order phase transitions whereas the solid line bounding 3Q indicates a
weakly-�rst-order transition.

140



hexagonal materials MoS2, BN, and graphite, the parameter is of order unity throughout

most of the Brillouin zone [134, 135]. Assuming the trend holds for NbSe2 the percentage

change in the phonon energy can be taken to be the percentage change in the lattice

spacing, i.e. the more standard de�nition of strain. In that case, to an order of magnitude,

it takes around 0.1% uniaxial strain to stabilize the 1Q geometry.

The transition temperature increases with increasing strain, which is expected since the

symmetry is broken in favour of stabilizing a 1Q CDW along a given direction. The slopes

of the transition lines at positive and negative strain di�er since it is −σ/2 which lowers

the free energy at positive strain and +σ which lowers the free energy at negative strain.

Although seemingly quite unphysical it could be the case that a 2Q state, with 1Q CDWs

developing simultaneously along two of the
−−→
ΓM directions but not all three, may stabilize

under strain. The free energies of all three possibilities are

βF3Q [ϕ] = −3rϕ2 − aϕ3 +
3
2
b (c+ 1)ϕ4

βF2Q [ϕ] = −2rϕ2 +
b

2
(c+ 2)ϕ4

βF1Q [ϕ] = −rϕ2 +
1
2
bϕ4.

Minimizing the 2Q and 1Q free energies (taking the nontrivial solutions ϕ 6= 0) reveals

that

Fmin1Q = (c+ 2)Fmin2Q

and given that the free energy is negative in the ordered regime we see that the 1Q ge-

ometry is energetically favourable to the 2Q geometry for any c > −1. This was already

a requirement for the 3Q expression to be valid (it is unbounded for b > 0, c < −1), so

provided we are in the region of validity of the �eld theory the 1Q state is always preferred

to the 2Q, and the 2Q never forms.
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9 The CDW Pseudogap

In the previous chapters I have built a case for a CDW transition in NbSe2 driven by

a strong electron-phonon coupling dependent on the electronic bands scattered between

and the ingoing and outgoing electron momenta. In the Random Phase Approximation

considered in Chapter 8, the phonons themselves did not contribute to the renormalization

of the phonon propagator. The RPA did an excellent job of predicting the CDW Q vector,

but to get the correct temperature dependence it is necessary to add the entropy of the

phonons into the free energy calculation. In this chapter I will consider such e�ects by

the introduction of higher order diagrams. Since I will be working with a model of two

independent bands I will neglect band indices from now on. The result is a range of

temperatures in which the CDW order predicted by RPA is suppressed, which I will argue

models the pseudogap state seen for example in ARPES [105] and STM [108].

9.1 The Mode-Mode Coupling Approximation

The simplest diagrams accounting for renormalization contributions from the phonon �eld

constitute the so-called Mode Mode coupling Approximation, MMA [136, 130, 131]. The

diagrams are given in Figure 65.

Figure 65: The Feynman diagrams constituting the MMA. The middle diagram domi-
nates in this system.

Of these, the middle diagram dominates in our system. The top diagram can be neglected

simply because it is of order g6 where the others are order g4. The reason it is sometimes

considered (for example in [130] but not in [131]) is that in some systems Landau damping

[137] suppresses a factor of g2. This is the case for example in spin density waves in
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= +
Figure 66: Top: the Feynman diagram corresponding to the electron self-energy. The
double lines indicate renormalized propagators (in the case of the phonon line the RPA
renormalized value). Bottom: the renormalized electron propagator is de�ned self-
consistently through a Dyson series.

2D metals [138]. The internal phonon line in the bottom diagram constitutes a vertex

correction, and can be dismissed by appeal to Migdal's theorem, which states that such

corrections are suppressed by an additional factor of
√
electronmass/ionmass [139, 10].

This dismissal is legitimate if the momentum transfer is large. Since the contribution is

dominated by phonons with momenta |QCDW | ≈ 2
3

∣∣∣−−→ΓM
∣∣∣ the appeal is well-founded34.

The middle diagram can be thought of as the RPA renormalization but with the self-energy

of one of the electrons included. The self-energy and its e�ect on the electron propagator

are given diagrammatically in Figure 66.

The corresponding analytic expression for the self-energy is

Σ (k, iωn) , −
∑
q,iΩn

|gk,k−q|2G (k− q, iωn − iΩn)D (q, iΩn) (70)

where the negative sign is included so that the real part of the expression acts as a positive

energy in the Green's function (Equation 72). The phonon propagator D can either be

bare or the RPA renormalized expression

D (q, iΩn) =
−2Ωq

(iΩn)
2 − Ω2

q + ΩqD2 (q, iΩ)
. (71)

Relabelling the bare electron Green's function as G0 to avoid confusion, the renormalized

expression G takes a particularly simple form:

34I wish to thank Prof. A. V. Chubukov for making these points clear to me while walking between talks
at the APS March Meeting.
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G = G0 +G0ΣG

∴ G−1 =
(
G−1

0 − Σ
)−1

and so

G (k, iωn) = (iωn − ξk − Σk + µ)−1 . (72)

The e�ect of the self-energy on the electrons is most clearly seen by considering the `spectral

function'

A (k, ε) , − 1
π

Im (G (k, ε+ iδ)) (73)

where a Wick rotation has been carried out from Matsubara frequency ωn to energy ε with

an in�nitesimal imaginary part: iωn → ε+ iδ. The spectral function can be thought of as

the probability of �nding a quasi-electron with energy ε and crystal momentum k [128, 10].

For the bare Green's function G0 it is simply given by

A (k, ε) = − 1
π

δ

(ε− ξk + µ)2 + δ2
.

I prove in Appendix C that this is a delta function (in the limit δ → 0+) located at the

on-shell condition ε = ξk − µ. Splitting the self-energy into its real and imaginary parts

Σk = Σ′
k + iΣ′′

k

the renormalized spectral function is given by

A (k, ε) = − 1
π

δ − Σ′′
k(

ε− ξk − Σ′
k + µ

)2 +
(
δ − Σ′′

k

)2
where the self-energy's e�ect on the bare electrons is seen to be twofold: the real part

Σ′
k shifts the energy ξk, and the imaginary part Σ′′

k broadens the delta function into a

Lorentzian. The process is clear from a physical point of view: before interaction the

electron is a well-de�ned and in�nitely long-lived quasiparticle on the mass shell. When
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the interaction is turned on the resultant quasiparticles have a �nite lifetime, which smears

the energy distribution into a Lorentzian of �nite width. There is also a shift in the energy

from taking into account the contributions from the phonon �eld. I also show in Appendix

C that

� ∞

−∞
A (k, ε) dε = sign [Im (Σ)− δ]

which constitutes one of Mahan's sum rules [128]. Physically the statement is that although

the energy of the quasiparticle may have shifted, and become less sharply de�ned, the total

probability of �nding the quasiparticle across all energies is still unity35. Mathematically

the sum rule provides a useful check that enough energies are covered in numerical sums.

For the purposes of evaluating the self-energy via Equation 70 it is convenient to use the

so-called Lehmann representation of the interacting Green's function [140, 128], proven in

Appendix D:

G (k, iωn) = − 1
π

�
dε

Im (G (k, ε+ iδ))
iωn − ε

=
�

dε
A (k, ε)
iωn − ε

. (74)

The advantage of Equation 74 is that the locations of the Green's function's poles36 in

the complex plane are apparent, which is not true of Equation 72 when the self-energy

is only known numerically. Note that as Σ → 0 the spectral function reduces to a delta

function A (k, ε) → δ (ε− ξk + µ) so the Lehmann representation reduces correctly to the

expression for the bare Green's function.

The Matsubara sum for the self-energy is also carried out in Appendix C. The result with

RPA-renormalized internal phonons is

Σ (k, ε+ iδ) = − 1
π

∑
q

|gk,k−q|2
(

Ωq

ΩRPA

) �
dε′Im

[
G
(
k− q, ε′ + iδ

)]
· (75)

·
{
nB (ΩRPA) + 1− f (ε′)
ε− ε′ − ΩRPA + iδ

+
nB (ΩRPA) + f (ε′)
ε− ε′ + ΩRPA + iδ

}
.

To calculate the generalized susceptibility including the self-energy, which I will label

35The sign di�erence amounts to inspecting the quasiparticle/quasihole states, or the retarded/advanced
Green's function.

36Strictly the poles condense into a branch cut if ε is continuous.
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= + +O(g6)+

Figure 67: The generalized susceptibility including electron self-energy. The diagrams
with phonon loops contribute equally.

DΣ
2 , both electron lines in the D2 diagram must be renormalized separately (Figure 67),

although these two diagrams turn out to be identical.

The resulting expression for DΣ
2 is

DΣ
2 (q, iΩ) = − 1

π

∑
k

|gk,k−q|2
�

dεIm (G (k, ε+ iδ))Re

[
f (ε)− f (ξk−q)
ε− ξk−q − iΩ

]
(76)

which reduces to the usual D2 expression, Equation 55, as Σ → 0.

At zeroeth order the self-consistent calculation for DΣ
2 of Equation 76 contains three nested

sums. Each additional order introduces three additional sums through Equation 75. First

order captures the physics of the problem, and given processing constraints I restrict at-

tention to this approximation. The calculation would converge perfectly in this one step

given the perfect seed, since such a seed would sit at a non-trivial �xed point of the �ow

of iterations. This point is returned to in Chapter 10 when the self-consistent gap is calcu-

lated. The reason I postpone a full discussion is that the argument is much neater in the

case of the gap, which is e�ectively real-valued. The seed choice for the self-energy, Σ(0),

su�ers from the fact that the self-energy is complex, meaning each iteration of the calcu-

lation takes a point in C to another point in C for each wavevector. Nevertheless, a choice

of Σ(0) = 7meV (purely real) lies in close proximity to the �xed point in C at the range

of k points I tested. Whenever the self-consistent calculation gave an unphysical result

(the value of DΣ
2 (q) jumping up at an isolated q, for example) I was able to regularize by

taking instead Σ(0) = 2meV at that point.

9.2 MMA Renormalized Phonon Spectrum

Figure 68 shows the renormalized phonon frequency in both the Mode-Mode coupling and

Random Phase Approximations. The coupling strength g has this time been set to give the

MMA phase transition at 33.5K, the transition temperature seen in experiment. Strictly
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Figure 68: The renormalized phonon dispersions in the MMA (red) and RPA (blue).
Left: TMMA = 33.5K, but g is set slightly too small so that the dispersion has not
broken down; right: TRPA = 303.5K at this coupling. In the left image the RPA phonon
dispersion is deep into the ordered phase so is not shown. The experimentally observed
ordering vector is marked. cf. Figure 59 which shows the RPA result where it is TRPA

which has been set instead to 33.5K through a di�erent choice of the magnitude of g.

g has been set slightly smaller than the required value to give a more intuitive plot - at the

transition itself the dispersion goes imaginary around QCDW . Also shown are the same

dispersions at 303.5K where the RPA prediction for the transition temperature lies (at

this coupling). It is clear that the MMA suppresses the renormalization of the phonon

frequency relative to the RPA.

Setting g precisely to give TMMA = 33.5K, rather than the near miss shown in Figure 68,

actually results in TRPA = 416.4K; the MMA phonon frequencies are a nonlinear function

of g and a small change in the coupling can cause a large change in ordering temperature.

The physical interpretation is as follows: the RPA predicts an ordering temperature of

around 400K. The system attempts to order at this temperature, with the amplitude of

the phonon �eld taking a non-zero value

√〈
|ϕ|2

〉
> 0. However, ϕ is a complex quantity,

and �uctuations of the phase suppress the order itself: 〈ϕ〉 = 0. These �uctuations are

taken into account by the MMA. In fact the system has to be cooled to 33.5K before

the �uctuations are damped su�ciently to allow the system to order, giving 〈ϕ〉 > 0 at

the true, MMA, transition temperature. A simple phase diagram is given in Figure 69 to

illustrate the point.

This theory is in complete agreement with the recent results of X-ray scattering, ARPES,

and tunneling (STS) measurements as reported in [109]. Speci�cally the paper notes the

following: a broadening of the peak in the Fourier transform of the STM signal above
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φ>0 φ=0, |φ|2 =0|φ|2 >0
CDW order pseudogap disorder

T(K)0

TMMA TRPA

Figure 69: The phase diagram of NbSe2. The system attempts to order when the
RPA predicts a phase transition at TRPA = 416.4K (blue). In fact phonon �uctuations
suppress the order down to the the MMA phase transition at TMMA = 33.5K (red). The
intermediate regime is labelled pseudogap.

TCDW indicating a shift from long range order 〈ϕ〉 > 0 to short range order

√〈
|ϕ|2

〉
> 0;

the loss of the sharp edge in the tunneling pro�le but the persistence of a reduced DOS

above TCDW ; and the loss of a coherent peak in ARPES intensity above TCDW but the

persistence of an energy gap. The persistent features are related to the idea of a pseudogap

in Section 9.2.1.

Reference [109] also gives the same theoretical interpretation as I have provided here. In

fact, the idea of phase incoherence suppressing CDW order was proposed for 1D CDW

systems as early as 1973 [141]. The same idea was used by McMillan in 1977 to explain

discrepancies between theory and experiment in the closely related system of TaSe2 [70].

9.2.1 The Pseudogap Regime

In the phase diagram of Figure 69 the intermediate regime between disorder and CDW

order is labelled the `pseudogap'. The properties of pseudogaps are a controversial topic.

The universally agreed upon feature is a reduction in the observed density of states for

a range of temperatures above the ordering temperature [110]. Of course we cannot tell

without a �rmer theoretical understanding whether the density of states is actually reduced

or whether experimental probes are simply unable to detect the states. The seemingly

reduced DOS occurs generically in hole-doped cuprate superconductors [93]. In many of

these systems �uctuating stripes of charge order are observed to develop simultaneously

with the reduced DOS, although it is debated whether the two always coincide and, if

they do, which is the cause and which the e�ect [93, 110, 142, 143, 144, 145]. It is further

debated whether it is �uctuations of the stripes which link with the pseudogap or whether

the static stripe structure itself is the relevant property [5]. The term pseudogap regime
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(as opposed to `state' or `phase') tends to be used because it is an important open question

as to whether the pseudogap constitutes a phase of matter - that is, whether there exists

long-range order which can be characterized by a Landau order parameter.

In NbSe2 a reduced density of states is seen over a range of about 35meV around EF ,

starting below TCDW and showing no signs of abating by 119K [105]. It is the prevailing

view at present that this does not constitute a true CDW gap37, but rather a pseudogap

similar to that seen in the layered high-TC compounds [109, 105].

In light of the previous discussion I am con�dent in making the following claims regarding

the origin of the pseudogap in NbSe2:

1. the pseudogap is an expression of a nonzero CDW amplitude, which can be quanti�ed

by short-range �uctuations of the phonon �eld

√〈
|ϕ|2

〉
.

2. As a corollary of (1), there is no long-range order parameter characterizing the pseu-

dogap, so it does not form a new state of matter in the Landau symmetry breaking

sense.

3. As a second corollary of (1), it is indeed �uctuations of CDW order which characterize

the pseudogap state rather than the static stripe structure. This is clear in NbSe2

since it is the ordered state which is characterized by a static structure.

4. Phase incoherence between the phonon modes suppresses true CDW order down to

TCDW = 33.5K.

5. The pseudogap will disappear at around 400K.

As further evidence for these claims, real-space STM imaging has detected the formation of

small, uncorrelated regions of CDW order nucleating around surface defects at 96K [108].

The defects stabilize a given CDW phase, breaking the 〈ϕ〉 = 0 symmetry locally (but in

an uncorrelated manner, so maintaining the symmetry globally). When the temperature

is decreased to TCDW long range order has set in and the islands of stability become

correlated.

37In fact the 35meV suppression is most likely an artefact of STS, with the increase in DOS outside
this range due to phonon contributions [109]. Regardless, there is a consensus that some form of reduced
electronic DOS persists above TCDW .
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Points (1− 4) are in accord with existing experimental results as described above. Point

(5) provides a further test of the theory. To date, the highest-temperature measurement

of the NbSe2 pseudogap is the 119K result of Borisenko et al. [105]. At that temperature

the gap magnitude has nearly doubled relative to that at TCDW , making the pseudogap's

fate at high temperatures unclear. It should be noted however that at present it seems

unlikely that the pseudogap could be probed at temperatures as high as 400K.

It remains an open question as to whether the theory I have given for the NbSe2 pseudogap

is relevant to the story of the pseudogap in the the high-TC superconductors. In the high-

TC literature [110] this story is known as the `pre-formed pairs theory': Cooper pairs form

at a high temperature T ∗ (cf. TRPA) but have uncorrelated phases. As the temperature

approaches TC (in our case TMMA ≡ TCDW ) the pairs become coherent, and long-range

order develops. There is certainly no consensus as to whether this is the correct description

of the cuprate pseudogap.

9.3 MMA Phase Diagram

9.3.1 Free Energy Including Strain

The MMA diagrams act to further renormalize the phonon 2-point correlator (propagator)

beyond the RPA renormalization. They have no e�ect on the 3- and 4-point correlators,

so these remain the same in the free energy expression. Recalling the de�nitions from

Equation 67 of Chapter 8 we have

βF3Q [ϕ] = −3rϕ2 − aϕ3 +
3
2
b (c+ 1)ϕ4

βF1Q [ϕ] = −rϕ2 +
1
2
bϕ4

with

rj = −
(
Ωq

(
1 + σ

2 (3δj1 − 1)
)
−DΣ

2j (σ)
)

j ∈ [1, 3]

a = 2 (D3a +D3b)

b = D4a + 2D4b

bc = 4 (D4d + 2D4c) .
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Strain, σ, again only a�ects the quadratic term r, which now gains an asymmetry between

the three
−−→
ΓM directions (although two remain the same). Unlike in the RPA the renor-

malizing term is itself a�ected by the strain, since it now includes an internal phonon line.

The required generalization of DΣ
2 from Section 9.1 is

DΣ
2j (q, iΩ) = − 1

π

∑
k

(
|gk,k−q|2 ·

·
�

dεIm
(
G0 (k, ε+ iδ)−1 − Σj (k, ε+ iδ, σ)

)−1
Re

[
f (ε)− f (ξk−q)
ε− ξk−q − iΩ

])

with a di�erent self-energy in the three CDW directions, j, as before:

Σj (k, ε+ iδ, σ) = − 1
π

∑
q

(
|gk,k−q|2

Ωq

ΩRPA

(
1 +

σ

2
(3δj1 − 1)

)
·

·
�

dε′Im
[
G0

(
k− q, ε′ + iδ

)]{nB (ΩRPA) + 1− f (ε′)
ε− ε′ − ΩRPA + iδ

+
nB (ΩRPA) + f (ε′)
ε− ε′ + ΩRPA + iδ

})
.

The calculation otherwise remains the same as in the RPA case.

9.3.2 The Phase Diagram

The phase diagram as a function of temperature and strain is given in Figure 70. This time

both the RPA and MMA transitions are included. In Section 8.5 of Chapter 8 a similar

diagram was produced with the magnitude of the electron-phonon coupling g set to give

TRPA = TCDW = 33.5K. This time g is chosen so as to give TMMA = TCDW = 33.5K. In

this case at zero strain TRPA occurs at around 416K.

A brief comment on the validity of the method is in order. In either the MMA or RPA, the

�eld theory is a perturbative expansion around a disordered Gaussian �xed point. Lowering

temperature, as soon as the order parameter ϕq becomes non-zero at any point in the

Brillouin zone a structural instability is triggered, and the system develops CDW order.

The original theory becomes invalid, and a new theory must be constructed consisting of an

expansion about the new Gaussian �xed point (which is then again treated as `disordered'

with respect to a new order parameter). In constructing Figure 70 I have used a much
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Figure 70: The CDW phase diagram in both the RPA and MMA as a function of
temperature and uniaxial strain. Cooling from high temperature, the initially disordered
system develops �uctuating islands of stability when the RPA predicts a phase transition.
These islands have a 3Q character at zero strain, but it takes only around 0.1% anisotropic
change in the phonon energies to stabilize the 1Q geometry. As the system cools further
the true CDW phase transition occurs, at the MMA transition. As in RPA the geometry
of the CDW is 3Q type, but as little as 0.1% strain stabilizes the 1Q state. The MMA
includes internal phonon contributions to the electron self-energy. These are themselves
a�ected by the strain, with the result being that the 1Q state stabilizes at lower strain in
the gapped state than the pseudogap regime. Dashed black lines indicate second-order
phase transitions whereas solid black lines indicate weakly-�rst-order transitions.
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more naïve approach, considering the two �eld theories, RPA and MMA, independently.

Strictly only the phase transition lines appearing in the �gure can be trusted. According

to RPA, CDW order develops below TRPA, but nothing more can be said about lower

temperatures. The MMA makes the same prediction about TMMA. The statement that

the range of temperatures between these two transitions corresponds to a pseudogap state,

where phonon �uctuations suppress the CDW order, is therefore an additional physical

assertion, but a sensible one given that it was the basis for the original choice of the

diagrams making up the MMA (the lowest-order diagrams including the entropy of the

phonon �eld) [136, 130, 131].

Cooling from high temperature at zero strain the system undergoes a weakly �rst-order

phase transition at TRPA to the pseudogap regime characterized by �uctuating short-range

CDW order. The �uctuations of the phonon �eld suppress true CDW order down to 33.5K,

at which point the ordered state develops again via a weakly �rst-order phase transition.

In both transitions it takes only around 0.1% anisotropic shift in the phonon energies,

corresponding to a similar percentage lattice distortion, to stabilize the 1Q geometry.

There is an experimental precedent for this in the ordered regime, in the form of STM

measurements on the surface of NbSe2 which show domains of 1Q order believed to be

stabilized by local strain e�ects. These e�ects have an estimated upper bound of around

0.45% lattice strain [102] in agreement with the results of this model. Similar measurements

on the geometry of the �uctuating CDWs in the pseudogap regime have not been carried

out.

In MMA, DΣ
2 itself depends on strain via the internal phonons in the electronic self-energy.

The result is a reduction in the range of strains over which the 3Q geometry is stable, as

evident in Figure 70. The phase transition to the 1Q state in both the RPA and MMA

cases is second-order, which constitutes a testable prediction of the theory.
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10 The CDW Gap Equation

In Chapter 8 I developed a quantum �eld theoretical description of NbSe2 using the

Random Phase Approximation. Strictly the theory holds only in the disordered regime,

T > TRPA. In Chapter 9 I extended the model to include �uctuations of the phonon �eld

via the Mode-Mode Coupling Approximation, and deduced a range of temperatures over

which a pseudogap regime exists, TMMA < T < TRPA. In this chapter I will extend the

�eld theory to look into the ordered state itself.

10.1 The Nambu-Gor'kov Method

10.1.1 Use in Superconductivity

Perturbative QFT, in essence, consists of �nding a stable �xed point of a physical system

(the mean �eld solution) then perturbing about this �xed point in powers of a small

parameter (in this case the electron-phonon coupling g). So far I have worked entirely in

the disordered regime. With the methods employed so far, I was able to demonstrate the

renormalization of quantities such as the phonon dispersion. As soon as the energy of a

q 6= 0 phonon hits zero, however, a permanent lattice distortion is induced. The symmetry

of the system is reduced, and the disordered �xed point is no longer the lowest energy �xed

point in the problem. A new �eld theory should be constructed by making perturbations

about the new �xed point.

There is, however, an ingenious method to establish properties of the ordered phase using

the �eld theory of the disordered phase. The method was developed in the context of

superconductivity by Nambu [146] and Gor'kov [147], building on foundations laid by

Bogoliubov [148], and was popularized in the West by de Gennes [127]. I will give a brief

account of the superconductivity case before generalizing the method to the study of charge

density waves.

The BCS superconductivity story is these days well-known [149]. The two facts relevant

here are:

1. electrons of opposite spin pair to form composite bosons

2. the superconducting condensate is not an eigenstate of the particle number operator.
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First I will de�ne Green's functions for the particles and holes separately:

G0 =
〈
ψkσψ

†
kσ

〉
= (iωn − ξk)

−1

G̃0 =
〈
ψ†kσψkσ

〉
= (iωn + ξk)

−1

with σ a spin index38, although the two spins behave identically. Note the particle-hole

symmetry, absent from the case of CDWs except at half-�lling. I will additionally de�ne

particle number non-conserving anomalous Green's functions

F † =
〈
ψ†k↑ψ

†
k↓

〉
F = 〈ψk↑ψk↓〉 .

The operator F † creates a Cooper pair, and F annihilates one. Before the introduction of

the F operators the electron self-energy renormalizes the electron Green's function as

G = G0 +G0ΣG (77)

but after the introduction we get the additional term

G = G0 +G0ΣG+G0∆F †

shown diagrammatically in Figure 71. The symbol ∆ represents the superconducting gap

function, and in general is a complex-valued function of momentum and energy. I will take

it to be a constant scalar for the sake of this exposition.

Also shown in Figure 71 are the diagrams which can be constructed out of the same

elements. In equation form:

38I maintain spin indices should be called spindices. Since I will never get this past an editor am I stating
it here.
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Figure 71: Nambu-Gor'kov Feynman diagrams including the pair creation/annihilation
operators in superconductivity. In blue is the self-energy Σ, in red the gap function ∆.
The vertex symbols have been omitted for clarity. The double-headed arrows do not
conserve particle number.

G = G0 +G0ΣG+G0∆F †

F = G0ΣF +G0∆G̃

G̃ = G̃0 + G̃0Σ̃G̃+ G̃0∆∗F

F † = G̃0Σ̃F † + G̃0∆∗G.

These can be recast as a simple self-energy equation in terms of a 2× 2 matrix:

 G F

F † G̃

 =

 G0 0

0 G̃0

+

 G0 0

0 G̃0


 Σ ∆

∆∗ Σ̃


 G F

F † G̃

 . (78)

Note that Equation 78 is simply Equation 77 with the various symbols now representing

2 × 2 matrices. Setting the self-energy to zero for simplicity, the (1, 1) element of the

Green's function matrix - the propagator for the `Bogoliubov quasiparticle' in the ordered

state - can be evaluated using the usual Dyson series re-arrangement of Equation 78 in

matrix form. The result is

G =
iωn + ξk

(iωn)
2 − ξ2k − |∆|

2 .

Thus we have a Green's function for quasiparticles valid in the ordered regime, which

reduces smoothly to the bare electron propagator as the gap ∆ vanishes above TC . This
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is the essence of the Nambu-Gor'kov method.

10.1.2 Generalization to Charge Order

In a commensurate CDW system with rational period 2πn in real space we instead have

n× n matrices of the form

Gnn0 =
〈
ψk+nQψ

†
k+nQ

〉
= (iω − ξk+nQ)−1 .

Unlike in the BCS theory, in CDW systems the particle number is still well-de�ned. How-

ever, crystal momentum is not, since the increase in the real space lattice size induced

by the CDW transition causes a reduction of the Brillouin zone, making states k and

k+QCDW equivalent (discussed at length in Section 3.2). Accordingly I will de�ne crystal

momentum non-conserving operators

Fnm ,
〈
ψk+nQψ

†
k+mQ

〉
Fn†m ,

〈
ψ†k+mQψk+nQ

〉
.

For NbSe2 we have an incommensurate system with three di�erent ordering directions,

requiring in�nite-dimensional matrices. I will approximate these to have the structure of

commensurate matrices by setting δ = 0 in the CDW vectors Q = (1− δ) 2
3

−−→
ΓM . In fact

δ is irrational and close to 0.104. Writing the rows and columns of the gap matrix as

k±Qi, i ∈ [1, 3] would give a 7× 7 matrix. Naïvely the gap matrix would be:

Σ ,



Σk ∆k
k+Q1

∆k
k−Q1

∆k
k+Q2

∆k
k−Q2

∆k
k+Q3

∆k
k−Q3

∆k+Q1

k Σk+Q1 0 0 0 0 0

∆k−Q1

k 0 Σk−Q1 0 0 0 0

∆k+Q2

k 0 0 Σk+Q2 0 0 0

∆k−Q2

k 0 0 0 Σk−Q2 0 0

∆k+Q3

k 0 0 0 0 Σk+Q3 0

∆k−Q3

k 0 0 0 0 0 Σk−Q3


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that is, the state k couples to each of k ± Qi and no other couplings occur. Note that

∆k+Qn

k+Qm
=
(
∆k+Qm

k+Qn

)∗
. There are two errors with the matrix, both stemming from symme-

try constraints. With a CDW wavevector of QCDW = 2
3

−−→
ΓM it follows that

Q1 + Q2 + Q3 = 0

2Qi ≡ −Qi. (79)

This implies additional entries in the matrix: for example the diagonal entries Σk−Q1 and

Σk+Q2 are coupled, since the di�erence in their wavevectors is Q2 +Q1 which is equivalent

to −Q3. Employing a simpli�ed notation 1 , k +Q1, 1 , k −Q1 etc. the matrix �lls up

like so:

Σ =



Σk ∆k
1 ∆k

1
∆k

2 ∆k
2

∆k
3 ∆k

3

∆1
k Σ1 ∆1

1
0 ∆1

2
0 ∆1

3

∆1
k ∆1

1 Σ1̄ ∆1
2 0 ∆1

3 0

∆2
k 0 ∆2

1
Σ2 ∆2

2
0 ∆2

3

∆2
k ∆2

1 0 ∆2
2 Σ2̄ ∆2

3 0

∆3
k 0 ∆3

1
0 ∆3

2
Σ3 ∆3

3

∆3
k ∆3

1 0 ∆3
2 0 ∆3

3 Σ3̄



where the gap functions ∆ are labelled with a top index according to their row (momentum

scattered from) and a bottom index according to their column (momentum scattered to).

Since states connected by 2Q1 are in fact connected through the equivalence 2Q1 ≡ −Q1

and so on, it also follows that we should include columns and rows corresponding to the

momenta ± (Q1 −Q2) , ± (Q1 −Q3), and ± (Q2 −Q3). In fact four of these six momenta

turn out to be equivalent by the constraints of Equation 79, and we only need additional

entries for (say) ± (Q1 −Q2). Including these the matrix takes the �nal form
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Σ =



Σk ∆ ∆ ∆ ∆ ∆ ∆ 0 0

∆ Σ1 ∆ 0 ∆ 0 ∆ ∆ ∆

∆ ∆ Σ1̄ ∆ 0 ∆ 0 ∆ ∆

∆ 0 ∆ Σ2 ∆ 0 ∆ ∆ ∆

∆ ∆ 0 ∆ Σ2̄ ∆ 0 ∆ ∆

∆ 0 ∆ 0 ∆ Σ3 ∆ ∆ ∆

∆ ∆ 0 ∆ 0 ∆ Σ3̄ ∆ ∆

0 ∆ ∆ ∆ ∆ ∆ ∆ Σ12̄ 0

0 ∆ ∆ ∆ ∆ ∆ ∆ 0 Σ1̄2



(80)

(the labels are this time omitted for clarity).

In Section 9.1 I calculated the self-energy of the electrons in the MMA. The result was

Equation 75, and the e�ect on the generalized susceptibility D2 was Equation 76. The

proof relied on the Lehmann representation of the Green's function given in Equation 74

and proven in Appendix D.

Now that the Green's function has been generalized further to matrix form it is not clear

that the method of Section 9.1 can be used. For example, in the MMA self-energy calcu-

lation the pole in the Green's function was shifted, but the general form of the Green's

function was unaltered. In the present case the Green's function requires the numerical

inversion of a 9× 9 matrix, and the pole structure is completely undetermined.

In Appendix D I show that the Lehmann representation works for any function which is

causal and normalizable. This includes the complicated form of the gapped G, and holds

true at every level of the self-consistent calculation. We are therefore able to use Equations

75 and 76 even when G and Σ are promoted to matrices. Element (n,m) of the self-energy

matrix is now
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Figure 72: The Feynman diagrams for the self-energy in the Nambu-Gor'kov formalism.
The top diagram is for the diagonal elements (self-energies). The slashes are used to
indicate amputation, so this diagram is the same as Figure 66. The bottom diagram is
for o�-diagonal elements (gaps). The central fat electron line is the anomalous Green's

function F k−q
k−q+Q which does not conserve crystal momentum.

Σn
m (k, ε+ iδ) = − 1

π

∑
q

(
gk+Qn,k−q+Qngk−q+Qm,k+Qm

(
Ωq

ΩRPA

)
·

·
�

dε′Im
[
Gnm

(
k− q, ε′ + iδ

)]
·

·
{
nB (ΩRPA) + 1− f (ε′)
ε− ε′ − ΩRPA + iδ

+
nB (ΩRPA) + f (ε′)
ε− ε′ + ΩRPA + iδ

})
(81)

with the corresponding Feynman diagrams given in Figure 72. The generalized suscepti-

bility is again given by

[
DΣ

2 (q, iΩ)
]
nm

= − 1
π

∑
k

|gk,k+q|2
�

dε′Im
(
Gnm

(
k, ε′ + iδ

))
Re

[
f (ε′)− f (ξk−q)
ε′ − ξk−q − iΩ

]
.

For the remainder of this chapter I will neglect the on-diagonal (self-energy) terms in the

matrix of Equation 80. Neglecting self-energies means the calculation e�ectively takes place

in the RPA rather than MMA, without internal phonon contributions to propagators.

10.1.3 Self-Consistent Gap Calculation

The numerical calculation of G and ∆ is once again carried out self-consistently. The com-

plex phase of the gap function plays no rôle in the physics of the system, and accordingly

the phase of the seed survives as the phase of the self-consistent solution. This greatly
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Δ(0)

Δ(1)

Figure 73: The intersection of the curve ∆(1)
(
∆(0)

)
with the line ∆(1) = ∆(0) is a �xed

point of the �ow (the in�nite-order solution). The solutions found in this study all take
the form of either the red curve (a stable nonzero �xed point) or the blue curve (a stable
�xed point at zero).

simpli�es the search for a good seed value, and at a given k the problem can be solved

exactly via an iterative method shown schematically in Figure 73. Inserting a seed ∆(0),

the �rst-order result ∆(1) is calculated. In theory we could then feed this ∆(1) back into

the calculation to calculate ∆(2), and so on. There is a neater method, though: �nding

∆(1) as a function of ∆(0), the point at which the curve ∆(1)
(
∆(0)

)
intersects the straight

line ∆(1) = ∆(0) will either be a point of convergence of the series (stable �xed point) or a

point of divergence (unstable �xed point).

The gap function is in general a rather complicated object: a complex-valued function of

two 2D crystal momenta and two energies, ∆k+Qn

k+Qm
. The complex phase is unimportant,

and I assume the gap to be independent of energy, considering only the value at the Fermi

level. This still leaves four degrees of freedom. If elements (1, 2− 7) of the self-energy

matrix in Equation 80 turn out to be identical for the same seed this is su�cient to reduce

the gap to a function of only one 2D momentum. The reason is as follows: if elements

(1, 2− 7) are the same then ∆k
k+Q1

= ∆k
k−Q1

= ∆k
k+Q2

etc., and we can call this single

function ∆ (k); element (2, 3) is ∆k+Q1

k−Q1
, but from the two equivalence relations of Equation

79 this is equal to ∆k+Q1

k+Q1+Q1
which is nothing other than ∆ (k + Q1). Similar reasoning

holds for any o�-diagonal element in the 9× 9 matrix. Investigation of elements (1, 2− 7)

reveals that they are indeed the same for all seeds at all points in the Brillouin zone which

were tested, and the use of a real-valued function of one 2D momentum for ∆ is justi�ed.

It would still be too computationally demanding to evaluate the gap function for all points
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in the Brillouin zone. Instead I carried out a tight-binding �t to �fth-nearest neighbour,

constraining the �t by �nding the value of the gap function at a set of (high-symmetry)

points. De�ning

ξ ,
1
2
kx

η ,

√
3

2
ky

(units of 2π) the general tight-binding expression for an arbitrary real function to �fth-

nearest neighbour is

∆k = t0 + t1 (2 cos (ξ) cos (η) + cos (2ξ))

+t2 (2 cos (3ξ) cos (η) + cos (2η))

+t3 (2 cos (2ξ) cos (2η) + cos (4ξ))

+t4 (cos (ξ) cos (3η) + cos (5ξ) cos (η) + cos (4ξ) cos (2η))

+t5 (2 cos (3ξ) cos (3η) + cos (6ξ)) (82)

found by Fourier transforming the nth nearest neighbour structure. I chose high symmetry

points Γ, M , K, Λ1 , 1
2

−−→
ΓM , Λ2 , 1

3

−→
ΓK, Λ3 , 2

3

−→
ΓK which focus somewhat on the K

point around which the gap is seen to open in ARPES [105]. They are shown in Figure 74.

Inserting them into Equation 82 gives six simultaneous equations which can be inverted

analytically to give the set of tn constrained by the set of ∆ values. The result of the �t is

also shown in Figure 74. In fact, of the six points tested the gap was non-zero only at the

K point, which seems sensible with regard to the known experimental results.

10.2 The Spectral Function and Density of States

10.2.1 Analytic Expressions for Measurable Quantities

ARPES, as mentioned in Section 6.3, is a direct measure of the occupation of states at

a given energy and wavevector. This suggests a link to the spectral function, introduced
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Figure 74: The tight-binding �t to the self-consistent gap function, with the high sym-
metry points (used to constrain the �t) marked.

in Equation 73 of Section 9.1 as giving the probability of a given electronic state (k, ε)

being occupied. Multiplying the spectral function by the Fermi-Dirac distribution of the

electrons gives the ARPES intensity for a perfect, noise-free measurement:

IARPES (k, ε) ∝ f (ε)A (k, ε) + const. (83)

It is relatively straightforward to convolve the expression with a noise function and exper-

imental resolution [150], but in all cases relevant to this study the net result was simply a

blurring of the image. I therefore consider the clean case only. There will be some back-

ground in any measurements corresponding to the constant o�set in Equation 83, so I will

consider both the overall scale and the zero of the intensity to be arbitrary.

The density of states can be measured in STS experiments, in which case only the energy

can be varied (via the applied tunneling potential). Analytically the crystal momenta are

summed over:

IDOS (ε) ∝
∑
k

IARPES (k, ε) .

I will again neglect imperfections in the experiment. An important point to note is that

while IDOS contains an arbitrary scaling its zero is �xed.
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10.2.2 Results for NbSe2

Figures 75, 76, and 77 show the theoretical predictions for the ARPES intensity at EF ,

the ARPES intensity across ε with k along
−−→
MK, and the DOS, respectively. The only

free parameter in the theory remains the overall strength of the electron-phonon coupling.

This was set to give a good match to both the experimental ARPES results of Borisenko

et al. (Figs. 76 and 75) and the STS results of Soumayanaran et al. (Fig. 77). Of course

it was not guaranteed that all could be satis�ed simultaneously, but in fact the agreement

is very good.

0

Figure 75: Left: experimental ARPES results of Borisenko et al. [105]. Right: the
calculated ARPES intensity; upper half with the self-consistently calculated gap (evident
along MK), lower half without the gap, for comparison. See also Figures 76 and 77.
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Figure 77: Blue points: the density of states as measured in STS (reproduced from
[102]). Black: the theoretical prediction with no gap. Red: the theoretical prediction
including the self-consistent gap. Note the centring of the gap above EF . See also Figures
75 and 76.
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Figure 76: Left: the experimental ARPES intensity along the MK line (see Figure 75),
reproduced from [105]. Right: theoretical result including the self-consistent CDW gap.
Note the opening of the gap on the inner band only, and the corresponding backbending.
The total gap is approximately twice the distance from the top of the band to EF . See
also Figure 75 and 77.

Figure 75 shows the experimentally observed ARPES intensity alongside the theoretical

result both with and without the self-consistent gap. The key points to note are that the

outer band does not develop a gap, and that the inner-band gap opens along the
−−→
MK line.

Figure 76 shows a di�erent ARPES cut, this time through a range of energies along the

−−→
MK line. The result is again in close agreement with the experimental results.

Finally, Figure 77 shows the density of states, both measured in STS and calculated theo-

retically. There are kinks in the experimental results around ±35meV. At this energy the

tunneling electrons are able to excite phonons, so the density of states includes the many

possible phonon states. The theory again matches the experiment, and both suggest a gap

centred around 12meV above EF . I included a 4meV chemical potential in the calculation

for a closer match, which is well within the ±16meV uncertainty in the experiment leading

to the phenomenological bandstructure �t employed throughout this work [106]. The gap

is particle-hole asymmetric as the DOS is higher on the particle side than the hole side.

This appears to derive predominantly from the bare bandstructure which is also shown.

166



11 Summary of Part II

In the second half of this thesis I have developed a model of the CDW phase transition in

NbSe2 deriving from electron-phonon coupling. The theory is `strong coupling' in the sense

that the details of the coupling are important to the development of the charge order; in

particular I showed that it is necessary to include information about the orbital content

of the bands, and the crystal momenta, scattered from and to. Having established the

analytic form for the coupling as well as the bandstructure of the material in Chapter 7,

I demonstrated that the model is capable of reproducing the full gamut of experimental

results seen in NbSe2, including the various `anomalous' observations. These include an

extended phonon softening rather than a sharp Kohn anomaly [103, 104], a particle/hole

asymmetric gap which is o�set from the Fermi level [102], the CDW gap opening in one

band of the Fermi surface but not the other [105, 106], the incomplete gapping of the Fermi

surface in the CDW state [105, 106], and the existence of a suppressed density of states

over a range of temperatures above the transition [105, 108]. The fact that all of these

results can be reproduced by a model containing only one free parameter suggests this

description captures the essence of the physics at work in this system.

In quasi-1D materials, like those considered in Part I, the Peierls instability is undoubtedly

the cause of the CDW transition. Nesting causes a divergence in the electronic suscepti-

bility at QCDW = 2kF , and an arbitrarily weak, shapeless coupling between electrons is

su�cient to order the system. In Chapter 8 I de�nitively ruled out such weak-coupling

theories as possible explanations for the CDW order in NbSe2. Despite its anomalous be-

haviour, NbSe2 is in most senses a typical quasi-2D CDW system. Presumably in time the

results mentioned above will cease to be referred to as anomalous - when looked at from

the correct, strong coupling, point of view, they are perfectly understandable.

In fact there is no reason to expect the Peierls story of 1D to apply to higher dimensions,

and I would argue that it is time to retire it as a paradigm for charge order in two- and

three-dimensional systems. Certainly nesting plays a signi�cant rôle in some cases, such

as the spin density wave in chromium [98, 97], but in general we should look instead to

strong-coupling mechanisms like those in this thesis when we see charge order developing,

and should consider ourselves lucky if the simpler nesting story can explain the order.

167



A discussion of charge order in layered materials will inevitably draw comparisons to the

uncertain situation in the layered high-TC cuprates and pnictides, and I should spend a

few words discussing the similarities. The motivation is that, as noted at various points

throughout this thesis, there is a close mathematical similarity between weak-coupling

CDW ordering and the BCS theory of superconductivity; perhaps, then, the extension

of the former to strong-coupling theories has some bearing on the extension of the latter

to non-BCS superconductors39. At the same time, the high-TC materials are believed to

develop CDW order of their own simultaneously with their development of superconduc-

tivity, although whether the two orders help or hinder one another is at present unknown

[96, 151, 5].

The model for the pseudogap I provide in Chapter 9, of CDW order suppressed by �uc-

tuations of the phonon �eld, is close in spirit to the `preformed pairs' theory of the high-

TC pseudogap [152] as discussed in that chapter. The fact that the CDW gap is highly

anisotropic in k-space provides another point of contact. The phase diagrams established

in Sections 8.5 and 9.3 as a function of strain suggest that the 1Q and 3Q CDW geome-

tries are of a comparable stability in NbSe2, with the 3Q forming naturally but very little

uniaxial strain required to stabilize the 1Q state. In fact I �nd agreement with previous

claims that the 1Q state seen on the surface of NbSe2 in STM could be stabilized by local

strain e�ects [102]. In the cuprates it is unclear whether the CDW state is of 1Q (stripe)

type or 2Q (checkerboard) type, with theoretical work suggesting the materials sit on the

boundary of stability between the two states [5, 4].

Of course, we cannot generalize the results presented here for NbSe2 to the high-TC mate-

rials. What is clear is that, as a result of the work presented in this thesis, NbSe2 provides

a well-understood example of how the aforementioned phenomena can arise in a layered

material, which can therefore be used as a clear control case when plumbing the depths of

the murkier waters of the cuprates and pnictides.

39Probably not.
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Appendix A

Derivation of the non-interacting phonon action from �rst principles.

The Lagrangian for a 1D chain of N coupled classical harmonic oscillators, with generalized

coördinates qj = (rj+1 − rj) /a and natural frequency Ω, is

L =
N∑
j

q̇j · pj −
p2
j

2m
− 1

2
mΩ2q2j .

Take the continuum limit by de�ning the �eld ϕ (rj) = qj/l and its conjugate momentum

η (rj) = pjl, with l = 1/
√
mΩ. This gives

L =
�

drϕ̇ (r) η (r)− Ω
2

(
η (r)2 + ϕ (r)2

)
.

When considering the interacting theory the electron �eld couples only to the phonon �eld

ϕ and not its conjugate momentum η, so it would be nice to rewrite the action solely in

terms of the former. This is done by completing the square:

S = −Ω
2

�
dt

�
dr

{
η2 + ϕ2 − 2

Ω
ϕ̇η

}
= −Ω

2

�
dt

�
dr

{
ϕ2 +

(
η − 1

Ω
ϕ̇

)2

− 1
Ω2
ϕ̇2

}

now when we consider the partition function
� DϕDη

N exp (−S) the η integral cancels with

its normalization factor. Thus we integrate out η exactly and �nd the `e�ective' action

S = −
�

dt

�
dr

{
Ω
2
ϕ2 − 1

2Ω
ϕ̇2

}
and integrating the second term by parts allows us to write

S = −
�

dt

�
dr

{
1
2
ϕ

(
Ω2 + ∂2

t

Ω

)
ϕ

}
.

Carry out a spatial Fourier transform (crystal momentum q is not to be confused with

generalized real space coördinate qj) and include the wavevector dependence of the phonon

frequency explicitly:

169



S = −
�

dt
∑
q

{
1
2
ϕq

(
Ω2
q + ∂2

t

Ωq

)
ϕ−q

}
.

Wick rotate by writing t = iτ

S = i

� β

0
dτ
∑
q

{
1
2
ϕq

(
Ω2
q − ∂2

τ

Ωq

)
ϕ−q

}

where the cyclic nature of imaginary time has been invoked to write a �nite cuto� on the

integral. The cuto� is the inverse temperature of the system. De�ne the Euclidean action

to be SE = iS so that

SE =
� β

0
dτ
∑
q

{
1
2
ϕq

(
Ω2
q − ∂2

τ

Ωq

)
ϕ−q

}
.

Since imaginary time τ is cyclic we can decompose into Fourier modes, known as Matsubara

frequencies:

SE =
∑
Ωn

∑
q

{
1
2
ϕq,Ωn

(
Ω2
q + Ω2

n

Ωq

)
ϕ−q,−Ωn

}

or

SE =
∑
Ωn

∑
q

ϕq,ΩnD
−1
q,Ωn

ϕ−q,−Ωn

de�ning the bare phonon propagator Dq,Ωn = −2Ωq/
(
(iΩn)

2 − Ω2
q

)
. The same procedure

holds for higher dimensional spaces, in which case the phonon �eld is a vector �eld with the

dimension of the space. In this thesis I consider a 2D space, but focus on the longitudinal

phonon modes, so often treat the �eld as a scalar. It should be understood that the vector

�eld has been projected along the direction of the momentum transfer. The vector nature

of the phonon �eld re-appears in the electron-phonon coupling, dealt with explicitly in the

thesis.
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Appendix B

Derivation of the 2-point correlator (propagator).

De�ne currents which couple to the �elds like so:

ZI, J =
�

DψDϕ exp (−S) exp

(∑
k

J†kϕk +
∑
k

ϕ†kJk +
∑
k

I†kψk +
∑
k

ψ†kIk

)

with S the non-interacting action for both the electron and phonon �elds. The working

can be done separately for each �eld, and I will do so as the prefactors are di�erent in each

case. First the bosonic phonon �eld:

ZJ =
�

Dϕ exp

−
1

2

∑
kq

ϕ†kAkqϕq +
∑
k

J†kϕk +
∑
k

ϕ†kJk


let

ϕ = φ+ ϕ̄

with ϕ̄ �xed (mean �eld). Expanding,

ZJ =
�

Dφ exp

−
1

2

∑
kq

φ†kAkqφq +
1
2

∑
kq

ϕ̄†kAkqϕ̄q +
1
2

∑
kq

φ†kAkqϕ̄q

+
1
2

∑
kq

ϕ̄†kAkqφq +
∑
k

J†kϕ̄k +
∑
k

J†kφk +
∑
k

ϕ̄†kJk +
∑
k

φ†kJk


=
�

Dφ exp

−
1

2

∑
kq

φ†kAkqφq +
1
2

∑
kq

ϕ̄†kAkqϕ̄q +
∑
k

J†kϕ̄k +
∑
k

ϕ̄†kJk

+
∑
k

(
J†k +

1
2

∑
q

ϕ̄†qAqk

)
φk +

∑
k

φ†k

(
Jk +

1
2

∑
q

Akqϕ̄q

)])

so we remove the cross terms by picking

ϕ̄q = −2
∑
p

A−1
qp Jp

where the inverse is de�ned as
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∑
q

Akq A
−1
qp = δkp.

Thus we have

ZJ =
�

Dφ exp

(
−

[
1
2

∑
kq

φ†kAkqφq + 2
∑
kqpm

J†kA
−1
pk AkqA

−1
qmJm

−2
∑
kp

J†kA
−1
kp Jp − 2

∑
kp

J†pA
−1
pk Jk

])

=
�

Dφ exp

−
1

2

∑
kq

φ†kAkqφq − 2
∑
kp

J†pA
−1
pk Jk


or

ZJ

Z0
= exp

2
∑
kq

J†kA
−1
kq Jq

 .

Now we take two functional derivatives with respect to the currents on each side to get

δ
J†

q
δJk

ZJ

Z0
= Z −1

0

�
Dϕ

(
−ϕ†k

)(
−ϕq

)
exp

−
1

2

∑
kq

ϕ†kAkqϕq +
∑
k

J†kϕk +
∑
k

ϕ†kJk


= δ

J†
q
δJk

exp

2
∑
kq

J†kA
−1
kq Jq


〈
ϕ†kϕq

〉
J

= δ
J†

q

(
2A−1

qk J
†
q

)
exp

2
∑
kq

J†kA
−1
kq Jq


〈
ϕ†kϕq

〉
0

= 2A−1
qk .

For the action considered in this thesis we have

Akq =
(

Ω2
n

Ωq
+ Ωq

)
δkq

so
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〈
ϕ†kϕq

〉
0

= 2
(

Ω2
n

Ωq
+ Ωq

)−1

δkq , Dqδkq .

Now the Grassman electron �eld:

ZI =
�

Dψ exp

−
∑
kq

ψ†kBkqψq +
∑
k

I†kψk +
∑
k

ψ†kIk


let

ψk = Ψk + ψ̄k

with ψk �xed (mean �eld) and as before

ZI =
�

DΨ exp

−
∑
kq

Ψ †
kBkqΨq +

∑
kq

ψ̄†kBkqψ̄q +
∑
k

I†kψ̄k +
∑
k

ψ̄†kIk

+
∑
q

(
I†q +

∑
k

ψ̄†kBkq

)
Ψq +

∑
k

Ψ †
k

(
Ik +

∑
q

Bkqψ̄q

)])

choose

ψ̄q = −
∑
p

B−1
qp Ip

with

∑
p

Bkp B
−1
pq = δkq

to give

ZI =
�

DΨ exp

−
∑
kq

Ψ †
kBkqΨq −

∑
kp

I†kB
−1
kp Ip


and again

ZI

Z0
= exp

∑
kq

I†kB
−1
kq Iq

 .
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Taking functional derivatives gives

δ
I†q
δIk

ZI

Z0

∣∣∣∣
I=0

=
〈
ψ†kψq

〉
0

= B−1
qk

or comparing to the original action,

〈
ψ†kψq

〉
0

= Gkδkq .
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Appendix C

Matsubara sums.

Matsubara's trick is to replace a sum over discrete frequencies by a contour integral with a

weight function containing poles sat at those frequencies. The two are equivalent through

Cauchy's theorem. For fermions the frequencies are at iωn = (2n+ 1)π/β, and the function

with poles at the required places in the complex plane is the Fermi-Dirac distribution

function

f (z) =
1

exp (βz) + 1
.

For bosons the frequencies are at iΩn = 2πn/β, and the function is the Bose-Einstein

distribution function

nB (z) =
1

exp (βz)− 1
.

Thus for sums over fermionic frequencies we employ the relation

∑
ωn

h (iωn) =
1

2πi

�
C
dzh (z) f (z)

and for bosonic frequencies

∑
Ωn

h (iΩn) =
1

2πi

�
C
dzh (z)nB (z)

where in both cases the contour C encircles the in�nite set of poles running up the imaginary

axis. This well-established technique is clearly explained in references [127, 140, 128, 10]

to name a few.

The susceptibility loop for χ and D2

Both the electronic susceptibility

χ = −
∑
k

∑
ωn

GkGk+q

and the generalized susceptibility
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𝜉k

𝜉k+q-i𝛺n

Figure 78: The contour C1 used in Equation 84. The blue contour, stretching to ±i∞,
is continuously deformable into the contour de�ned by the two red lines. The latter is
employed in the Matsubara sum.

D2 = −
∑
k

∑
ωn

|gk,k+q|2GkGk+q

require evaluation of the fermionic Matsubara sum

∑
ωn

GkGk+q =
∑
ωn

1
iωn − ξk

1
iωn + iΩn − ξk+q

where I have absorbed the chemical potential into the de�nition of the energy ξ for conve-

nience. Using the Cauchy trick this can be re-written

∑
ωn

GkGk+q =
1

2πi

�
C1

dz
f (z)
z − ξk

1
z + iΩn − ξk+q

. (84)

The contour C1 can be deformed into lines encircling the two poles, as shown in Figure 78.

Using the residue theorem the result is

∑
ωn

GkGk+q =
f (ξk)

ξk + iΩn − ξk+q
+

f (ξk+q − iΩn)
ξk+q − iΩn − ξk

.

Noting that f (z − iΩn) = f (z − 2πin/β) ≡ f (z) the result simpli�es to

∑
ωn

GkGk+q =
f (ξk)− f (ξk+q)
ξk − ξk+q + iΩn

.
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The function D2 including the electron self-energy

In this case we have

DΣ
2 = −

∑
k

∑
ωn

|gk,k+q|2GΣ
kGk+q

requiring evaluation of the fermionic Matsubara sum

∑
ωn

GΣ
kGk+q =

∑
ωn

1
iωn − ξk − Σk

1
iωn + iΩn − ξk+q

.

The problem is that the pole in the �rst propagator is now in an unknown location.

In fact it has become a branch cut. The simplest way to deal with this is to use the

Lehmann representation, which is a general identity for complex functions following from

the Kramers-Kronig relation. The identity states that

GΣ (k, iωn) ≡ − 1
π

�
dε

Im
(
GΣ (k, ε)

)
iωn − ε

where the branch cut along the line iωn = ε is apparent. As noted in the main text this

representation includes the spectral function

A (k, ε) , − 1
π

ImG (k, ε)

about which I will shortly prove two useful facts.

The integral to evaluate is

∑
ωn

GΣ
kGk+q =

�
dεA (k, ε)

1
2πi

�
C2

dz
f (z)
z − ε

1
z + iΩn − ξk+q

(85)

with the contour C2 given in Figure 79. The result is

∑
ωn

GΣ
kGk+q =

�
dεA (k, ε)

[
f (ε)

ε+ iΩn − ξk+q
+
f (ξk+q − iΩn)
ξk+q − iΩn − ε

]
simplifying as in the previous case to

∑
ωn

GkGk+q =
�

dεA (k, ε)
[
f (ε)− f (ξk+q)
ε+ iΩn − ξk+q

]
.
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𝜉k+q-i𝛺n

ε

Figure 79: The contour C2 employed in Equation 85. A branch cut is present along
z = ε, but takes the form of an integral over simple poles.

Note that

A (k, ε+ iδ) = − 1
π

Im

(
1

ε+ iδ − ξk − Σk

)

so if Σ = 0, δ → 0+ it becomes a delta function:

− 1
π

� Λ

−Λ
dεIm

1
ε− ξk + iδ

=
1
π

� Λ

−Λ
dε

δ

(ε− ξk)2 + δ2

ε− ξk = δ tan (θ) ↓

=
1
π

[
atan

(
Λ− ξk
δ

)
− atan

(
−Λ− ξk

δ

)]
lim
δ→0+

= 1

∴ lim
δ→0+

A (k, ε+ iδ)|Σ=0 = δ (ε− ξk) .

Therefore the expression for DΣ
2 reduces smoothly to the non-interacting case D2 as the

self-energy is turned o�.

The second useful fact amounts to the observation that A is Lorentzian, so the integral

over all energy should be independent of Σ, δ, and k, up to sign. De�ning Σ′ , Re [Σ],
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Σ′′ , Im [Σ],

− 1
π

� ∞

−∞
dεImGΣ (k, ε+ iδ) = − 1

π

� ∞

−∞
dε

Σ′′ − δ

(ε− ξk − Σ′)2 + (Σ′′ − δ)2

ε− ξk − Σ′ ,
(
Σ′′ − δ

)
tan (θ) ↓

= − 1
π

[
atan

(
∞

Σ′′ − δ

)
− atan

(
− ∞

Σ′′ − δ

)]

=


−1,

1,

Σ′′ > δ

δ > Σ′′

constituting a `sum rule'.

The functions D3 and D4

Neglecting band indices, which simply follow their respective momentum label, the non-

linear response terms are

D3 (q,p) ,
∑
k

gk,k+qgk+q,k+q+pgk+q+p,kGkGk+qGk+p+q

D4 (q,p, l) ,
∑
k

gk,k+qgk+q,k+q+pgk+q+p,k+q+p+lgk+q+p+l,kGkGk+qGk+p+qGk+p+q+l.

The method is the same for both so I will treat only the simpler case of D3 here. The

fermion frequencies corresponding to the p and q labels are set to zero. Keeping them �nite

could act as a regularization in numerical calculations, but the physical motivation would

not be clear. Instead I will employ an explicit regularization shortly. The sum is

∑
ωn

GkGk+qGk+p+q =
1

2πi

�
dz

f (z)
z − ξk

1
z − ξk+q

1
z − ξk+p+q

and evaluates to

f (A)
(A−B) (A− C)

+
f (B)

(B −A) (B − C)
+

f (C)
(C −A) (C −B)

with
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A , ξk

B , ξk+q

C , ξk+p+q.

Numerically there is an issue whenever any of the terms A, B, or C are coincident. As

noted in [5, 4] the divergences are in fact cancelled by contributions from the di�erent

terms. The correct time to deal with them is before carrying out the frequency sum.

If A = B, the expression

1
2πi

�
dz

f (z)
z −A

1
z −B

1
z − C

reduces to

1
2πi

�
dz

f (z)
(z −B)2

1
z − C

.

The residue of the second-order pole can be evaluated using the relation

Res

(
g (z)

(z − a)n

)
=

1
(n− 1)!

∂n−1g (z)
∂zn−1

∣∣∣∣
z=a

.

Thus

1
2πi

�
dz

f (z)
(z −B)2

1
z − C

=
f (C)− f (B)

(C −B)2
+
f ′ (B)
B − C

.

For A = B = C we have

1
2πi

�
dz

f (z)
(z − C)3

=
1
2
f ′′ (C) .

For D4 the corresponding expression is
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f(A)
(A−B)(A−C)(A−D) + f(B)

(B−A)(B−C)(B−D)

+ f(C)
(C−A)(C−B)(C−D) + f(D)

(D−A)(D−B)(D−C)

and the regularized cases are

A = B:

f (C)
(C −B)2 (C −D)

+
f (D)

(D −B)2 (D − C)
+

f ′ (B)
(B − C) (B −D)

−f (B)
[

1
(B − C)2 (B −D)

+
1

(B − C) (B −D)2

]

A = B = C:

f ′′ (C)
C −D

− 2
f ′ (C)

(C −D)2
+ 2

f (C)− f (D)
(C −D)3

A = B, C = D:

f ′ (B) + f ′ (D)
(B −D)2

− 2
f (B)− f (D)

(B −D)3

A = B = C = D :

1
6
f ′′′ (D) .

Numerically a cuto� distance is implemented, such that when two terms approach within

the cuto� the regularized form is used.

The electron self-energy Σ

The expression for the self-energy is

Σ (k, iωn) = −
∑
q

∑
Ωn

|gk,k−q|2G (k− q, iωn − iΩn)D (q, iΩn)

with D the RPA renormalized phonon propagator and G containing the self-energy (the
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calculation therefore being self-consistent). Expanding, using the Lehmann representation

for the electron propagator,

Σ (k, iωn) = −
∑
q

∑
iΩn

(
|gk,k−q|2

−2Ω0 (q)
(iΩn + ΩRPA (q)) (iΩn − ΩRPA (q))

·

·
(
− 1
π

) �
dε′

Im [G (k− q, ε′ + iδ)]
iωn − iΩn − ε′

)
.

Carrying out the Matsubara sum

Σ (k, iωn) =
1
π

∑
q

|gk,k−q|2 2Ω0

�
dε′Im

[
G
(
k− q, ε′ + iδ

)]
·

·
�

dz
nB (z)

(z + ΩRPA) (z − ΩRPA)
1

z + ε′ − iωn

= − 1
π

∑
q

|gk,k−q|2
(

Ω0

ΩRPA

) �
dε′Im

[
G
(
k− q, ε′ + iδ

)]
·

·
{
nB (ΩRPA) + 1− f (ε′)

iωn − ε′ − ΩRPA
+
nB (ΩRPA) + f (ε′)
iωn − ε′ + ΩRPA

}

where the relations

nB (−ΩRPA) = −1− nB (ΩRPA)

nB
(
iωn − ε′

)
= −f

(
−ε′
)

= f
(
ε′
)
− 1

have been employed.

The Wick rotated version iωn → ε+ iδ is

Σ (k, ε) = − 1
π

∑
q

|gk,k−q|2
(

Ω0

ΩRPA

) �
dε′Im

[
G
(
k− q, ε′ + iδ

)]
·

·
{
nB (ΩRPA) + 1− f (ε′)
ε− ε′ − ΩRPA + iδ

+
nB (ΩRPA) + f (ε′)
ε− ε′ + ΩRPA + iδ

}
.

The calculation starts with a seed Σ(0); substituting this into G gives the �rst order ex-
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pression

Σ(1) (k, ε) = − 1
π

∑
q

|gk,k−q|2
(

Ω0

ΩRPA

) �
dε′Im

[
1

ε′ − ξk−q − Σ(0) + iδ

]
·

·
{
nB (ΩRPA) + 1− f (ε′)
ε− ε′ − ΩRPA + iδ

+
nB (ΩRPA) + f (ε′)
ε− ε′ + ΩRPA + iδ

}
= − 1

π

∑
q

�
dε′ |gk,k−q|2

Σ(0)′′(
ε′ − ξk−q − Σ(0)′

)2
+
(
Σ(0)′′ − δ

)2

Ω0

ΩRPA
·

·
{
nB (ΩRPA) + 1− f (ε′)
ε− ε′ − ΩRPA + iδ

+
nB (ΩRPA) + f (ε′)
ε− ε′ + ΩRPA + iδ

}

with Σ′ = Re [Σ], Σ′′ = Im [Σ].
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Appendix D

Proof of the Lehmann representation for arbitrary causal normalizable functions.

Consider a complex function G (z). I will refer to G as a Green's function, but it can be

any function obeying the relations I am about to de�ne. Let

G+ (z) , G
(
z+
)

, G
(
z + i0+

)
.

If G is a Green's function then G+ is the corresponding retarded Green's function. De�ne

this to have the following properties:

1. G+ (z) has no poles in the upper half of the complex plane (is causal)

2. G (z) drops o� at least as fast as |z|−1 at large |z| (is normalizable).

Point (2) implies the same for G+. It follows from the de�nition of zero40 that

G+ (z) = G+
(
z+
)
.

Note that one cannot simply subtract i0 from each side to obtain the same relation for G:

G (z) 6= G
(
z+
)
. (86)

This is clear physically. From points (1) and (2) it follows that a contour integral of G+

around the upper half plane is zero. Thus from a trivial application of the residue theorem

it follows that

G+
(
z+
)

=
1

2πi

�
C
dω′

G+ (ω′)
ω′ − z+

G
(
z+
)

=
1

2πi

�
C
dω′

G+ (ω′)
ω′ − z+

where C is the red contour shown in Figure 80. We are free to deform that contour, at

zero cost, by introducing an in�nitesimal nubbin directly below the pole at ω′ = z+(shown

in blue in the same Figure). Call the new contour C ′.

40i.e. 0x = 0∀x
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Im(ω')

Re(ω')

Figure 80: Two equivalent contours used in the text. The radius of the arc is taken to
in�nity.

Now it is clear that, without invoking the forbidden relation of Equation 86, for this speci�c

contour we can shift the pole down into the nubbin. Thus it follows that

G (z) =
1

2πi

�
C′
dω′

G+ (ω′)
ω′ − z

. (87)

As a point of interest, the arc in C contributes nothing to the integral, and so it follows

straightforwardly that

G (z) =
1
πi
P

�
dω′

G (ω′)
ω′ − z

with P the principal part (the average of avoiding the pole above and below the axis).

This is the Kramers-Kronig relation.

Consider the spectral function, de�ned to be

A (z) , − 1
π

Im
(
G+ (z)

)
.

This can be rewritten
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A (z) = − 1
2πi

(
G+ (z)−

(
G+ (z)

)∗)
≡ − 1

2πi
(
G+ (z)−G− (z)

)
.

Introducing a pole and integrating both sides we have

� ∞

−∞
dω′

A (ω′)
ω′ − z

= − 1
2πi

� ∞

−∞
dω′

G+ (ω′)−G− (ω′)
ω′ − z

.

In the following I will only consider Im (z) > 0, but the argument can be extended to

Im (z) < 0 by mirroring in the real axis. From property (2) we can introduce in�nite

arcs to close the contours at no cost. Choose the contour C ′ for the G+ integral. We can

choose the G− contour independently, and in fact I will take the same line (with nubbin)

along the real axis but close this contour in the lower half plane instead. This is because

G−, the advanced Green's function, has no poles in this region (clear from the de�nition

(G+)∗ , G−). Since there are no poles of either G− or ω′ − z in this contour it evaluates

to zero. The result is therefore

� ∞

−∞
dω′

A (ω′)
ω′ − z

= − 1
2πi

�
C′
dω′

G+ (ω′)
ω′ − z

.

From Equation 87 and the de�nition of A it follows that

1
π

� ∞

−∞
dω′

Im (G+ (ω′))
ω′ − z

= G (z) (88)

for any function obeying properties (1) and (2). This is the Lehmann representation.

It is important in this thesis that even though G may only be known numerically, and its

pole structure is undetermined, G+ will never have poles in the upper half plane. This is

simply because G is the propagator for quasiparticles we can observe in the lab, and such

things are always causal.
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Appendix E

The weak-coupling perturbation theory expansion of the action to fourth order in the

phonon �eld.

The partition function is

Z =
�

Dψ

�
Dϕ exp (−Sψ) exp (−Sϕ)

[
1− Sint +

1
2
S2
int −

1
3!
S3
int +

1
4!
S4
int

]
with

Sint =
∑
kq

gk,k′ϕk−k′ψ
†
k′ψk.

The following de�nitions are employed:

〈O [ψ]〉ψ ,
�

Dψ exp (−Sψ) O [ψ]{
ψ†k, ψq

}
, 0

where Sψ indicates the free electron action. The rule for �eld averages is

〈
ψ†kψq

〉
ψ

= Gkδkq

with working provided in Appendix B.

Order 1

−〈Sint〉 = −
∑
11′

g11′ϕ1−1′

〈
ψ†1ψ1′

〉
= −

∑
11′

g11′ϕ1−1′δ11′ = −
∑

1

g11ϕ0 = 0.

The notation ψ1 , ψk1 and 1 , ψ†1 is assumed from now on.

Order 2

1
2
〈
S2
int

〉
=

1
2

∑
11′22′

g11′g22′ϕ1−1′ϕ2−2′

〈
1†1′2†2′

〉
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Wick's theorem states that functional average of (time-ordered) products of states can be

decomposed into products of two-point correlators [127]. The only contraction which is

nonzero, connected (in the sense of all external legs being joined) and conserves momentum

is
〈
1†2′

〉 〈
2†1′

〉
. This requires three interchanges, giving an overall negative sign. Therefore

〈
1†1′2†2′

〉
connected

= −G1G2δ12′δ21′

and we get

1
2
S2
int = −1

2

∑
12

g12g21ϕ1−2ϕ2−1G1G2

= −1
2

∑
12

|g12|2 |ϕ1−2|2G1G2.

Disconnected terms disappear under re-exponentiation, hence their neglection.

Order 3

The Wick product is this time

〈
1†1′2†2′3†3′

〉
and the two surviving contractions are

a :
〈
1†2′

〉〈
2†3′

〉〈
3†1′

〉
b :

〈
1†3′

〉〈
2†1′

〉〈
3†2′

〉

a quick check (counting how many times operators have passed each other) shows that

both terms have a positive sign. So the highest order in G contribution is
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− 1
3!
S3
int = − 1

3!

∑
11′

22′

33′

g11′g22′g33′ϕ1−1′ϕ2−2′ϕ3−3′G1G2G3 (δ12′δ23′δ31′ + δ13′δ21′δ32′)

= − 1
3!

∑
123

(g13g21g32ϕ1−3ϕ2−1ϕ3−2 + g12g23g31ϕ1−2ϕ2−3ϕ3−1)G1G2G3

=
−2
3!

∑
123

Re (g12g23g31ϕ1−2ϕ2−3ϕ3−1)G1G2G3

using in the last line the reality of the interaction Lagrangian, that is, a = b∗.

Order 4

The Wick product 〈
1†1′2†2′3†3′4†4′

〉
has 9 physical contractions. They fall into four classes:

a δ12′δ23′δ34′δ41′

a∗ δ21′δ32′δ43′δ14′

b δ12′δ24′δ31′δ43′

b∗ δ21′δ42′δ13′δ34′

c δ13′δ24′δ32′δ41′

c∗ δ31′δ42′δ23′δ14′

d1 δ12′δ21′δ34′δ43′

d2 δ13′δ31′δ24′δ42′

d3 δ14′δ41′δ23′δ32′
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in each case the conjugate has the primes swapped on each δ, which results in a complex

conjugation of the total result as in the cubic case. Examining the d terms:

1
4!

∑
1234

|g12|2 |ϕ1−2|2G1G2 |g34|2 |ϕ3−4|2G3G4

+
1
4!

∑
1234

|g13|2 |ϕ1−3|2G1G3 |g24|2 |ϕ2−4|2G2G4

+
1
4!

∑
1234

|g14|2 |ϕ1−4|2G1G4 |g32|2 |ϕ3−2|2G3G2

=
3
4!

[∑
12

|g12|2 |ϕ1−2|2G1G2

]2

=
1
2

[
−1

2

∑
12

|g12|2 |ϕ1−2|2G1G2

]2

so this provides the next term in the reëxponentiation of the Order 2 (quadratic) term.

The other terms add to give

1
4!
S4
int =

−2
4!

∑
1234

G1G2G3G4Re [g12g23g34g41ϕ1−2ϕ2−3ϕ3−4ϕ4−1

+g12g24g31g43ϕ1−2ϕ2−4ϕ3−1ϕ4−3

+g14g23g31g42ϕ1−4ϕ2−3ϕ3−1ϕ4−2]

=
−3× 2

4!

∑
1234

G1G2G3G4Re [g12g23g34g41ϕ1−2ϕ2−3ϕ3−4ϕ4−1] .

E�ective action

Combining the results we have that
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Z =
�

DψDϕ exp (−Sψ − Sϕ)

[
1− 1

2

∑
12

|g12|2 |ϕ1−2|2G1G2

+
1
2

(
−1

2

∑
12

|g12|2 |ϕ1−2|2G1G2

)2

−1
3

∑
123

Re (g12g23g31ϕ1−2ϕ2−3ϕ3−1)G1G2G3

−1
4

∑
1234

Re (g12g23g34g41ϕ1−2ϕ2−3ϕ3−4ϕ4−1)G1G2G3G4 +O
(
g5
)]
.

To this order this is equal to

Z =
�

DψDϕ exp (−Sψ) exp
(
−Seffϕ

)
with

Seffϕ =
1
2

∑
q

ϕq

(
ω2
n

Ω
+ Ω

)
ϕ−q +

1
2

∑
12

|g12|2 |ϕ1−2|2G1G2

+
1
3

∑
123

Re (g12g23g31ϕ1−2ϕ2−3ϕ3−1)G1G2G3

+
1
4

∑
1234

Re (g12g23g34g41ϕ1−2ϕ2−3ϕ3−4ϕ4−1)G1G2G3G4

or

Seffϕ =
1
2

∑
q

ϕq

(
ω2
n

Ω
+ Ω +

∑
k

|gk,k+q|2GkGk+q

)
ϕ−q

+
1
3

∑
kqp

Re (gk+p+q,k+pgk+p,kgk,k+p+qϕqϕpϕ−p−q)Gk+p+qGk+pGk

+
1
4

∑
kpql

(
Re (gk+l+p+q,k+l+pgk+l+p,k+lgk+l,kgk,k+l+p+qϕqϕpϕlϕ−l−p−q) ·

·Gk+l+p+qGk+l+pGk+lGk

)
.

The complex phase of the combination gϕ can be shifted onto either g or ϕ individually.
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Choosing the former, i.e. real phonon displacement �elds, Hermiticity of the Hamiltonian

requires

gk,k′ = g∗k′,k

and noting that the labels on the strings of gs form closed loops we see that taking the real

part is gratuitous. The reality of these expressions follows simply from gauge invariance of

the action.
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