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i.e. as a geometric progression. Hence we can evaluate the following
integral: ∫ ∞

0

xn−1 dx

z−1ex − 1
=

∞∑
m=0

∫ ∞

0

xn−1((ze−x)m+1,

=

∞∑
m=0

zm+1

∫ ∞

0

xn−1e−(m+1)x

=

∞∑
m=0

zm+1

(m+ 1)n

∫ ∞

0

yn−1e−y

= Γ(n)

∞∑
m=0

zm+1

(m+ 1)n

= Γ(n)

∞∑
k=1

zk

kn

= Γ(n)Lin(z). (C.34)

Similarly one can show that∫ ∞

0

xn−1 dx

z−1ex + 1
= −Γ(n)Lin(−z). (C.35)

Combining these equations, one can write in general that

∫ ∞

0

xn−1 dx

z−1ex ± 1
= ∓Γ(n)Lin(∓z) . (C.36)

Note that when |z| � 1, only the first term in the series in eqn C.32
contributes, and

Lin(z) ≈ z. (C.37)

Note also that

Lin(1) =
∞∑

k=1

1

kn
= ζ(n), (C.38)

where ζ(n) is the Riemann zeta function (eqn C.21).

C.6 Partial derivatives

Consider x as a function of two variables y and z. This can be written
x = x(y, z), and we have that

dx =

(
∂x

∂y

)
z

dy +

(
∂x

∂z

)
y

dz. (C.39)

But rearranging x = x(y, z) can lead to having z as a function of x and
y so that z = z(x, y), in which case

dz =

(
∂z

∂x

)
y

dx+

(
∂z

∂y

)
x

dy. (C.40)
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Substituting C.40 into C.39 gives

dx =

(
∂x

∂z

)
y

(
∂z

∂x

)
y

dx+

[(
∂x

∂y

)
z

+

(
∂x

∂z

)
y

(
∂z

∂y

)
x

]
dy.

The terms multiplying dx give the reciprocal theorem

(
∂x

∂z

)
y

=
1(

∂z
∂x

)
y

, (C.41)

and the terms multiplying dz give the reciprocity theorem

(
∂x

∂y

)
z

(
∂y

∂z

)
x

(
∂z

∂x

)
y

= −1. (C.42)

C.7 Exact differentials

An expression such as F1(x, y) dx + F2(x, y) dy is known as an exact
differential if it can be written as the differential

df =

(
∂f

∂x

)
dx+

(
∂f

∂y

)
dy, (C.43)

of a differentiable single-valued function f(x, y). This implies that

F1 =

(
∂f

∂x

)
F2 =

(
∂f

∂y

)
, (C.44)

or in vector form, F = ∇f . Hence the integral of an exact differential
is path-independent, so that [where 1 and 2 are shorthands for (x1, y1)
and (x2, y2)]∫ 2

1

F1(x, y) dx+F2(x, y) dy =

∫ 2

1

F ·dr =

∫ 2

1

df = f(2)−f(1), (C.45)

and the answer depends only on the initial and final states of the system.
For an inexact differential this is not true and knowledge of the initial
and final states is not sufficient to evaluate the integral: you have to
know which path was taken.

For an exact differential the integral round a closed loop is zero:∮
F1(x, y) dx+ F2(x, y) dy =

∮
F · dr =

∮
df = 0, (C.46)

which implies that ∇× F = 0 (by Stokes’ theorem) and hence(
∂F2

∂x

)
=

(
∂F1

∂y

)
or

(
∂2f

∂x∂y

)
=

(
∂2f

∂y∂x

)
. (C.47)

For thermal physics, a crucial point to remember is that functions of

state have exact differentials.


